
Daniel Thornton
2010-05-19

CS 493, Dr. Levy
Honors Thesis

Steinhaus Graph Connectivity: Initial Data and Analysis

Purpose

The goal of this thesis is to obtain and analyze data on the connectivity of

Steinhaus graphs.

Definitions

A graph G = (v, E), where V is a set of vertices and E a set of edges, each of

which connects two of the vertices. All the vertices and edges in a graph may be

expressed in a binary adjacency matrix, where any entry (i, j) containing a '1'

signifies an edge between the vertices numbered i and j. Naturally, this matrix is

symmetric, since the same edge will appear for (i, j) and (j, i). Also, the diagonal of

the matrix is composed of zeroes, since no edge may connect a vertex to itself. A

graph's degree sequence is an array of numbers, where the nth number corresponds to

the number of edges incident to the nth vertex. If all vertices have the same degree,

the graph is said to be regular.

Steinhaus graphs are a special class of graph, each of which for T = lIo,oQo" ... IIo ••. ,

(an n-long string of D's and l's) has as its adjacency matrix the Steinhaus matrix

A = [ai,] where

1

(

0. ifO$i=j$I1-I:

1I; . .1 = (0,-1.';-1 + 1I;-1..I) Illod 2. if 1I < i < .i $ II - 1:

0..... ifll $.i < i $ 11-1.

That is, each entry a in the matrix results from the binary addition (see Figure 1) of

the two entries above it (see [1]). Thus the entire Steinhaus matrix may be generated

from the binary string T. In addition to this standard generator, the adjacency matrix

may be constructed from a diagonal generator, defined in [1] as the entries a;.;+l' Matrix

generation from a diagonal generator is essentially the same process, where the

addition instead propagates upward from the diagonal.

00
o

10
1

01
1

11
o

Figure 1: Binary addition rules.

A graph component is the set of all vertices connected by some path to a given

vertex. That is, any two vertices in a component are connected by a series of edges.

A graph consisting of only one component is said to be connected.

A graph's connectivity describes how many vertices may be removed before

disconnecting the graph into multiple components. If anyone vertex may be

removed without disconnection, the graph is said to be two-connected. If any two

2

vertices, the graph is three-connected, and so on. A disconnecting set is a set of

vertices whose removal will disconnect the graph.

0010000101100001101100
0011000111010001011010
1100100100111001110111
0100110110100101001100
0011001101110111101010
0001001011001100011111
0000110110101010010000
1111101001111111011000
0101011001000000110100
1100110110100000101110
1011101101010000111001
0110100100101000100101
0010011100010100110111
0001110100001010101100
0000101100000101111010
1111100100000010000111
1010100011111110000100
0110011110101010000110
1101110101100110000101
1011010011011101111011
0110110001001011010100
0010010000111001001100

Figure 2: Example Steinhaus adjacency matrix.

As noted above, the aim of this work is to describe the connectivity of broad

categories of Steinhaus graphs. The notation C(n, k) is the number of Steinhaus

graphs on n vertices which are k-connected. My first goal was to write a program

capable of determining C(n, k) for various values of n and k.

Original Program

I wrote the beginnings of this program during a Graph Theory course in

Spring 2009. After requesting a binary or decimal generator, the program calculated

and displayed whether the graph was regular, as well as its adjacency matrix, degree

sequence, and other statistics. Given a vertex range, the program would iterate

3

through all Steinhaus graphs in the range and display those which were regular. I

would later use a similar approach to test large numbers of graphs for connectivity.

Connectivity Program

The determination of a graph's connectivity requires knowledge of whether a

graph is connected or disconnected. For this reason, I began by writing an algorithm

to count the components in a graph, with the following steps:

11] Push the first/next vertex to the stack.
[2] Iterate through all vertices adjacent to this vertex, adding them to the stack

and a vertex tracker (a binary array indicating which vertices have been
traversed).

[3] Empty the stack, logging all vertices' adjacencies in the stack and the vertex
tracker.

[4] Repeat step [3] until the stack is empty.
[5] Now one complete component has been traversed; increment the component

count by one.
[6] If the vertex tracker shows all vertices have been examined, end algorithm.
[7] Otherwise, scan through the vertex tracker to find the next vertex and return

to step [2].

Using method overloading, I later created a slightly-modified version of this

algorithm which merely tested connectedness. It counted components as before,

returning "false" if the first completed component did not account for the entire

graph, and "true" otherwise.

The next step was to implement a connectivity test. Initially unsure of how to

craft a k-connectivity test, I first implemented one- and two-connectedness tests.

After testing these successfully, I generalized the approach to produce a k-

connectedness test.

4

Essentially, this algorithm iterated through the graph's vertices, removing

each in tum and keeping track of those removed. For each removal, the program

recursed and began testing removals of each remaining vertex. In this way, it tried

all possible disconnecting sets of size two, three, and so on up to a specified k. For

each candidate disconnecting set, the algorithm queried the connectedness test

above. As soon as it encountered a successful disconnecting set, the algorithm

ended, having obtained the minimum k number of vertices which could disconnect

the graph.

To determine a C(n, k) count, the main program iterated over all Steinhaus

generators of length n in order, running the k-connectedness algorithm on each. On

completion, it displayed the total count of k-connected graphs and their standard

generators.

Using this approach, I obtained data for many C(n, k) cases. However, the

algorithm began to hang on some larger cases, for example C(17, 10). In general, I

found the algorithm could not successfully complete tests on graphs' with diagonal

generators of the form [100]1 (in all future discussion of generators, a bracketed

portion indicates an element which may be repeated an arbitrary number of times).

Because of this inadequacy, I coded a new attempt at a successful k­

connectivity test. For a given C(n, k), the new algorithm moved recursively through

5

all possible sets of (~) vertices, running a connectedness test on each. This new

approach succeeded where the previous failed, completing the C(17, 10) case in

seconds.

Enhancements

While obtaining data for various C(n, k) cases, I also added some logical

enhancements to the k-connectivity test. These included some conditional checks

before the main algorithm. First, k obviously must be less than n, and the algorithm

terminates if this is not the case. Also, k must be less than the vertex of minimal

degree. Otherwise, the k vertices adjacent to this vertex may be removed, creating a

single-vertex second component.

I also modified the k-connectivity test to first try a disconnecting set composed

of the k vertices with highest degree. These modifications, especially the latter,

significantly reduced the execution time of the algorithm. Later, I also added some

initial tests with other probable disconnecting sets, based on patterns observed

below.

Analysis

With the above alrogithms, I obtained a large amount of C(n, k) data (see

Appendix for the full table). Among the most-connected graphs, which I term

border cases, general patterns begin to emerge.

6

~ k 7

n
I 8 I 9 1 10 111 112 I

10

11
12

13
14
15
16
17
18

19
20

21

22
23

Figure 3: Border cases from C(n, k) table.

As seen in Figure 3, all border cases eventually settle into a pattern of l's, 2's,

and 3's. Eventually, cases further from the border settle as well, as shown in Figure 4

below.

~ 12 113 114 1 15 1 16 I n I u I
18

19

20

21

22
23
24
25
26
27
28
2 9

30

J1

Figure 4: Regularity increases with greater n and k values.

7

Unfortunately, the C(n, k) cases do not appear to settle to constant values with

any regularity. For example, 3 settles into regularity at n = 15 and 5 settles at n = 17,

but 7 does not settle until n = 22. One easily-generalized pattern, however, is the

relations of n and k where specific C(n, k) values occur. These are shown in Figure 5

below. Note that k will always be even in those equations with (k / 2) and odd in

those with ((k + 1) / 2). I did not obtain enough data to determine if this

sequence of relations continues along alternating prime values of C(n, k).

C(n, k) nlk Relation

1 n = 3 * (k / 2) + 2

3 n = 3 * (k / 2) + 3

7 n = 3 * (k / 2) + 4

19 n = 3 • (k / 2) + 5

2 n = 3 • ((k + 1) / 2) + 1

5 n ~ 3 * ((k + 1) / 2) + 2

17 n = 3 * ((k + 1) / 2) + 3

Figure 5: General n/k relations for regular C(n, k) values.

Next, I examined patterns in the generators for border and near-border C(n, k)

cases. I tested graphs with generators composed of regular substrings (110 and

111000 for example) to see if these consistently placed in the border. Though I tried

both standard and diagonal generators made from these substrings, there was no

consistent pattern apparent. Looking at the generators for border cases, however, I

observed significant patterns. All graphs in C(n, k) = 1 cases, for example, have

8

standard generators of the form 01[110]. Below, Figure 6 shows the pattern for all

observed border cases.

1 : 17: 19:

01 [110J 0000[110J11 0000 [110J1
00010 [110J 1 00010 [110J

2: 000 [110J 000 [110J 11
0010 [110J11 00011 [110J

000[110]1 00101[110]1 0010[110]1
01[110]11 001[110J 00101[110]

00111 [110J1 001[110]11
3 : 010000[110] 00111 [110J

0100010 [110J11 010000[110]11
000[110] 0100 [110J11 0100010 [110J1

0010[110]11 01001[110]1 0100[110]1
01[110J 1 010100 [110J 01001 [110J

01010 [110J1 010100 [110J 11
5 : 0110010 [110J11 01010 [110J

0111010 [110J11 0110010 [110J 1
00010 [110J 01[110J1 011100 [110J 11

000 [110J 11 011 [110J 0111010 [110J1
0010 [110J1 01 [110J

01010 [110J 011 [110J11
01 [110J

7:

00010 [110J 11
000[110] 1

0010[110]
001[110J1

01010[110]11
01[110J11

011[110J1

Figure 6: Patterns of standard generators for border case graphs.

Another way to categorize these recurring generators is by the patterns that

are present for a fixed value of C(n, k) that are not present for C(n, k) -1. These

added patterns are found in Figure 7.

9

1: 17 adds:

01[110] 0000[110]11
00101[110]1

2 adds: 00111[110]1
010000[110]

000[110]1 0100010[110]11
0100[110]11

3 adds: 01001[110]1
010100[110]

0010[110]11 0110010[110]11
0111010[110]11

5 adds: 19 adds:

00010[110] 00011[110]
01010[110] 011100 [110] 11

7 adds:

001[110]1
011[110]1

Figure 7: Patterns of standard generators for border cases, organized by additions.

I also performed the same organization on the diagonal generators for border

C(n, k) cases, though no higher-level patterns emerged than those above. These are

shown in Figure 8.

10

1:

1[001]

2 adds:

[001]

3 adds:

01[001]

5 adds:

00 [l11000J 11
11[000111]00

7 adds:

0 [111000]11
1 [000111J OO

17 adds:

00011100011100011100011100
01001111100101001111100101
01111100101001111100101001
11111001010011111001010011
11110010100111110010100111
11100011100011100011100011
11100101001111100101001111
11001010011111001010011111
10100111110010100111110010
10010100111110010100111110

19 adds:

0010100111110010100111110010
1001111100101001111100101001

Figure 8: Patterns of diagonal generators for border cases, organized by additions.

Another potential area for patterns to emerge is in the disconnecting sets of

these border cases. The Figures below list the vertices not in the disconnecting set

(numbering begins at one). These consist mostly of multiples of three, beginning at

either one, two, or three, with minor additions. In the simpler cases, clear patterns

emerge, as shown in Figure 9.

C (1 3 , ' I -,
,n ·:-:: , ,;,.;.,:::,:. - [2. 5, 8, lG , 11 . 12] -2-11: 10 , 12 - 2-3, n-l, n- 3
.:o:..:,::,:.:.:l:.: -[S, " g, 11 , 12, 13] -"- 12: 1 1 , " - 3-3, n, n-2

C(l 6 . 9 1 -,
':- ~:' :' 1 ':'::' :':.:. :'110 1 - [2, >. 8, 11, 13, It, :OS) - 2-14; 13 , lS -2-3, :1- 1 , no'
' :'1 :' :;':':" ' :: Q :. :..011 -[3, " g, 12. It, !S, :'6) -3- 15 ; U, 16 -3-3, 0 , n - 2

r: (1 9, 11) -,
OOQll?llOl101 1 01101 - [2, >. 8 , 11, It , 16 , 17 , !OJ -2 - 1 ' ; 1 6 , 1. -2 - 3 . n-l , !'I- '
0 1110110110 1 1011011 - [', " g , 12. lS . 1', 18 , 19] - 3- 111 : 1'7 , 19 -' - 3, n , 1':- 2

Figure 9: Disconnecting set patterns for C(n, k) = 2 cases.

11

Each list is followed by a summary of the three-multiples and additions, then

by a general notation listing the three-multiple pattern ("2-3" is multiples of three

starting at two, &c) and additions. In some larger cases, such as C(n, k) = 17, some

disconnecting sets are harder to classify, as shown in Figure 10.

~::~~.~_:~_~~ ! ~~~ ! o:.n:n~ .. r .. 4, ." :0. l~. H. l~. 22. '3, 2 5, 26, 2" 1
':;_:~:C:_~::'~:~'"~~~'.;~~:O~ .. [l. IS. 9. 12, lS. HI. 2 •• 22. 24. 2 5, 26, ;:"1
::;;,~-:::,:·:_::,:"::,':.:t::~::'C .. 12, 3, !. 11. :,.j. 17, 20, n. a. 26. 2-1
:::.~::.::~::.:::::::c~:."::."::. .. !:, i, ", HI, 13, H. l!i'. n, .ii. 25. 26)

.. 1-23; 21. 26. 1"'
.. 3-2"~ 22, 2S, 26
.. 2-26; 2S. 2"
.. 1-2$~ 2i. 26

.. 1·'. :1, :1-1 . c - t

.. '·3. n - l , :1 -2 . no S

.. 2-3, ro, :'l-2

.. 1-'. n-lo :1-'
:::~:.:(:::'J:':'O:':'~~:'::::': ~ :O: .. !3, Ii. g. 11, ~2. 15, lI!, 1", i9. :n. 21, 2"] .. '-"", 'le: 11. HI, 1", U ..
:::.:.::~:::::.:.:~:~_:~::::_: .. [2. 5, 3. 11, :~. l7, 20, 21, 23, 2(, 23, 211J .. 2-26: 21. 21. 25 .. '::· S. n-2. n-3 . n-I!i
,~::. !: :."::~: ! C: ~ : ~ "" : :.;~ ! :_ .. !3. 6. Ii. U. ~~. l~. li, 20, 21, 24, 25, 2"] .. !-rl, 'le: 1"'. li, 20, 2$..
:~::::-.:: •• :, ~~,~.:, : .. :~.~.~~ .. (3. E. 11, 12. 1S, 1~ •• E. 1"', n. 2~, .H, 2'1) .. 3-2"', 'II; 11, 13. 16. 2'1 ..
:~::'::~:.~:':~·~~~~~'~:':':~1: .. !3. E. II. U. ~3, H. 13, 1"', leo 111. H. 2"') .. 3-2"', '21; 13. H, 1"' , 19 ..
:::.:.:~:::::.?::::~::~~:.:.::.: .. ::. -Ii. :.,. :.,. 1'. :'9. :<2. 23. li. 250. 2"1"1 .. l-25: 23, .4:i. 2~ .. !-" ::>. t.-S. r:.- t
:::::,::::~':.~::._:~~::.:~::: .. :,. 6 . :!, :'2. :~, 1":', l!, :<:., :<:<, :<3, :<~, 2"1"] .. ~-2":', '2'f~ 1-, 22. ZS. 2S ..
:.:.:: __ ::'.:·.';'::'." ~ l'"~.~ ! :~ .. 13. t . i, 10. l2, 13, H, 1$, le. 21, 24, 2"1"3 .. '-2", '6: 8. 10. 13. 14
:::~~'~ : C:~': l : : :' :~ : ~~:'''~~:'~ : .. !3, 6. II. 12, l~, 15'. 2;', 22. 23. 24. 26, 2"1"] .. '-2"1; 22, 23, 26 .. 3-3. n- l , n-i. " - 3
: •• "::.:: : :.::' l : :: : O:~"::'::':' .. !4, S. 6, e, if, 10, :01, 14, 1"', ZOo 23, 2') .. ~-26; 4, 6, 9, 10
::;:"'::'::~.:':'::':': .• ~::'::~:: .. I', _, II. ::'2, 1!1. leo 21, 22, 25. 2i, 2~, 2") .. !-2"'1 22, 23, 26 .. ,-,. ~-l. :1-4 , n-~

::.::~_~~:: •• ::':"~:~.~~~~~: • [3, 6, 9, 12, 1!, lto, 2:. 23. 24. 2~, 2"") - 3-2'1; 2:!J 5 .. 3-3. :1-2. n-1
:.:_:~~.~:.':~~:~:~ l : ~: ~ ~::~ .. 12, $, ,. "1. H, 1"':'. 2~, 21. "'2. 23, 2~, 21, - 2-26: 21. 22, 2~ .. 2-11, n-2, no!, n-6

Figure 10: Disconnecting set patterns for C(27, 15) = 17.

I attempted to fit these odd disconnecting sets to the pattern of the rest by

searching for alternate disconnecting sets. Unfortunately, substituting the

disconnecting sets of other graphs in the group yielded no results. Slight

modifications to the positions of additions were equally fruitless. These difficulties

seem to indicate that the disconnecting sets of border and near-border C(n, k) cases

are unique.

Future Research

First and foremost, I am intrigued to see if the observed pattern of settling and

regularity at the border of the C(n, k) data continues. A description of the overall

pattern of border regularity would allow a succinct characterization of the

12

connectivity of a large subset of the Steinhaus graphs. Based on the patterns of

disconnecting sets observed, future work could also produce a connectivity

algorithm that first tests a wide array of likely disconnecting sets, based on past data.

References

[I] Wayne M. Dymarek, Matthew Koerlin, and Tom Whaley, A survey of Steinhaus
graphs, Proc. 8th Quadrennial International Conf. on Graph Theory, Combinatorics,
Algorithms and Application, Kalamazoo, Mich. (1996), volume I, pages 313--323.

13

Appendix

•

•

•

•

•

Figure 11: All C(n, k) data.

A fuller view of the data in Figure 11 may be accessed at:
h II p:lllinyurl.com/steinhaus-l

The generator strings for all C(n, k) border cases may be accessed at:
h II P :lItinyur l.eom/s teinhaus-2

The generator strings for all regular C(n, k) cases analyzed may be accessed at:
h t Ip:lltinyurl.com/steinhaus-3

The complete list of analyzed disconnecting set patterns excerpted in Figure 9
and Figure 10 may be accessed at: htlp:lltinyurl.eom/steinhaus-4

All of the above data may also be obtained from Professor Wayne M.
Dyrnaeek, Department of Mathematics, Washington and Lee University.

14

