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Steinhaus Graph Connectivity: Initial Data and Analysis 

Purpose 

The goal of this thesis is to obtain and analyze data on the connectivity of 

Steinhaus graphs. 

Definitions 

A graph G = (v, E), where V is a set of vertices and E a set of edges, each of 

which connects two of the vertices. All the vertices and edges in a graph may be 

expressed in a binary adjacency matrix, where any entry (i, j) containing a '1' 

signifies an edge between the vertices numbered i and j. Naturally, this matrix is 

symmetric, since the same edge will appear for (i, j) and (j, i). Also, the diagonal of 

the matrix is composed of zeroes, since no edge may connect a vertex to itself. A 

graph's degree sequence is an array of numbers, where the nth number corresponds to 

the number of edges incident to the nth vertex. If all vertices have the same degree, 

the graph is said to be regular. 

Steinhaus graphs are a special class of graph, each of which for T = lIo,oQo" ... IIo ••. , 

(an n-long string of D's and l's) has as its adjacency matrix the Steinhaus matrix 

A = [ai,] where 
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(

0. ifO$i=j$I1-I: 

1I; . .1 = (0,-1.';-1 + 1I;-1..I) Illod 2. if 1I < i < .i $ II - 1: 

0..... ifll $.i < i $ 11-1. 

That is, each entry a in the matrix results from the binary addition (see Figure 1) of 

the two entries above it (see [1]). Thus the entire Steinhaus matrix may be generated 

from the binary string T. In addition to this standard generator, the adjacency matrix 

may be constructed from a diagonal generator, defined in [1] as the entries a;.;+l' Matrix 

generation from a diagonal generator is essentially the same process, where the 

addition instead propagates upward from the diagonal. 

00 
o 

10 
1 

01 
1 

11 
o 

Figure 1: Binary addition rules. 

A graph component is the set of all vertices connected by some path to a given 

vertex. That is, any two vertices in a component are connected by a series of edges. 

A graph consisting of only one component is said to be connected. 

A graph's connectivity describes how many vertices may be removed before 

disconnecting the graph into multiple components. If anyone vertex may be 

removed without disconnection, the graph is said to be two-connected. If any two 
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vertices, the graph is three-connected, and so on. A disconnecting set is a set of 

vertices whose removal will disconnect the graph. 

0010000101100001101100 
0011000111010001011010 
1100100100111001110111 
0100110110100101001100 
0011001101110111101010 
0001001011001100011111 
0000110110101010010000 
1111101001111111011000 
0101011001000000110100 
1100110110100000101110 
1011101101010000111001 
0110100100101000100101 
0010011100010100110111 
0001110100001010101100 
0000101100000101111010 
1111100100000010000111 
1010100011111110000100 
0110011110101010000110 
1101110101100110000101 
1011010011011101111011 
0110110001001011010100 
0010010000111001001100 

Figure 2: Example Steinhaus adjacency matrix. 

As noted above, the aim of this work is to describe the connectivity of broad 

categories of Steinhaus graphs. The notation C(n, k) is the number of Steinhaus 

graphs on n vertices which are k-connected. My first goal was to write a program 

capable of determining C(n, k) for various values of n and k. 

Original Program 

I wrote the beginnings of this program during a Graph Theory course in 

Spring 2009. After requesting a binary or decimal generator, the program calculated 

and displayed whether the graph was regular, as well as its adjacency matrix, degree 

sequence, and other statistics. Given a vertex range, the program would iterate 
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through all Steinhaus graphs in the range and display those which were regular. I 

would later use a similar approach to test large numbers of graphs for connectivity. 

Connectivity Program 

The determination of a graph's connectivity requires knowledge of whether a 

graph is connected or disconnected. For this reason, I began by writing an algorithm 

to count the components in a graph, with the following steps: 

11] Push the first/next vertex to the stack. 
[2] Iterate through all vertices adjacent to this vertex, adding them to the stack 

and a vertex tracker (a binary array indicating which vertices have been 
traversed). 

[3] Empty the stack, logging all vertices' adjacencies in the stack and the vertex 
tracker. 

[4] Repeat step [3] until the stack is empty. 
[5] Now one complete component has been traversed; increment the component 

count by one. 
[6] If the vertex tracker shows all vertices have been examined, end algorithm. 
[7] Otherwise, scan through the vertex tracker to find the next vertex and return 

to step [2]. 

Using method overloading, I later created a slightly-modified version of this 

algorithm which merely tested connectedness. It counted components as before, 

returning "false" if the first completed component did not account for the entire 

graph, and "true" otherwise. 

The next step was to implement a connectivity test. Initially unsure of how to 

craft a k-connectivity test, I first implemented one- and two-connectedness tests. 

After testing these successfully, I generalized the approach to produce a k-

connectedness test. 
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Essentially, this algorithm iterated through the graph's vertices, removing 

each in tum and keeping track of those removed. For each removal, the program 

recursed and began testing removals of each remaining vertex. In this way, it tried 

all possible disconnecting sets of size two, three, and so on up to a specified k. For 

each candidate disconnecting set, the algorithm queried the connectedness test 

above. As soon as it encountered a successful disconnecting set, the algorithm 

ended, having obtained the minimum k number of vertices which could disconnect 

the graph. 

To determine a C(n, k) count, the main program iterated over all Steinhaus 

generators of length n in order, running the k-connectedness algorithm on each. On 

completion, it displayed the total count of k-connected graphs and their standard 

generators. 

Using this approach, I obtained data for many C(n, k) cases. However, the 

algorithm began to hang on some larger cases, for example C(17, 10). In general, I 

found the algorithm could not successfully complete tests on graphs' with diagonal 

generators of the form [100]1 (in all future discussion of generators, a bracketed 

portion indicates an element which may be repeated an arbitrary number of times). 

Because of this inadequacy, I coded a new attempt at a successful k­

connectivity test. For a given C(n, k), the new algorithm moved recursively through 
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all possible sets of (~) vertices, running a connectedness test on each. This new 

approach succeeded where the previous failed, completing the C(17, 10) case in 

seconds. 

Enhancements 

While obtaining data for various C(n, k) cases, I also added some logical 

enhancements to the k-connectivity test. These included some conditional checks 

before the main algorithm. First, k obviously must be less than n, and the algorithm 

terminates if this is not the case. Also, k must be less than the vertex of minimal 

degree. Otherwise, the k vertices adjacent to this vertex may be removed, creating a 

single-vertex second component. 

I also modified the k-connectivity test to first try a disconnecting set composed 

of the k vertices with highest degree. These modifications, especially the latter, 

significantly reduced the execution time of the algorithm. Later, I also added some 

initial tests with other probable disconnecting sets, based on patterns observed 

below. 

Analysis 

With the above alrogithms, I obtained a large amount of C(n, k) data (see 

Appendix for the full table). Among the most-connected graphs, which I term 

border cases, general patterns begin to emerge. 

6 



~ k 7 

n 
I 8 I 9 1 10 111 112 I 

10 

11 
12 

13 
14 
15 
16 
17 
18 

19 
20 

21 

22 
23 

Figure 3: Border cases from C(n, k) table. 

As seen in Figure 3, all border cases eventually settle into a pattern of l's, 2's, 

and 3's. Eventually, cases further from the border settle as well, as shown in Figure 4 

below. 

~ 12 113 114 1 15 1 16 I n I u I 
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28 
2 9 

30 

J1 

Figure 4: Regularity increases with greater n and k values. 
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Unfortunately, the C(n, k) cases do not appear to settle to constant values with 

any regularity. For example, 3 settles into regularity at n = 15 and 5 settles at n = 17, 

but 7 does not settle until n = 22. One easily-generalized pattern, however, is the 

relations of n and k where specific C(n, k) values occur. These are shown in Figure 5 

below. Note that k will always be even in those equations with (k / 2) and odd in 

those with ( (k + 1) / 2). I did not obtain enough data to determine if this 

sequence of relations continues along alternating prime values of C(n, k). 

C(n, k) nlk Relation 

1 n = 3 * (k / 2) + 2 

3 n = 3 * (k / 2) + 3 

7 n = 3 * (k / 2) + 4 

19 n = 3 • (k / 2) + 5 

2 n = 3 • ( (k + 1) / 2) + 1 

5 n ~ 3 * ( (k + 1) / 2) + 2 

17 n = 3 * ( (k + 1) / 2) + 3 

Figure 5: General n/k relations for regular C(n, k) values. 

Next, I examined patterns in the generators for border and near-border C(n, k) 

cases. I tested graphs with generators composed of regular substrings (110 and 

111000 for example) to see if these consistently placed in the border. Though I tried 

both standard and diagonal generators made from these substrings, there was no 

consistent pattern apparent. Looking at the generators for border cases, however, I 

observed significant patterns. All graphs in C(n, k) = 1 cases, for example, have 
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standard generators of the form 01[110]. Below, Figure 6 shows the pattern for all 

observed border cases. 

1 : 17: 19: 

01 [110J 0000[110J11 0000 [110J1 
00010 [110J 1 00010 [110J 

2: 000 [110J 000 [110J 11 
0010 [110J11 00011 [110J 

000[110]1 00101[110]1 0010[110]1 
01[110]11 001[110J 00101[110] 

00111 [110J1 001[110]11 
3 : 010000[110] 00111 [110J 

0100010 [110J11 010000[110]11 
000[110] 0100 [110J11 0100010 [110J1 

0010[110]11 01001[110]1 0100[110]1 
01[110J 1 010100 [110J 01001 [110J 

01010 [110J1 010100 [110J 11 
5 : 0110010 [110J11 01010 [110J 

0111010 [110J11 0110010 [110J 1 
00010 [110J 01[110J1 011100 [110J 11 

000 [110J 11 011 [110J 0111010 [110J1 
0010 [110J1 01 [110J 

01010 [110J 011 [110J11 
01 [110J 

7: 

00010 [110J 11 
000[110] 1 

0010[110] 
001[110J1 

01010[110]11 
01[110J11 

011[110J1 

Figure 6: Patterns of standard generators for border case graphs. 

Another way to categorize these recurring generators is by the patterns that 

are present for a fixed value of C(n, k) that are not present for C(n, k) -1. These 

added patterns are found in Figure 7. 
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1: 17 adds: 

01[110 ] 0000[110]11 
00101[110]1 

2 adds: 00111[110]1 
010000[110] 

000[110]1 0100010[110]11 
0100[110]11 

3 adds: 01001[110]1 
010100[110] 

0010[110]11 0110010[110]11 
0111010[110]11 

5 adds: 19 adds: 

00010[110] 00011[110] 
01010[110] 011100 [110] 11 

7 adds: 

001[110]1 
011[110]1 

Figure 7: Patterns of standard generators for border cases, organized by additions. 

I also performed the same organization on the diagonal generators for border 

C(n, k) cases, though no higher-level patterns emerged than those above. These are 

shown in Figure 8. 
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1: 

1[001] 

2 adds: 

[001 ] 

3 adds: 

01[001] 

5 adds: 

00 [l11000J 11 
11[000111]00 

7 adds: 

0 [111000]11 
1 [000111J OO 

17 adds: 

00011100011100011100011100 
01001111100101001111100101 
01111100101001111100101001 
11111001010011111001010011 
11110010100111110010100111 
11100011100011100011100011 
11100101001111100101001111 
11001010011111001010011111 
10100111110010100111110010 
10010100111110010100111110 

19 adds: 

0010100111110010100111110010 
1001111100101001111100101001 

Figure 8: Patterns of diagonal generators for border cases, organized by additions. 

Another potential area for patterns to emerge is in the disconnecting sets of 

these border cases. The Figures below list the vertices not in the disconnecting set 

(numbering begins at one). These consist mostly of multiples of three, beginning at 

either one, two, or three, with minor additions. In the simpler cases, clear patterns 

emerge, as shown in Figure 9. 

C (1 3 , ' I -, 
,n ·:-:: , ,;,.;.,:::,:. - [2. 5, 8, lG , 11 . 12 ] -2-11: 10 , 12 - 2-3, n-l, n- 3 
.:o:..:,::,:.:.:l:.: -[S, " g, 11 , 12, 13 ] -"- 12: 1 1 , " - 3-3, n, n-2 

C(l 6 . 9 1 -, 
':- ~:' :' 1 ':'::' :':.:. :'110 1 - [2, >. 8, 11, 13, It, :OS) - 2-14; 13 , lS -2-3, :1- 1 , no' 
' :'1 :' :;':':" ' :: Q :. :..011 -[3, " g, 12. It, !S, :'6 ) -3- 15 ; U, 16 -3-3, 0 , n - 2 

r: (1 9, 11 ) -, 
OOQll?llOl101 1 01101 - [2, >. 8 , 11, It , 16 , 17 , !OJ -2 - 1 ' ; 1 6 , 1. -2 - 3 . n-l , !'I- ' 
0 1110110110 1 1011011 - [', " g , 12. lS . 1', 18 , 19] - 3- 111 : 1'7 , 19 -' - 3, n , 1':- 2 

Figure 9: Disconnecting set patterns for C(n, k) = 2 cases. 
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Each list is followed by a summary of the three-multiples and additions, then 

by a general notation listing the three-multiple pattern ("2-3" is multiples of three 

starting at two, &c) and additions. In some larger cases, such as C(n, k) = 17, some 

disconnecting sets are harder to classify, as shown in Figure 10. 

~::~~.~_:~_~~ ! ~~~ ! o:.n:n~ .. r .. 4, ." :0. l~. H. l~. 22. '3, 2 5, 26, 2" 1 
':;_:~:C:_~::'~:~'"~~~'.;~~:O~ .. [l. IS. 9. 12, lS. HI. 2 •• 22. 24. 2 5, 26, ;:"1 
::;;,~-:::,:·:_::,:"::,':.:t::~::'C .. 12, 3, !. 11. :,.j. 17, 20, n. a. 26. 2-1 
:::.~::.::~::.:::::::c~:."::."::. .. !:, i, ", HI, 13, H. l!i'. n, .ii. 25. 26) 

.. 1-23; 21. 26. 1"' 
.. 3-2"~ 22, 2S, 26 
.. 2-26; 2S. 2" 
.. 1-2$~ 2i. 26 

.. 1·'. :1, :1-1 . c - t 

.. '·3. n - l , :1 -2 . no S 

.. 2-3, ro, :'l-2 

.. 1-'. n-lo :1-' 
:::~:.:(:::'J:':'O:':'~~:'::::': ~ :O: .. !3, Ii. g. 11, ~2. 15, lI!, 1", i9. :n. 21, 2"] .. '-"", 'le: 11. HI, 1", U .. 
:::.:.::~:::::.:.:~:~_:~::::_: .. [2. 5, 3. 11, :~. l7, 20, 21, 23, 2(, 23, 211J .. 2-26: 21. 21. 25 .. '::· S. n-2. n-3 . n-I!i 
,~::. !: :."::~: ! C: ~ : ~ "" : :.;~ ! :_ .. !3. 6. Ii. U. ~~. l~. li, 20, 21, 24, 25, 2"] .. !-rl, 'le: 1"'. li, 20, 2$ .. 
:~::::-.:: •• :, ~~,~.:, : .. :~.~.~~ .. (3. E. 11, 12. 1S, 1~ •• E. 1"', n. 2~, .H, 2'1) .. 3-2"', 'II; 11, 13. 16. 2'1 .. 
:~::'::~:.~:':~·~~~~~'~:':':~1: .. !3. E. II. U. ~3, H. 13, 1"', leo 111. H. 2"') .. 3-2"', '21; 13. H, 1"' , 19 .. 
:::.:.:~:::::.?::::~::~~:.:.::.: .. ::. -Ii. :.,. :.,. 1'. :'9. :<2. 23. li. 250. 2"1"1 .. l-25: 23, .4:i. 2~ .. !-" ::>. t.-S. r:.- t 
:::::,::::~':.~::._:~~::.:~::: .. :,. 6 . :!, :'2. :~, 1":', l!, :<:., :<:<, :<3, :<~, 2"1"] .. ~-2":', '2'f~ 1-, 22. ZS. 2S .. 
:.:.:: __ ::'.:·.';'::'." ~ l'"~.~ ! :~ .. 13. t . i, 10. l2, 13, H, 1$, le. 21, 24, 2"1"3 .. '-2", '6: 8. 10. 13. 14 
:::~~'~ : C:~': l : : :' :~ : ~~:'''~~:'~ : .. !3, 6. II. 12, l~, 15'. 2;', 22. 23. 24. 26, 2"1"] .. '-2"1; 22, 23, 26 .. 3-3. n- l , n-i. " - 3 
: •• "::.:: : :.::' l : :: : O:~"::'::':' .. !4, S. 6, e, if, 10, :01, 14, 1"', ZOo 23, 2') .. ~-26; 4, 6, 9, 10 
::;:"'::'::~.:':'::':': .• ~::'::~:: .. I', _, II. ::'2, 1!1. leo 21, 22, 25. 2i, 2~, 2") .. !-2"'1 22, 23, 26 .. ,-,. ~-l. :1-4 , n-~ 

::.::~_~~:: •• ::':"~:~.~~~~~: • [3, 6, 9, 12, 1!, lto, 2:. 23. 24. 2~, 2"") - 3-2'1; 2:!J .... 5 .. 3-3. :1-2. n-1 
:.:_:~~.~:.':~~:~:~ l : ~: ~ ~::~ .. 12, $, ,. "1. H, 1"':'. 2~, 21. "'2. 23, 2~, 21, - 2-26: 21. 22, 2~ .. 2-11, n-2, no!, n-6 

Figure 10: Disconnecting set patterns for C(27, 15) = 17. 

I attempted to fit these odd disconnecting sets to the pattern of the rest by 

searching for alternate disconnecting sets. Unfortunately, substituting the 

disconnecting sets of other graphs in the group yielded no results. Slight 

modifications to the positions of additions were equally fruitless. These difficulties 

seem to indicate that the disconnecting sets of border and near-border C(n, k) cases 

are unique. 

Future Research 

First and foremost, I am intrigued to see if the observed pattern of settling and 

regularity at the border of the C(n, k) data continues. A description of the overall 

pattern of border regularity would allow a succinct characterization of the 
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connectivity of a large subset of the Steinhaus graphs. Based on the patterns of 

disconnecting sets observed, future work could also produce a connectivity 

algorithm that first tests a wide array of likely disconnecting sets, based on past data. 
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Appendix 

• 

• 

• 

• 

• 

Figure 11: All C(n, k) data. 

A fuller view of the data in Figure 11 may be accessed at: 
h II p:lllinyurl.com/steinhaus-l 

The generator strings for all C(n, k) border cases may be accessed at: 
h II P :lItinyur l.eom/s teinhaus-2 

The generator strings for all regular C(n, k) cases analyzed may be accessed at: 
h t Ip:lltinyurl.com/steinhaus-3 

The complete list of analyzed disconnecting set patterns excerpted in Figure 9 
and Figure 10 may be accessed at: htlp:lltinyurl.eom/steinhaus-4 

All of the above data may also be obtained from Professor Wayne M. 
Dyrnaeek, Department of Mathematics, Washington and Lee University. 
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