A STUDY OF SIMPLE NON-EQUILIBRIUM STATISTICAL
PHYSICS MODELS: MOLECULAR MOTORS AND TRAFFIC JAMS

An Honors Thesis
by
JOSHUA ALEJANDRO GONZALEZ SIEGAL

Submitted to Washington and Lee University in fulfillment

of the requirements for Honors consideration for the degree of
BACHELOR OF SCIENCE
May 2010

Department of Physics and Engineering

Para mis Padres,

por todo su amor y apollo

ACKNOWLEDGEMENTS

It is with great respect and admiration that I acknowledge my advisor, Professor Irina Mazilu,
for her continued guidance and support during my time at Washington and Lee University. This
thesis and the opportunities 1 have had to learn and engage in research over the course of four
years would not have been possible without her encouragement and leadership. She has been an
excellent mentor and friend and I truly admire her dedication to her students and am humbled to
have been able to share in her work.

It is also with great pleasure that [would like to thank my father, Oscar Gonzalez, for the
many hours he spent teaching me C ++ and reviewing and helping me build and debug my
computer simulations. I have very fond memories of our many phone and email conversations
and I could not have possibly succeeded in my research endeavors without his help. Whatever
honors or awards my work should ever receive (even a Nobel Prize) I would be happy, honored
and proud to share them with him.

It is with sincere gratitude and admiration that I thank Joel Shinofield, it is an honor to be
able to call him my coach. Tam deeply touched by his care and concern for me as an athlete,
academic and individual, which has been unwavering. [have a deep respect for his character and
for his dedication to his family and team. His advice, experience and my interactions with him
have been a constant illumination on the path to uncovering and understanding the complexities
of human existence.

I also acknowledge Washington and Lee University for supporting my research with Robert
E. Lee Research grants for undergraduate research. Special thanks are due to the Physics
Department for acknowledging and funding my work with the H.T. Williams Undergraduate
Research Scholarship. I am also deeply indebted to Gabriela Zamora for allowing me to work
with her and Professor Irina Mazilu on their project for microtubule growth dynamics.

This thesis and my attraction to complex systems has grown out of a long term passion and
interest in a variety of subjects. The study of complex systems is truly an interdisciplinary
subject and I am indebted to my professors from every field. I would like to specifically thank

Professors Robin LeBlanc, Tyler Dickovick, David Sukow, Rebecca Harris, Paul Bourdon, and

iv

Florentien Verhage for their tutelage and for showing and passing on to me their passion for
learning, knowledge and action.

Over the course of four years of undergraduate study I have had many exciting experiences
and have forged deep friendships and created lasting memories. I will never forget the many
people who have made my college experience truly unforgettable. 1 am especially grateful to the
swim team and to the other senior swimmers, Winston Stagg, Jonathan Geisen, Kevin Corn,
Nick Talluri, Brandon Barnds, Ian Childers, and Dan Austin, you are incredible friends and
teammates. I equally grateful to my fraternity brothers and my roommates, Bobby Bowler, Brad
Watts, Ross Draber, Ryan Castle, Dalton Harris, Jeff White, and Grant Lewandrowski, for
always being there for me and for reminding me that there is also a time to relax and enjoy the
company of friends in life. I would also like to thank my great friends, Andrea Hanick and
Corinne Smith, I have shared much of my time at school with them. I am deeply indebted to
them for their advise and cannot imagine how different my experience at W&L would have been

without their friendship.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ittt vttt eaan e
LISTOFTABLES . .. o . v v o0 5 06 me mw s siimmoom w0 o0 w0 0
LISTOFFIGURES & &« « o5 5 5 s« n 0@ 56 % % 6 % 5 6 % 3 % 8 5 & & ¥
APPENDIX A: C++ CODE FOR TWO-LANE DIFFUSIVE MODEL. . .
APPENDIX B: C++ CODE FOR AVERAGE RESULTS PROGRAM. . .

APPENDIX C: C++ CODE FOR MICROTUBULE GROWTH

DYNAMBOS:. . . o cn v wowwomoorownomswme w s

CHAPTER

LINTRODUUTTON &« ¢ 5 v v 5 5 v s 5os oo ' o 3 % 98 5 0 % % 5 &
1.1 Organizationofthe Thesis
2.ASYSTEMS APPROACHttt ittt nnenns
2.0 Infroduction: « » « = s = s ® ¥ © 5§ % ¥ 6 % 55 5 5% 555 5 b @ §
2.2, Larpe-Brale ByStBilis « « o v o v v x w0 o w e i a e e n e s
23 Analyzing Systems . « « « o 6.5 & 6 9 5 6 5 5 § 05 % 85w w w8 W
2.3.1 The Leibnizian Approach o v v v v v i v u v

232 Thelockean Approach « « x s s v s« 5 s % yw w8 % w5 = s

2.3.3 The Kantian Approach

2.4 Important Systems Concepts . « + + v v v v ¢ v v vt v e e s e

2A] TiAnEarIEY & » s v « 5 5 5w 6 ® 9 8 % 9§ & 8% & 0w A E D
242 LumpedModelsttt

3. COMPLEXITY ANDEMERGENCE

Vi

3. Trtroduelion : « o s « 5.6 5 6 & ® % @ 6 § 5 56 8 8 % % ¢ F i 5w m s 7

3.1.1 Examples and Elements of Complex Systems. 7

.2 EGEERIOE , v v o s mo 5 @ e % oo oo e 55 o w0 e 5 e w @ e mow 8
3.2.1 Local Emergence. « « « s s.6 s & 2 ¢ & 46 8 6 & © § @ %4 & 8

322 Global Emerpente « « o s s w5 s m s s m s % s s 5 % 5 8 & & 8

. COMPUTER SIMULATION AND RANDOM WALKS 10
4.1 Introduction s « = 4 5 5 % & s 5 £ 5 5 % § % 6 & B 8 B A F B 5 A k5 E B E 10
4.2 One Dimensional Randkom Walk. 10
42,1 Generdl Conceplic » s 5 o s 50 5 5 5 665 % 5.6 % 5 @ 5 & % 5 10

4,22 VariablesandQuantities « v v 4 v v v v b v v v v v 11

4.3 Random Walk Variants s « s+« s v 5 5 ¢ 5 wow 55 8 €. 6 55 & & ¥ 13

. A MONTE CARLO STUDY OF A TWO-LANE DRIVEN DIFFUSIVE

SYSTEN . 5 20 005 m 2 6 i oo m g o oo s 8 5o @ 4 o 8 5 8 $ % 5 5 8 15

8.1 Tntroduetion : « = « x s« ® s 5 & 5 @ 5 ¢ 0 5% % 8% % Eom oy ow m s E w 15
5.1.1 Basic Description of Cytoskeletal Motors. 16

5.2 Driven Lattice Gas Models for Molecular Motors 17
5.2 VUInivetSality » o & « % 2 5 % 2 ¢ % 2o # 6 % % ¢ % 88 @ 5 % 2 5 & 18
5.2.2 Introduction to Driven Diffusive Models 18
5.2.3 A Two-Lane Driven Diffusive Model 18

5.3 Computer Model of a Two-Lane System 19
5.3.]1 MonteCarloSIMIIAHOAS + o 5 ¢ = s s 5 ¢ = 5 % 55 & o u 21

SA SimulationResults » 5 w s v s s w s s w s ww s s o s 5 s 2 8% % & B 23
55 Summary it e e e e e e e e e e e e e e e e 34
. STOCHASTIC MODEL OF MICROTUBULE DYNAMICS 37
6:1 Introduekion w s w5 6 2 5 % 5 4 % % 8w W€ m A H B E L HIHE B K S S 37

6.2 AnalyticModel = : i v s 553 i s s s 55 8w E i w nE w b s 39
6.3 Probability Distribution of Microtubule Length for Constant Attachment
and DetachmentRates« v v i v v i i it vttt e e e 42
6.3.1 Unrestricted Growth ¢ttt v uan 43
6.3.2 Asymmetrical Random Walk:A=p 44
6.4 Mean Microtubule Length for Variable Attachment and Detachment
Ratls 2 i 26 5 ia s s 9 d i d R I BRI R G S s AR am hd o5 46
6.5 Distribution of Positive Monomers oo v v v v v h e 49
6.6 SUMMALY .+ ¢ ¢« 4 v v v e e e et e s s o v st o s oo s a s s s a v 32
LIST OF TABLES
Table Page
5.1 Cytoskeletal Motors . « o s o o s 5 9 s % s % 5 s 0 506 % o5 5 v 5 & 3 16

viii

LIST OF FIGURES

Figure

5.1 7 Dependent Average Number of Clusters,A = 0

5.2

5.3

5.4

5.5

5.6

3.7

5.8

5.9 1 Dependent Average Number of Clusters, A = 0.4

5.10

5.11

5.12

5.13

5.14

5.15

5.16

7 Dependent Average Size of Biggest Cluster, A = 0

T Dependent Average Number of Clusters,4 = 0.1

T Dependent Average Number of Clusters, A = 0.2

T Dependent Average Number of Clusters,A = 0.3

7 Dependent Average Size of Biggest Cluster, A = 0.1

7 Dependent Average Size of Biggest Cluster, A = 0.2

T Dependent Average Size of Biggest Cluster, A = 0.3

T Dependent Average Size of Biggest Cluster, A = 0.4
T Dependent Average Size of Biggest Cluster, A = 0.5
T Dependent Average Size of Biggest Cluster, A = 0.5
T Dependent Average Size of Biggest Cluster, A = 0.6
T Dependent Average Size of Biggest Cluster, A = 0.6
T Dependent Average Size of Biggest Cluster, A = 0.7

T Dependent Average Size of Biggest Cluster, A = 0.7

ix

oooooooooo

..........

ooooooo

0000000

Page
23
23
23
23
24
24
24
24
25
25
25
25
26
26
26

26

5.17

5.18

5.19

5.20

221

5.22

523

5.24

5.25

5.26

5.27

5.28

529

5.30

5.31

5.32

333

5.34

3.35

T Dependent Average Size of Biggest Cluster, A = 0.8
T Dependent Average Size of Biggest Cluster, A = 0.8
T Dependent Average Size of Biggest Cluster, A = 0.9
T Dependent Average Size of Biggest Cluster, A = 0.9
T Dependent Average Size of Biggest Cluster, A =1 .
T Dependent Average Size of Biggest Cluster, A =1 .
A Dependent Average Size of Biggest Cluster, 7 =0 .
A Dependent Average Size of Biggest Cluster, 7 =0 .
A Dependent Average Size of Biggest Cluster, T = 0.1
A Dependent Average Size of Biggest Cluster, 7 = 0.1
A Dependent Average Size of Biggest Cluster, T = 0.2
A Dependent Average Size of Biggest Cluster, 7 = 0.2
A Dependent Average Size of Biggest Cluster, T = 0.3
A Dependent Average Size of Biggest Cluster, T = 0.3
A Dependent Average Size of Biggest Cluster, T = 0.4
A Dependent Average Size of Biggest Cluster, T = 0.4
A Dependent Average Size of Biggest Cluster, 7 = 0.5
A Dependent Average Size of Biggest Cluster, T = 0.5

A Dependent Average Size of Biggest Cluster, 7 = 0.6

nnnnnnn

ooooooo

od

27

27

27

28

28

28

28

29

29

28

29

30

30

30

30

31

31

31

5.36

5.37

5.38

5.39

5.40

541

5.42

5.43

5.44

A Dependent Average Size of Biggest Cluster, 7=06

A Dependent Average Size of Biggest Cluster,7=0.7

A Dependent Average Size of Biggest Cluster, 7 =0.7

A Dependent Average Size of Biggest Cluster, 7=08

A Dependent Average Size of Biggest Cluster, 7=08

A Dependent Average Size of Biggest Cluster, 7 =09

A Dependent Average Size of Biggest Cluster, 7=09

A Dependent Average Size of Biggest Cluster, 1 = 1

A Dependent Average Size of Biggest Cluster, T = 1

xi

31

32

32

32

32

33

33

33

33

CHAPTER 1
INTRODUCTION

Traditionally, the objective of science has been to understand the fundamental simplicity and
elegance of the laws of nature. The advancement of the human race has for a long time been
predicated on the scientific discovery of the rules by which the underlying forces of nature and
society operate. Every facet of our modern day lifestyle, from our ability to drive cars, build
skyscrapers, create medicines for illness and connect with people from across the globe, relies on
our understanding of the basic principles of every field from physics and biology to economics
and political science. Never in the history of the world has the human race had such a wide-
ranging and deep understanding of society, nature, and the universe as a whole. However, as we
have pushed the boundaries of scientific discovery outward it has become readily apparent that
our bodies, society and nature all exhibit complex behaviors that cannot be explained without
considering the interactions of their constituent elements as part of a larger system. The study of
complex systems is an exciting and new interdisciplinary science which has lead to novel
insights into the beautiful and complex behavior of the natural world; it is the leading edge of
21" century scientific investigation.

The accumulation of scientific knowledge, as well as technological advancements, has finally
made the study of complex systems accessible. However, the field itself is as intricate and
diverse as the systems which it seeks to understand. While there are general concepts and goals
that form the theoretical underpinning of complex systems analysis, there also exists a great
amount of variation in the types of systems under investigation and in the methods available for
doing so. The study of complex systems requires a strong grounding in both mathematical and
analytic techniques as well as the design and engineering of experimental simulations, which
would be impossible without the aid of modern day computing systems. As more and more
investigators from every academic field begin to move into the realm of complex systems our
understanding of the world will be dramatically enriched and altered. New discoveries and
possibilities for the advancement of science, technology and society as a whole will emerge from
the efforts and achievements of those scientists who work collaboratively to uncover the

mysterious dynamics of complex systems.

1.1. Organization of the Thesis

The thesis is organized as follows. Over the course of the next six chapters we will move
from providing a general overview of complex systems to more specific examples and problems
in the field. Given the diversity of the field and the difficulty of providing an exact definition of
complex systems we believe it is important to understand the unifying concepts of complex
systems before moving on to specific examples of such systems in order to highlight those
concepts.

In Chapter 2 we identify the important concepts of a general system. In particular we
examine the elements of a system, describe general methods of analyzing systems and classify
and define important features of system analysis. In Chapter 3 we tackle the more difficult task
of developing and defining the “complexity” of the systems we seek to understand. Building
upon many of the concepts presented in Chapter 2 we will further describe the elements that
make up a complex system as well as provide more specific methods of analysis. Chapter 3 will
provide an understanding of emergence a fundamental concept in the field of complex systems.
In Chapter 4 we move into the realm of thermodynamics and computer simulations in order to
present relevant methods of modeling complex systems. Specifically, we will present the
problem of a one-dimensional random walk. Chapters 5 and 6 will present specific research in
the area of non-equilibrium statistical mechanics. In Chapter 5 we present research of a Monte
Carlo study of a two-lane driven diffusive system, with an interest in explaining the coarsening
phenomena for both the steady and transient states of the system. Chapter 6 is a presentation of a
complete analytic and computational treatment of microtubule growth. Both Chapters 5 and 6

outline specific areas for future research with regards to those specific systems and problems.

CHAPTER 2
A SYSTEMS APPROACH

2.1 Introduction

A system can be most generally described as a set of interacting or interdependent parts
which form a unified whole. Today, the system is one of the most basic forms through which we
classify and understand the natural world and society. Every day we both encounter and act as
parts of a multitude of systems, including but not limited to mechanical, electrical, educational,
political, economic and environmental systems. In this section we will provide a general concept

of systems and systems theory as well as general methods for studying systems.

2.2. Large-Scale Systems

It is necessary to establish that “large-scale” is a relative measure of which physical size is
not the defining characteristic. Indeed, microscopic systems such as the movement of molecular
motors within the cell can be classified as large-scale systems. While other types of systems
exist, our preoccupation is with systems that can be categorized on the basis of any one or more

of the reasons given by V. Vemuri (1978):

e Too many elements are needed to accurately characterize the system. In other words,
“the structure or configuration of the system is rarely self-evident” (Vemuri 2). In fact, in
such systems there exist a large number of possible configurations of the system, each of
which is unique.

* The relationships between the elements and the overall behavior of the system *“are
generally statistical in nature” (Vemuri 2).

e The systems under consideration are dynamic, “they evolve in time” (Vemuri 2). The
system exists within an environment which remains outside the control of any observer
and whose influence on the system is “not apparent at the outset” (Vemuri 2).

¢ Finally, large-scale systems are often characterized by the specialized approaches needed

to understand them.

2.3 Analyzing Systems

Knowing where and how to begin investigating a system is a conceptually difficult endeavor.
The process of analyzing a system invariably requires a fair amount of creativity and educated
guessing; the types of assumptions made are crucial to the analysis of a system. However, while
scientific discovery may at times come from monumental “leaps of faith” and the creative genius
of certain individuals, there are systematic methods of investigation that provide general

approaches to the study of any discipline. Three of those approaches are described below [1].

2.3.1 The Leibnizian Approach

This approach is a formal mathematical procedure based on the notion that “truth is analytic”
(Vemuri 11). This is generally the way in which most of the laws of physics are derived, with
the notable exception of certain laws in electrodynamics which were determined experimentally.
This type of investigation tends to focus on the structure and “associated properties of a system”
(Vemuri 11). The main methods of this approach are “decomposition [...] and aggregation™
(Vemuri 11). Decomposition is the processing of breaking a larger system into smaller
“subsystems” (Vemuri 11) which can be solved and later reconstructed to form the solution to
the original system. This approach is related to the idea of universality, which will be described
later on in this work. Aggregation is the process of uniting the variables of the original system in
order to “reduce the dimensionality” (Vemuri 11} of a system. The Leibnizian approach is best
adapted to systems with “simple and well-defined structure” (Vemuri 11) and in which the basic

assumptions are “clearly definable” (Vemuri 11).

2.3.2 The Lockean Approach

Named after the English philosopher, John Locke, this approach is empirical in nature,
resting on the “assumption that truth is experimental” (Vemuri 13). A model of this type of
approach does not rest on “prior assumptions™ (Vemuri 13) and its validity lies in its ability to
determine relationships and predict future behavior. The Lockean approach is generally,
although not exclusively, statistical in nature and requires the extensive collection of data. Some
of the better known statistical tools include “regression analysis, analysis of variance, and

correlation analysis” (Vemuri 13). One of the major challenges of analyzing systems via the

Lockean approach is “the identification, definition, quantification and measurement of relevant
attributes™ (Vemuri 13). Because systems are composed of a number of diverse elements it is
often hard to distinguish which relationships and interactions are the most relevant, not to
mention the difficulty of establishing the particular behavior of the system to which they are
relevant. The uncertainties inherent in t‘he Lockean approach are highlighted in our study of a
two-lane driven diffusive system and while an exact solution does not exist we suggest a number

of possible approaches.

2.3.3 The Kantian Approach

The Kantian approach is a synthesis of both the Lockean and Leibnizian approaches and was
developed by the philosopher Immanuel Kant. The basis of this model is that the “experimental
data and theoretical base are inseparable” (Vemuri 14). Therefore, the collection of data is not
possible without the guidance of theory. Likewise, it is not possible to build a theory without
empirical evidence. The analysis of complex systems can be generally best pursued via this
approach, as a fully analytic or empirical understanding of complex systems is difficult to arrive

at.

2.4 Important System Concepts
2.4.1 Linearity

The study of systems is greatly dependent on the linearity of the system under consideration.
A linear system is one in which the behavior of the system is directly proportional to the
variables used to describe the behavior. Mathematically, linear systems can be described using
linear equations for which powerful analytic techniques already exist. The use of determinants
and matrix methods “apply only for treating linear systems,” (Vemuri 58) greatly simplifying the
analytical approach. We can also make use of the principle of superposition when analyzing
linear systems. Complex systems however, are not linear systems thus complicating the methods
in which we can mathematically treat them. The principle of superposition does not apply to
nonlinear systems nor are simple matrix methods enough to adequately handle the systems of
equations which describe complex systems. Nonlinear systems are also often referred to as

nonequilibrium systems, especially in physics.

2.4.2 Lumped Models

In a lumped systems theory, the behavior under consideration can be described completely by
the relationship between inputs and outputs at “its external terminals™ (Vemuri 59). Systems of
this form are composed of an array elements “interconnected in some specific manner” (Vemuri
59). For instance, these connections could be treaties in international politics, emotions in social
networks or bonds between “cells” of a gas lattice. The spatial distribution of the elements of a
lumped model does not serve a primary function and is therefore disregarded. Mathematically,
“a set of ordinary differential equations” (Vemuri 59) is enough to describe a lumped system,
with time serving as the independent variable when investigating the dynamic behavior of a
lumped system (Vemuri 1978). A distributed system is one in which the internal behavior of the
components is also of interest (Vemuri 59). Distributed systems are considered “field problems™

(Vemuri 59) and are modeled by systems of partial differential equations.

References

[11 V. Vemuri, Modeling of Complex Systems: An Introduction (Academic Press, Inc., New York, 1978).

CHAPTER 3
COMPLEXITY AND EMERGENCE

3.1 Introduction

The discussion of complexity that follows is directly linked, and in many ways merely an
extension, of many of the topics covered in the previous chapter on large-scale systems; large-
scale systems are complex systems. One of the underlying and fundamental concepts of science
is the notion of universality. The concept of universality holds that there exist universal laws to
explain the natural phenomena and diverse systems of the world. If commonality and
universality did not exist then we would be unable to understand and scientifically study even
simple systems that occur in the fields of physics and biology. Take for instance the concept that
all matter is composed of the same indivisible building blocks, atoms (modem discoveries have
actually shown that the smallest building blocks of the atom are quarks), an idea that has existed
since the time of the Greeks. The motion of matter is also described by a set of universal
mechanical laws, both classical and quanturn, and the study of biology is based on the common
molecular and cellular systems of organisms. The study of complex systems is an attempt to try

to discern the universality that occurs when the systems are highly complex.

3.1.1 Examples and Elements of Complex Systems

Conceptually, one of the easiest ways to attempt to understand complex systems is by
looking at examples of complex versus simple systems. Simple systems in physics include an
oscillating spring and the orbits of planets. On the opposite end of the spectrum, governments,
the brain and ecosystems are all examples of complex systems. There are also certain properties

which we can attribute to complex systems and use in order to develop methods of classification

[1]:

¢ Constituents (and their number)
¢ Interactions (and their strength)

e Formation/Operation {and their time scales)

e Diversity/Variability
e Environment (and its demands})

e Activity(ies) (and its[their] objective[s])

3.2 Emergence

Our ability to understand and study complex behaviors can be simplified by an understanding
of the concept of emergence. Emergence is the idea that the collective behavior of a system is
contained in the behavior of the parts of the system. We can understand and study the collective
behavior insofar as we study the parts in the context of the entire system. Emergence can be
used to refer to either locally emergent or globally emergent properties of a system and is an
important concept of thermodynamics and statistical mechanics. The study of thermodynamics,
which investigates the properties and behaviors of collections of gas particles, provides an easily

understood example of locally emergent properties.

3.2.1 Local Emergence

If we consider a single gas particle we can describe its entire behavior by its position and
velocity. However, if we collect a large number of gas particles together we can now measure
the pressure and temperature of the collective gas. The temperature and pressure are emergent
properties; they cannot be understood simply by understanding the behavior of a single gas
particle [1]. If we remove a small sample of the gas we can still "define and measure” (Bar-Yam
10) the temperature and pressure. Phase transitions (such as from water to ice) are also a display
of collective, locally emergent behavior than can be observed both at the macroscopic and
microscopic level [1]. Notice also that local emergence is strongly tied to systems in

equilibrium; our collection of gas particles are not interacting with the outside world.

3.2.2 Global Emergence

The study of complex systems concerns itself with studying and understanding globally
emergent properties and behaviors. When we speak of global emergence we are referring to
properties or behaviors of a system as a whole. The individual and collective behaviors of the
elements of the system are interdependent; the whole system, macroscopically and

microscopically, is affected if we remove only a small part of it [1]. As the complexity of a

system grows, our ability to observe and conceptually grasp that the arising behaviors are
emerging from the individual and collective elements of the system is often difficulty. For
instance, we can understand that the associative memory that humans posses is a function of an
extremely large and complex network of neurons and synapses. However, understanding
consciousness as an emergent behavior of the brain and body is somewhat more difficult.
Philosophically, Descartes' Cartesian dualism suggests that consciousness is a phenomena that is
distinct from the body, or even distinct from the brain (mind-brain split). This would suggest
that is impossible to scientifically study or understand consciousness. On the other hand, a
complex systems approach would view consciousness as a globally emergent property of the
neurobiological system that is our brain and body. The difficulty arises in studying and
attempting to understand how the simpler systems and elements of our brain give rise to such a

complex and mysterious behavior.

References

[1] Yaneer Bar-Yam, Dynamics of Complex Systems(Addison-Wesley, Reading, Massachusetts, 1992),

CHAPTER 4
COMPUTER SIMULATION AND RANDOM WALKS

4.1 Introduction

Over the years, computer simulations have become established methods of conducting
research in a number of scientific fields. We are especially interested in the use of computer
simulations in the study of non-equilibrium statistical physics. Computer simulations provide a
unique method of investigation; they are neither purely analytic or experimental in nature,
operating somewhere in between these two ends of the scientific spectrum. Simulations allow us
to quickly and cheaply run a great number of "experiments" while easily changing a variety of
parameters of a given system. With computers we can easily move to reduce or increase the
dimensionality of a particular system [1], all the while generating copious amounts of data. The
problems presented in Chapters 5 and 6 make heavy use of Monte Carlo computer simulations,
which are used to explore variations of "random walk" problems. Random walk models are used
frequently in statistical physics and thermodynamics and familiar examples of simple random
walk problems include the diffusion of a gas particle and Brownian motion [1]. Given the
importance of random walks to our work and to the study of complex systems at large, below we

present a brief overview of a simple one dimensional walk.

4.2 One Dimensional Random Walk

4.2.1 General Concept

Although it would seem that the subject of drunkards would be better suited for investigation
by a student of chemistry, one of the most common, idealized, examples of random walk
behavior given in physics is that of a drunk walker leaving a bar. We consider the drunkard to
start the walk at the exit of the bar, a location we mark as x = 0. We limit the walker to being
able to take one, and only one step in a given time interval. Furthermore, we also estabiish that
each step is of equal length { and that the direction of each step, right or left, is independent of
the previous step [1]. During each interval of time, the walker has a probability p of taking a
step to the right and a probability ¢ = 1 — p of taking a step to the left. After a series of time

10

intervals and steps, we measure the final position of the walker. Three quantities are of interest
to us in this problem, the mean net displacement of the walker, the probability of a walker
undergoing a certain net displacement after a given number of steps, and the dispersion of the
walker [1].

4.2.2 Variables and Quantities

After N number of steps the walker finds himself at a position x = ml, where m is the net
displacement of the walker from the origin and { is the length of each step. The total number of
steps taken, N, can be expressed as [2]:

N=n,+n, (1)
where n, represents the total number of steps taken to the right and n, represents the total
number of steps taken to the left [2]. From the relations given, we can assert that the net
displacement is given by:

m=n; —n; (2)
Using equation (1), we can rewrite the net displacement as [2]:

m=mn—-N-n)=2n—-N 3)

In N, the probability of any given sequence of n, steps to the right and n, steps to the left is
given by [2]:

o 4)

The total number of possible ways in which N steps can be taken so that n, are to the right and

n, are to the left is express by [2]:

11

N!
ny!n,! (5)

Because the displacement m can be determined, as in equation (3), solely by the total number of
steps N and the number of steps taken to the right n,, we can therefore equate the probability

Wy (ny) of taking n, steps to the right (in a total of N steps), to the probability Py (m) of the

walker being at position m after N steps:

Py(m) = Wy(n,) (6)

Joining equations (4) and (5) the probability Py (m) is given by the binomial distribution [2]:

N!
711!1!2!

Py(m) =

pMqm? : (7)
4.2.2 Calculation of Mean Values

The mean number of steps to the right and to the left can be established simply from the total
number of steps N and the probabilities p and g [2]:

n; = Np (8)
n; = Ng 9

Since p and g sum to 1, we can properly establish that the mean number of steps in each

direction sum to N [2]:
m+M=Np+qg =N (10)

Using equation (2) the mean displacement (measured to the right in units of step length)

can be written as [2]:

M= -7y =M, —T; = N(p—q) (11)

12

1 . .
When p = q = -, we can see that the mean net displacement of the walker is zero, the

random walk ends where it began.

The final quantity of interest is the dispersion, (An;)? which can be written as [2]:

(Any)? = (n, —m)? = ny% — 772 (12)

The quantity n, 2 can be computed by [2]:

N N
n? = Z Wenn? =) T pmgh-man, (13)
n1! (N = 111)!
ny,=0 ny=0

Through differentiation we can produce an extra factor of n, and simplify (13) to:

n,% = p[N + pN(N — 1)]
= Np[1+pN —p]
= (Np)* + Npq
=T, + Npq (14)

4.3 Random Walk Variants

The one dimensional random walk is the foundation for a number of problems in statistical
physics and thermodynamics. It can easily be built upon and expanded as problems and models
grow in complexity. As will be seen in Chapters 5 and 6, the dynamics of molecular motors and
microtubule growth can be modeled by variants of the one dimensional random walk. We
simply add more dimensions, multiple walkers and biased directions to the movements of each
of the elements. Another key feature of random walks is that they can be modeled exceptionally

well and with some degree of ease by Monte Carlo computer simulations.

13

References

[1] Harvey Gould, Jan Tobochn ik, An Introduction to Computer Simulation Methods
(Addison-Wesley, Reading, Massachusetts, 1988).
[2] F.Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, San Francisco,

California, 1965).

14

CHAPTER 5
A MONTE CARLO STUDY OF A TWO-LANE DRIVEN
DIFFUSIVE SYSTEM

5.1 Introduction

Bio-molecular motors are nature’s nanomachines that convert chemical energy into
mechanical work with performance and scale unparalleled by any man-made devices. Molecular
motors are responsible for the transport of fuel and genetic information along the tiniest of tracks
such as actin filaments, microtubules, RNA or DNA. There is great interest in developing a
fundamental understanding of the operating principles of bio-molecular motors in order to
exploit this knowledge to harvest, modify, and integrate these macromolecular assemblies into
useful devices from nano to macro scale. The behavior of the cell and its structure depends on
the active, directed transport of macromolecules, membranes or chromosomes at the inter and
intra cellular level. Just as a disruption of traffic hurts the functioning of a city, so can defective
molecular transport result in a variety of diseases. So far, most biological studies were focused
on the behavior of individual motors.

Molecular motors have two important characteristics: they interact with cytoskeletal
filaments, and this interaction is modulated by the ATP hydrolysis reaction. If this system were
at chemical equilibrium, the ratios of the local binding and detachment rates would be fixed and
there would be no net movement. But in the cell, the ATP hydrolysis reaction is maintained out
of equilibrium. The net motion of the molecular motors along the filaments happens above a
critical concentration of ATP, for which the rate of stimulated detachment is sufficiently high.
This situation is analogous to phase transitions in condensed matter physics. In paramagnetic to
ferromagnetic transitions, for example, cooperative behavior can align spins, even in the absence
of external magnetic fields. Indeed, the general mathematical properties at the critical point are
closely related in both systems. But there are significant differences as well; the team of motors
is a non-equilibrium system that is controlled by chemical kinetics, as opposed to an equilibrium
system that is controlled by temperature. We provide below a short description of cytoskeletal

motors and their biological functions.

15

5.1.1 Basic Description of Cytoskeletal Motors
Our focus is on one category of bio-molecular motors, namely the cytoskeletal motors. Their

biological functions are summarized in the following table [10]:

Cytoskeletal Motors
Motor Acts on Energy source Motion Role
Mitosis
Kinesin Microtubule ATP linear
Organelle transport
))) Muscle contraction
Myosin Actin ATP linear
Organelle transport
Ciliary beating
Dynein Microtubule ATP linear Organelle fransport
Mitosis

Table 5.1 Summary of the behavior of three cytoskeletal motors; Kinesin, Myosin and Dynein

Each molecular motor family has members that transport vesicles through the cell cytoplasm
along linear assemblies of molecules, actin in the case of the myosins and tubulin for both of the
other families. The kinesins and dyneins move or 'walk' along microtubules - tubes constructed
from tubulin - carrying their cargo. The microtubules are polar structures - only one end (the plus
end) is capable of rapid growth by adding more tubulin molecules - and the action of the motor
molecules is polarized so that they move in one direction only. Kinesins are plus-end directed
motors while dyneins move towards the minus end of the microtubule. The motive power for
muscle activity is provided by myosin motors, organized as thick filaments which interact with
an array of thin actin filaments to cause the shortening of elements within each myofibril.
Modern experimental setups using optical tweezers, fluorescence and evanescent field

microscopy, viscous drag, atomic force microscopy and micro needles have produced quite a

16

large amount of data on single molecule properties [11,12,13]. However, very little is known

about the cooperative effects arising from motor-motor interactions [14].

5.2 Driven Lattice Gas Models for Molecular Motors

In recent years, the non-equilibrium physics community has shown an increased interest in
modeling molecular motors using the driven lattice gas approach. Experiments [15] showed that
cytoskeletal molecular motors perform a linear, unidirectional motion. Motivated by their
theoretical simplicity and their non-trivial non-equilibrium behavior, the choice of asymmetric
exclusion process (ASEP) systems and their close relatives, the driven diffusive systems, in
modeling some molecular motors is perfectly natural. In contrast to their equilibrium counterpart,
one-dimensional driven systems exhibit a variety of non-trivial behavior, such as boundary
induced phase transitions, phase separation and spontaneous symmetry breaking even when the
dynamics is local [16]. In biological terms, this translates into a variety of "cell malfunctions"
and "molecular traffic jams" with serious consequences such as genetic mutations and various
diseases [17].

Many studies have considered models in which the dynamics are the same everywhere in
the system [18,19]. However, when trying to relate these systems to many interacting molecular
motors, the effect of non-conservation and disorder cannot be ignored in many cases [20]. These
models were studied using both computer simulation techniques and analytical means [21].
Some studies are concermned with the non-equilibrium transport properties of the motors [22],
others concentrated on the physical interactions of the models with their support (actin filaments
or microtubules) [23], such as load-velocity relations or adhesion forces between motor and
support [24]. The formation of localized shocks in one-dimensional driven diffusive systems
with spatially homogeneous creation and annihilation of particles was also studied [25]. A
special interest was shown in describing the movements of molecular motors on cytoskeletal
filaments as random walks on a line [26]. At any given time, the molecular traffic involves a
variety of molecular motors, so efforts were made to study systems with two species of active

molecular motors moving on filaments into opposite directions [27].

17

5.2.1 Universality

A very important concept in the context of driven systems is the concept of universality. A
vast amount of experience from equilibrium statistical mechanics has taught us that macroscopic
long-distance, long-time properties are independent of numerous microscopic details, such as the
precise form of inter-atomic interactions (as long as they remain short-ranged). Systems
differing only in such irrelevant microscopic features are said to belong to the same universality
class. If universality holds, then simple models, which are within the reach of a theoretical
study, can be designed to understand and predict characteristics of much more complex systems

belonging to the same universality class.

5.2.2 Introduction of Driven Diffusive Models

Katz, Lebowitz, and Spohn introduced the first-driven diffusive model in 1983, as a
seemingly trivial modification of the Ising lattice gas model. The prototype displayed such
surprising and counterintuitive behavior, that it sparked the interest of the condensed matter

community and a plethora of studies in variations and extensions of the model followed.

5.2.3 A Two-Lane Driven Diffusive Model

Qur two-lane model with two types of particles and open boundary conditions is a member of
the driven diffusive class. In recent studies[33], it was found that there is a stark contrast
between the one-dimensional model and the two dimensional counterpart. For the one
dimensional case, an analytical solution was found [34], that showed the absence of a phase
transition for the system, equivalent to the one-dimensional equilibrium Ising model gas.
However, the fully two dimensional model displays a particularly rich phase diagram [35].
Exploring the concept of a “lower critical dimension”, extensive Monte Carlo studies were
performed in the case of a “quasi-one dimensional”, or a “two-lane model”. To this date, the
results are inconclusive. On one hand, the computer simulations indicate the presence of
clustering and phase transition. On the other hand, analytical studies [35] showed that this is just
a finite-size effect, and that the clustering disappears as the system reaches the thermodynamic
limit.

The purpose of this study is to explore in detail the cluster growth in a two-lane lattice gas

model using both simulations and analytical techniques. We focus on both the transition regime

18

and the steady-state, in an effort to shed some light on the behavior of the system at this lower-
dimension boundary. Our system has a dual purpose: it is a wonderful avenue to explore the
novel non-equilibrium behavior at this critical lower dimension and also serves as a simple

model for the collective behavior of the kinesin and dynein molecular motors.

5.3 Computer Model of a Two-Lane System

At any given time, the traffic of molecular motors in cells is quite heavy, since every single
type of motor performs its own specific task. Experimental data shows that the dynein and
kinesin motors share the same filament tracks, but move in opposite directions. We are
proposing to explore the motor to motor interaction by using a two-species two-lane driven
model.

Our model consists of a lattice that contains Lx2 sites, where L is the variable length of the
lattice. A site can be empty, 0, or be occupied by at most one particle. There are two types of
particles, “positive” + and “negative” — , which travel in biased directions across the two lane
lattice with open boundary conditions in both directions. The particles are driven in opposite
directions by an external field along the x-axis; in a visual sense positive particles move to the
right and negative particles move to the left. Hopping attempts are only successful if the target
site is not occupied by another motor.

Without going into the details, our computer model performs the following actions in one

Monte Carlo step, which is then repeated a minimum of Lx2 times:

o Randomly picks a site along the lattice

* Randomly picks a bond (can be imagined as the walls separating sites) connecting two
nearest-neighbor sites on the lattice. There are four types of bonds: a right bond, a left
bond and two vertical bonds, top and bottom.

» Based on the occupation of the two sites on either side of the bond, the program carries
out the appropriate movements. The movements and interactions of the particles are
governed by the following rules:

- No backwards jumps are allowed.

19

- Ifthe bond is in the x-direction and connects a particle and a vacancy in either a
+0 or 0— combination, then a particle-hole exchange always occurs. If the bond
connects a particle pair + ~ then a charge-exchange occurs with a probability y.

- If the bond is in the vertical y-direction (cross-lane) the following hold true:
particle-hole exchanges always occur and charge-exchanges never occur.
Furthermore, although open boundary conditions exists, a particle in the bottom
cell with a bottom bond selected cannot hop out of the lattice (the same is true for
a cell in the top lane with a top bond selected)

After performing a movement the program moves to the left end of the lattice and
randomly picks the first cell in one of the two lanes. Since negative cells move right to
left, if a negative cell occupies this end cell then a routine will be executed that will cause
the particle to exit the lattice according to some exit probability p. The same process is
then repeated at the right end of the lattice for positive particles, where the exit
probability is controlled by a variable 6.

Once again at the ends, the program runs a routine checking for empty end sites
(randomly choosing between lanes) into which particles can enter the lattice. As opposed
to the scenario of exiting the lattice, positive particles will enter from the left with
probability a, and negative particles will enter from the right with probability p.

The program then randomly selects another site along the lattice. If the site is empty then
the program runs an attachment routine which randomly chooses either a positive or
negative particle to attach to the lattice with a given probability A. This probability is
doubled if any of the nearest neighbor sites of the chosen cell are also occupied.

The final movement of one Monte Carlo step is a detachment routine in which once again
the program selects a random cell. If the cell is occupied the particle in the cell will

detach itself from the lattice according to some given probability T.

Other Rules of the Lattice:

Initially half the sites of the lattice are populated with particles.
The number of initial positive particles equals the number of initial negative particles.
A cluster is defined as any number of particles greater than 1 that are connected by

nearest neighbor sites.

20

5.3.1 Monte Carlo Simulations

In studying non-equilibrium systems, Monte Carlo (MC) simulation techniques prove to be
invaluable tools. Using computer simulations, we can easily probe how a well defined model is
behaving under certain conditions. Using these simulations we can study the critical behavior,
measure order parameters and fluctuations, and check the accuracy of our analytical treatment of
a model.

Our intent is to use Monte Carlo simulations to explore the coarsening phenomenon for our
two lane system as it evolves towards a jammed state. Also, these computer simulations provide
us with some insight regarding the transitory behavior of the system where the matrix approach
fails. The sample results presented below are a small fraction of the data that we have so far
analyzed. Our “experimental” results from the Monte Carlo simulations have far outpaced our
ability to develop our analytical model; the simulations are too complex and the amount of data
recorded is simple staggering. However, the results do provide significant and interesting data as
well as insights into ways to further understand this system.

For our simulations we choose a system size of L = 100 and one trial involved the execution
of 500,000 of the MC steps detailed above. At the end of one trial we record the number of
clusters, the size of the biggest cluster and the starting and ending positions on the lattice of each
cluster. Our investigation explores the effects of the attach and detach rates across different
horizontal exchange rates (y). We therefore held the entrance and exit rates constant at .5. The
attachment, detachment and gamma rates were allowed to vary from O to 1 in intervals of .1 in
the following manner:

¢ Initially the attachment and detachment rates would be set to zero and y would be

allowed to vary from 0 to 1 in .1 intervals.
¢ 100 trials would be run at each y value and the results would be averaged for each y value
(total number of trials 1100).

e The detachment rate would then be incremented by .1 (while keeping the attachment rate
at zero) and another set of 1100 trials would be run, again 100 trials at each y value from
Otol.

o The detachment rate would be incremented this way all the way to 1 (essentially

attachment being held constant while detachment would vary and looking across all

21

gamma values), then would be reset to 0 and the attachment rate would be incremented
for the first time to .1 and the whole process repeated until the attachment rate had been
allowed to vary all the way from 0 to 1. (Total number of trials 133,100).

e This entire process was once again repeated, this time incrementing the detachment rate
at the slowest pace (detachment held constant and attachment varying, across all gamma
values).

In each subset of 1100 trials, the computer simulation averages, at each gamma value, the
number of clusters, the size of the biggest cluster, the number of positive, negative and total
particles that enter, exit, attach and detach from the lattice as well the number that attempt to
enter, exit, attach and detach. It can also, for each individual trial, provide snapshots of the
number of particles that have entered, exited, attached and detached from the lattice at intervals
0f 25,000 MC steps.

In all of the trials, no matter whether we were varying the detachment rate (first 133,100
trials) or the attachment rate (second 133,100 trials) the average number of clusters and the size
of the biggest cluster were consistent over all y values, therefore the results we present are those
with a y value of .5. The only notable exception to this result occurred on the two occasions in

which both the attachment and detachment rates are equal to zero.

22

5.4 Simulation Results

25 - 200
180 o
20 160 -
g . 140 -
; 3
315 - % 120 -
ks < 100 -
(- o
210 4 @ 80 -
E v 60 -
=
5 - 40 A
§—’—0—0—0—0—.—0—0—«—0 20 1
ol T T T T T T T T T 1 0_#‘*—***—’4—’—’

0 01020304 0506070809 1 0 0102030405060708089 1
Detachment Rate (t} Detachment Rate ()
Figure 5.1. Dependence of Average Number of Figure 5.2. Dependency of Average Size of Biggest
Clusters on (a) varying Detachment Rate (1) for (b) Cluster on (a) Detachment Rate (1) for (b) lattice size
lattice size L = 100 (c) MCS = 500,000 (d) A= 0 L =100 (c) MCS = 500,000 (d)A=0(e) y=0.5
()y=05(P=a=8=p=0.5 (Hp=a=8=p=05
25 +
200 ¢
30 - 180 -
5 4 & 160 -
- -
ng | ¢ . 140
o £ 120
) -
E @ % 100 -
g10 - ok
= & N 80 +
2 n
¢ 60 -
1 » 40
&
® o 204 ¢
o 0l 2 ¢ o 000099
0 010203040506070809 1 0 01 02 03 04 05 06 07 08 09 1
Detachment Rate (t) Detachment Rate ()

Figure 5.3. Dependence of Average Number of Figure 5.4. Dependency of Average Size of l?iggt?st
Clusters on (a) varying Detachment Rate () for (b) Cluster on (a) Detachment Rate (1) for (b) lattice size
Jattice size L = 100 (c) MCS = 500,000 (d) A = 0.1 L =100 (c) MCS = 500,000 (d) 2 = 0. (e) y = 0.5
(€)Y=05(NP=a=8=p=05 (HPp=a=3=p=05

23

25 -

200 &
20 A 180 -
P " ¢ 160 -
a
E 15 & o 140 -
o % 120 -
s =
E L 2 Y 100 -
10 - 5]
E ® y 80 1
2 ® % e .
57 ¢ 40 -
L g
* o 20 + 2 &
. A 0l T ¢ 099 4.9
0 0102030405206 07 08059 1 0 010203040506 070809 1
Detachment Rate {t} Detachment Rate (v)
Figure 5.5. Dependence of Average Number of Figure 5.6. Dependency of Average Size of Biggest
Clusters on (a) varying Detachment Rate () for (b) Cluster on (a) Detachment Rate (1) for (b) lattice size
lattice size L = 100 (¢) MCS = 500,000 (d) A =0.2 L =100 (c) MCS = 500,000 (d) A = 0.2 (e} y=0.5
©y=050Pp=a=0=p=05 (HB=a=8=p=0.5
25 -
200 ¢
180 A
201 160
7] ’ .
3 P _ 140 1
315 - 2150 |
E * 5120
E Y 8100 .
g 10 - 8 80
60 -
L 4
5 1 . 40
20 » *
® @ 7
L 2
0 ? . . r y . . v " ’ i 0] T T T ? ? ’ ’.'—’-—.
0 01 02 03 04 05 06 07 08 09 1 0 010203040506 070809 1

Detachment Rate (1) Detachment Rate (t)

Figure 5.7. Dependence of Average Number of Clusters Figure 5.8. Dependency of Average Size of Biggest

on (a) varying Detachment Rate () for (b) lattice size Cluster on (a} Detachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d)A=0.3(e)y=0.5 L =100 (c) MCS = 500,000 (d) =03 (e) y=0.5
(HP=a=8=p=05 Mp=a=8=p=05

24

25 -

200 ¢
180 -
20 -
@ . * o 160 -
@
2o | 140 -
] * 3
- £120 -
o =2
T (W) _
210 - * ¢ 0
5 g8 1 @
z >
: L 2R S 60 -
- 40 - *
20 - *
0 ? T T T T 1 T T T L} 1 ‘ ’
0+t T & & o o
0 0102 03 04 05 06 07 0.8 09 1
0 01 02 03 04 05 06 07 0.8 0.9 1
Detachment Rate (x) Detachment Rate (1)

Figure 5.9. Dependence of Average Number of Clusters Figure 5.10. Dependency of Average Size of Biggest

on (a) varying Detachment Rate (1) for (b) lattice size Cluster on (a) Detachment Rate (1) for (b) lattice size
L = 100 () MCS = 500,000 (d) 1 = 0.4 (¢) y=0.5 L = 100 (c) MCS = 500,000 (d) A =0.4 (¢) y = 0.5
Of=a=38=p=05 (Hp=a=3=p=05 .

200 &

180 o

R ¢ 160 -
g * & _ 140 -
Bis - % 120 -
o * s
S J1001 ¢
1] ¢]
£ 10 1 ¢ 80 -
E 4 @
2 * 60 -

5 40 - ¢ .

" \4 % 20 A .,
o _ _ 0 e & W WAl

0 0102 03 04 05 06 07 08 09 1 0 010203040506070809 1

Detachment Rate (t}
Detachment Rate (1}

Figure 5.11. Dependence of Average Number of Clusters Figure 5.12. Dependency of Average Size of Biggest

on (a) varying Detachment Rate (1) for (b) lattice size Cluster on (a) Detachment Rate (1) for (b) lattice size
L = 100 (c) MCS = 500,000 (d) . =0.5 (¢) y=0.5 L =100 (c) MCS = 500,000 (d) .= 0.5 (e) y= 0.5
(f)ﬁ:azﬁ:pzo_s (f)ﬂ=a=5=}l=0.5

25

25 -

20' ’

i5 4

10

Number of Clusters

L 4 ¢

*
0 ?

T T T T T T T T T T 1

0 0102030405406 0708109 1

Detachment Rate (x)

200
180
160
140

Size of Cluster

= e

N OB RO N
S © &6 0 & o

o

&
L 2

%0444

0 010203040506 070809 1

Detachment Rate (x)

Figure 5.13. Dependence of Average Number of Clusters Figure 5.14. Dependency of Average Size of Biggest
Cluster on (a} Detachment Rate () for (b) lattice size
L =100 (c) MCS = 500,000 (d) 2 =0.6 (e) y=10.5
(HB=a=8=p=05

on (a) varying Detachment Rate () for (b) lattice size
L = 100 (¢) MCS = 500,000 (d) = 0.6 (¢) y = 0.5
Op=a=8=n=05

25 +

20 A

15 A

10 -

Number of Clusters

L 2

L] T T T T T T T T T 1

0 010203040506 07 0809 1

Detachment Rate (1)

200
180
160
140
120
100
80
60
40
20

Size of Cluster

‘0
r e e a0

T T T T T T

0 0102030405 06070809 1

Detachment Rate (x)

Figure 5,15, Dependence of Average Number of Clusters Figure 5.16. Dependency of Average Size of Biggest
Cluster on (a} Detachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 () A=0.7 (e} y=0.5
DB=a=38=p=0.5

on (a) varying Detachment Rate (7) for (b) lattice size
L = 100 (c) MCS = 500,000 (d) A = 0.7 (¢) y = 0.5
fHPp=a=56=p=05

26

| nd [(2o
w o v
1 1)

Number of Clusters
)
L 4

0 010203040506 0.7 0809

Detachment Rate (1)

1

200 T
180

160 -
140 -

[y
[
o
1
®

100 -
80 -
60 -
a0 - &

20 - ¥ _—
Oty * B § §

0 010203040506070805 1

Size of Cluster

L 4

Detachment Rate (1)

Figure 5.17. Dependence of Average Number of Clusters Figure 5.18. Dependency of Average Size of Biggest

on (a) varying Detachment Rate () for (b) lattice size
L =100 (¢) MCS = 500,000 (d) A= 0.8 () y=0.5
OPp=a=8=p=05

25 -

- N
wv [=]
L -
$

Number of Clusters
—
o

L 2

2

o

L) T T T T T T T T T

0 01 02 03 04 05 06 0.7 08 05

Detachment Rate (t)

1

Cluster on (a) Detachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d)A=0.8 (e) y=0.5
HPp=a=8=p=05

200 ¢
180 -
160 -

Size of Cluster
e o
oY (2] o] (o] N £
o o o (o] o o
1 1 1 L 1 1
¢

L

h
o
1

* o
M AR B S
0 010203040506 070809 1

=)

Detachment Rate (t)

Figure 5.19. Dependence of Average Number of Clusters Figure 5.20. Dependency of Average Size of Biggest

on (a) varying Detachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d) =09 (e) y=0.5
NPp=a=8=u=05

27

Cluster on (a) Detachment Rate (1) for (b) lattice size
L =100 {c) MCS = 500,000 (d) A=0.9 (e) y=10.5
HP=a=8=p=0.5

%5 - 200 ¢
180 -
20 - * 160 -
4 * B 140
“ o
g% * ¢ 51201
5 Ui 4 ¢
B (=]
£ 10 - Y 80 -
E * * &
3 60 - "
5 - 40 -
& * *
'S 20 A & *
0 ? T T T T T T T T 1 0 T T T T T ? ? ? M
0 0102 0304 0506 07 0809 1 0 0102030405060708¢09 1
Detachment Rate (t) _ Detachment Rate (1)

Figure 5.21. Dependence of Average Number of Clusters Figure 5.22. Dependency of Average Size of Biggest

on (a) varying Detachment Rate (1) for (b) lattice size Cluster on (a) Detachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d) L =1(e)y=0.5 L =100 (c) MCS = 500,000 (d) =09 (e) y=0.5
OB=a=8=p=05 BHB=au=08=p=0.5
20 - 2007 € & & & & & & & o o
18 -
195 -
16 -
£14 -
g :.-3 190 -
é 12 -
- > 185
€16 5
@ @
a B A N
E “ 180 -
5
2 6 -
4 - 175 *
R 4
00000000000 170 +—————————r— 77— 17—

0 01020304 0506070809 1
0 010203040506 070809 1

Attachment Rate (A
Attachment Rate (A) actiment sta Al
Figure 5.23. Dependence of Average Number of Clusters Figure 5.24. Dependency of Average Size of Biggest
on (a) varying Attachment Rate () for (b) lattice size Cluster on (a) Attachment Rate (1) for (b) lattice size
L =100 (¢) MCS = 500,000 (d)T=0(e)y=0.5 L =100 (c) MCS = 500,000 (d)t=0(e)y=0.5
(ODB=u=8=p=0.5 (Hp=a=8=p=05

28

200 -

20 A
180 -
18 -
5 160 -
@ * 140 -
g 14 - o
b= A
2 g 120 IR SR
(w] S L g
s 10 - 5 100 1
5 ¢ 2 g0 -
a 8 - & 80 4
E v *
3 6 - & 60 -
Zz
4 - L 40 - g
¢ ® o ¢ 0 o ¢
2 201 @
0 ¥ T T T T T T T T 1 O ? T T T T T T T T T 1
0 010203040506 07 0809 1 0 010203040506070809 1
Attachment Rate (A) Attachment Rate (A)

Figure 5.25. Dependence of Average Number of Clusters Figure 5.26. Dependency of Average Size of Biggest

on (a) varying Attachment Rate () for (b) lattice size Cluster on (a) Attachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d) t=0.1 (e) y=0.5 L = 100 (c) MCS = 500,000 (d) t=0.1 (e)y=0.5
(HDPp=a=8=p=05 HPp=a=5=p=035
ol 200
wy * o
180 -
= 160 1
£ 4 o 140 -
) [
3 127 £120 -
B 10 5 d 3100
5 bl TR RN -
£ 8- 2 50 1
2 6 - “ 60 A
L 2 L 2
4 40 - ¢ ¢ o 0 ¢
29 20 " . *
0 T T T T T T T T T 1 0 * T T T T T T L] T T 1
0 0.1020304050607 08209 1 0 010203040506 070809 1
Attachment Rate (A) Attachment Rate (A)

Figure 5,27, Dependence of Average Number of Clusters Figure 5.28. Dependency of Average Size of Biggest

on (a) varying Attachiment Rate (X) for (b) lattice size Cluster on (a) Attachment Rate (1) for (b) lattice size
L = 100 (¢) MCS = 500,000 (d)t =02 (e)y=0.5 L =100 (c) MCS = 500,000 (d)t=02 (e})y=0.5
HOP=u=58=p=05 HB=u=06=p=03

29

20
18
16
14
12
10

Number of Clusters

Q N s O 00

. 200
- L 2 180
4 ¢ 160
4~ @ * * ¢ o 140

1 L
Slze of Cluster
=
o oo (=] [
o O & o

t
£
o

-
S

! T T T T T T T T T 1 0
0 010203040506 070809 1

Attachment Rate (A)

I

¢ o0 0 4 0
¢ ®

T T T T -1 L E | 1

0 01 020304050607¢08209 1

Attachment Rate (A}

Figure 5.29. Dependence of Average Number of Clusters Figure 5.30. Dependency of Average Size of Biggest

on (a) varying Attachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d)1=03(e)y=0.5
(DB=o=d=p=05

20
18
16
14
12
10

Number of Clusters

[= B A L]

Figure 5.31. Dependence of Average Number of Clusters
on (a) varying Attachment Rate (1) for (b) lattice size

L =100 (c) MCS = 500,000 (d)t=04 (e)y=0.5
HB=a=8=n=05

Size of Cluster

T T T T T T T T T 1

0 010203 04 05 06 07 08 09 1

Attachment Rate (A)

30

200
130
160
140
120
100
80
60
40
20

L 4
0 M l’ T T T T T T 1

Cluster on (a) Attachment Rate (1) for (b) lattice size
L =100 (¢) MCS = 500,000 (d) t=03 (e) y=0.5
HPp=a=6=p=0.5

¢ ® 6 06 0 o o

0 010203040506070809 1

Attachment Rate (A)

Figure 5.32. Dependency of Average Size of Biggest
Cluster on (a) Attachment Rate (1) for (b) lattice size
L =100 (c) MCS = 500,000 (d) 1= 0.4 (e) y=0.5
OPp=a=5=p=0.5

20 - 200
¢ ¢ *
18 - o ¢ 180
16 - ¢ 160
0
g1 _ 140
Q
S 12 A * % 120
o 3
6 10 - S 100
@ S
2 8- @ 80
3 3
261 ¢ 60
4 - 40
2 ¢ 20
0 T T T T T T T T T 1 0

0 01020304050607 0809 1

Attachment Rate (A)

S
0 010203040506070809 1

PRFEE IR R SR P

T T 1

Attachment Rate (A)

Figure 5.33. Dependence of Average Number of Clusters Figure 5.34. Dependency of Average Size of Biggest

on (a) varying Attachment Rate (%) for (b) lattice size Cluster on (a) Attachment Rate (&) for (b) lattice size
L = 100 {(c) MCS = 500,000 (d)t=0.5(¢) y= 0.5 L =100 (c) MCS = 500,000 (d) 1 =0.5 () y=0.5
OHPp=a=8=p=0.35 Op=0c=8=p=05
20 W 200 -
18 | @ . 180 -
| * * o0 .
16 - 160 -
n 14 ‘ * 140 -
g @
2 1 \ g Ay
S = Y 100 -
s 10 L e
i | g 80 -
-] . M
g 8 ‘ ¢ v 60 -
2 ° | 40
4
4 L 4 20 -
2 0*’*00000000
i T T 3 T T T T 1
B FeapsseSe ST 0 0.102 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 010203040506070809 1
Attachment Rate (A)
Attachment Rate (A}
Figure 5.35. Dependence of Average Number of Figure 5.36. Dependency of Average Size of Biggest

Clusters on (a) varying Attachment Rate (1) for (b) lattice Cluster on (a) Attachment Rate (1) for (b) lattice size
size L = 100 (c) MCS = 500,000 (d) = 0.6 (e)y= 0.5 L =100 (c) MCS = 500,000 (d)t=0.6 () y=0.5
(Hp=a=8=n=0.5 HPp=a=8=p=05

31

16 -

14 - ¢

10 - P

Number of Clusters
[#a]

0 0102030405 06070809 1

Attachment Rate (A)

Figure 5.37. Dependence of Average Number of

Clusters on (a) varying Attachment Rate (A) for (b) lattice

size L= 100 (c) MCS = 500,000 (d) T = 0.7 (&) y = 0.5
OB=a=5=p=0.5

20 -
18 -
16 -
14 -
12

10 -
® ¢ ¢ »

Number of Clusters

[=T S -
1

T T T T T T T T T 1

0 0102034040506 07 0849095 1

Attachment Rate (A)

Figure 5.39. Dependence of Average Number of
Clusters on (a) varying Attachment Rate () for (b)
lattice size L = 100 {¢) MCS = 500,000 (d) t = 0.8
(e)y=05(Hp=a=8=p=05

Figure 5.40. Dependency of Average Size of Biggest

Size of Cluster

Figure 5.38. Dependency of Average Size of Biggest

200
180
160
140
120
100
80
60
40
20

-4

ot ¢ & ¢ ¢ ¢ ¢ ¢

0 010203040506070809 1

-

¢

L 4

Attachment Rate (A)

T

Cluster on (a) Attachment Rate (&) for (b) lattice size

L = 100 (c) MCS = 500,000 (d) 1= 0.7 (¢} y = 0.5
(HP=a=8=p=05

Size of Cluster

200
180
160
140
120
100
80
60
40
20

1

0 010203040506070809 1

Attachment Rate ()

Cluster on (a) Attachment Rate (A) for (b) lattice size

L = 100 (c) MCS = 500,000 (d) t = 0.8 () y = 0.5
OB=a=8=p=05

32

200 -
T 180 -
16 1 160 -
i
m _ 140 -
] L]
g 12 + E 120 -
6 10 Y100 -
b S
o 8 - @ 80 -
: £
2 6 = 60 "
. ¢ ¢ o 40
2 * ¢ 20 +
0 T T T T T T T T T T 1 0 ‘_F—‘_FH_F%
0 0.1 02 03 04 05 0.6 0.7 0.8 09 1 0 010203040506070809 1
Attachment Rate (A) Attachment Rate (A)
Figure 5.41. Dependence of Average Number of Figure 5.42. Dependency of Average Size of Biggest
Clusters on (a) varying Attachment Rate (1) for (b) Cluster on (a) Attachment Rate (&) for (b) lattice size
lattice size L = 100 (¢) MCS = 500,000 (d) t=0.9 L = 100 (¢) MCS = 500,000 (d) t=0.9 () y=0.5
@y=05Pp=a=3=p=05 HPp=o=8=p=0.5
20 200 -
18 180
16 - 160 -
514 : 140 -
@
5 12 gzo .
@]
.E 8 - .g 80 -
("]
5 6 - 60 -
4 40
2 T ® & ¢ 6 ¢ &6 O ¢ S @ 20 -
0 T T T T T T T L T L] 1 0 ‘ ’ , ’ , ’ ‘ ‘ ‘ ‘ ’

0 010203040506070809 1 0 010203040506070809 1

Attachment Rate (A) Attachment Rate (A)

Figure 5.43. Dependence of Average Number of Clusters Figure 5.44. Dependency of Average Size of Biggest

on (a) varying Attachment Rate () for (b) lattice size Cluster on (a) Attachment Rate () for (b) lattice size
L =100 (c) MCS = 500,000 (d)t=1(e)y=0.5 L =100 (c) MCS = 500,000 (d)t=1(e}y=0.5
HPp=a=d=p=05 DP=a=08=p=05

33

5.5 Summary

Motivated by the interesting connections between non-equilibrium statistical physics and
molecular motors, we have presented a model of a two-lane driven diffusive system that retains
some of the characteristics of the motion of the kinesin and dynein molecular motors on cellular
tracks. Using Monte Carlo simulations we studied the formation of clusters in the system as a
function of the attachment rate A and detachment rate 1 of particles to the lattice. We have
concluded that the effect of the particle exchange rate y, which is important to the coarsening
phenomenon in two-lane systems with boundary conditions, is relatively weak when compared
to the effects of the attachment and detachment rates. The results presented above for a y value
of .5 can be seen across all y values. If we let the t vary we see that for ever increasing values of
A the average number of clusters moves towards a normal distribution with a peak value of
twenty clusters at t=0.5. At the same time the size of the biggest cluster in the system
exponentially decays as 7 increases no matter the A value. When we fix t and let A vary we
notice that the average number of clusters evolves into a logarithmic growth function at T = 0.5
with a limit of twenty clusters. The number of clusters for values of T greater than 0.5 keep their
logarithmic form but the limit decreases until reaching a minimum at a value of two. The
average size of the biggest cluster is also described by a logarithmic growth function with a
maximum value of 200 when 1= 0. As T increases the maximum value of the logarithmic
function decreases exponentially, eventually becoming linear at a minimum value of about 2.6
when t=1. This study highlights the importance of the relationship between attachment and
detachment rates to the overall behavior of two-lane driven diffusive systems and can serve as an
important guide in the search for an analytical solution to such a system. Future research could
investigate the effects of entrance and exit rates on the behavior of such a system. We would
also like to suggest the possibility of applying concepts from factorial design to the study of
driven diffusive systems. Such an approach could help pinpoint the variables and relationships

between variables that matter most to the behavior of the system.

References

[1] K. Svoboda and S.M. Block, Cell 77:773 (1994).

[2] K. Svoboda, P.P. Mitra and S.M. Blockthor, Proc. Natl. Acad. USA 99:6696 (2002).
[3] H.Kojima, E. Muto, H. Higuchi and T. Yanagida, Biophys. J. 73:2012 (1997).

34

[4] Mazilu L., Schmittmann B., Journal of Statistical Physics, 113 (3/4): 505 (2003).

[5] 1. Mazilu, Steady state properties of some driven diffusive systems, PhD theses, (Virginia Tech, Blacksburg,
2002) http://scholar.lib.vt.edu/theses/available/etd-09022002-101837.

[6]). W. Gibbs The Elementary Principles in Statistical Mechanics, (Scribner, N.Y, 1902).

[7]1 L. Boltzmann Lectures on Gas Theory, English translation (Berkeley, California, 1964).

[8] R.K. Pathria Statistical Mechanics 2! ed. (Butterworth-Heinemann, Oxford, 1996).

[9] B. Schmittmann and R. K. P. Zia Phase Transitions and Critical Phenomena Vol. 17, edited by C. Domb and J.
L. Lebowitz (Academic, London, 1995).

[10] Philip Nelson Biological Physics (W. H. Freeman and Company, N.Y ., 2004).

[11] H. Higuchi, E. Muto, Y. Inoue, and T. Yanagida, Proc.Natl. Acad. Sci. USA 94:4395 (1997).

[12] C.M. Coppin, D.W. Pierce, L. Hsu and R.D.Yale Proc.Natl. Acad. Sci. USA 94:8539 (1997).

[13] M.D. Wang, M.J. Schnitzer, H. Yin, R. Landick, J. Gelles and S.M. Block, Science 282: 902 (1998).

{14] Angelika Krebs, Kenneth N. Goldie and Andreas Hoenger, J. of Molec. Bip. , 335 (1): 139 (2004).

[15] Howard J., Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, 2001).

[16] E. Levine and R. D. Willmann .. Phys. A: Math. Gen 37:3333 (2004).

[17} Aridor M, Hannan LA. Traffic Jam: A compendium of human diseases that affect intracellular transport
processes. Traffic 2000; 1; 836-851.

[18] D. Mukamel in Soft and Fragile Matter; Non-equilibrium Dynamics, Metastability and Flow, Eds. M.E. Cates
and M.R.Evans (Institute of Physics Publishing, Bristol, 2000).

[19] M.R.Evans and R. A. Blythe, Physica A4 313:110 (2002).

[20] M.R. Evans, T. Hanney and Y. Kafri Disorder and non-conservation in a driven diffusive system cond-
mat/0405611 (2004).

[21] Hans C. Fogedby, Ralf Metzler and Axel Svane Exact solution of a linear molecular motor model driven by
two-step fluctuations and subject to protein friction cond-mat/0312364 (2003).

[22] Rakos, M. Paessens and G.M. Schiitz, Phys. Rev. Lett., 91 (2003).

[23] Michael E. Fisher and Anatoly B. Kolomeisky Proc.Natl. Acad. Sci USA (1999).

[24] A. Parmeggiani et al. Europhys. Lett. 56: 603 (2001).

[25] V. Popkov ef al. Phys. Rev. £ 67:066117 (2003).

[26] T. M. Nieuwenhuizen, Stefan Klumpp and Reinhard Lipowsky Random walks of molecular motors arising
from diffusional encounters with immobilized filaments cond-mat/ 0312422 (2003).

[27] Stefan Klumpp and Reinhard Lipowsky Phase transitions in systems with two species of molecular motors
cond-mat/ 0402195 (2004).

[28] R. Thommton, R. Tinker "Constructing Student Knowledge in Science", Chapter in New Directions in
Educational Technology, E. Scanlon and T O'Shea, eds. (Berlin-Heidelberg-New York, Springer-Verlag, NATO
ASI Series F: Advanced Educational Technology 96, pp. 153-171. Series, 1992).

[29] Howard J., Narture, 389:561 (1997).

[30] Donald T. Haynie, Biological thermodynamics (Cambridge University Press, 2001).

35

[31] C.R. Bagshaw Muscle Contraction (Chapman & Hall, London, 1993).

[32] K. Binder and D. W. Heermann Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1988).
[33] B. Schmittmann, K. Hwang and R.K.P. Zia Europhys. Lett. 19, pp. 19-25 (1992).

[34] I Vilfan, R.K.P. Zia, and B. Schmittmann, Physical Review Letters 73, pp. 2071-2074 (1994).

[35] F H Jafarpour, F E Ghafari and S R Masharian, J. Phys. A: Math. Gen. 38: 4579-4588 (2005).

36

CHAPTER 6
STOCHASTIC MODEL OF MICROTUBULE DYNAMICS

6.1 Introduction

Stochastic processes are omnipresent in fields as diverse as physics, biology and economics.
"Birth-and-death” processes, or "generation-recombination” processes, also known as "one-step
processes” [1], play an important role in modeling various systems, such as photon emission or
absorption, chemical reactions, population dynamics. "Random walks" are probably one of the
best known one-step processes, with far reaching applications. The random walk problem
is well studied, but depending on the question posed, this topic continues to present new and
interesting puzzles, and to invite new applications outside of the physics area.

In this paper, we use random walk theory to model the length dynamics of microtubules, one
of the principal components of the cytoskeleton [2]. These polar, linear polymers have two
major roles in the cell: they form a rigid internal skeleton for some cells and they also act as
cellular tracks along which motor proteins can move structures within the cell. These tracks
can either grow out from the centrosome towards the periphery of the cell or can be free.
Microtubules are dynamic structures that undergo continuous assembly and disassembly
within the cell. These polar structures have a fast-growing plus end and a slow-growing minus
end. They remain in a non-equilibrium state driven by sudden polymerization changes,
switching stochastically from growing to shrinking and vice versa. Microtubules grow by the
attachment of GTP (guanosine triphosphate tubulin units) at their plus end. However, if the
GTP cap hydrolyzes into GDP (guanosine diphosphate tubulin units), the microtubule is
destabilized, the GDP complexes are detached and shrinkage ensues. Another interesting
aspect of microtubule dynamics is "treadmilling” [3], when free microtubules display persistent
growth at one end and shrinking from the other end.

From the point of view of statistical physics, microtubules represent interesting non-
equilibrium systems, amenable to a stochastic treatment. In 1984, Mitchison and Kirschner [4]
discovered the "dynamic instability" of microtubules (the random transition between states of

assembly and disassembly). Mitchison and Kirschner conjectured that this instability is a

37

consequence of competition between assembly and GTP hydrolysis; once the stabilizing GTP
cap is gone, the microtubule dissociates rapidly (process known in the literature as "the
microtubule catastrophe™). Despite the large number of theoretical and experimental studies
[5-9], there still is no coherent model for the microtubule dynamics able to explain the
experimental data fully. On the theoretical front, a variety of models have been proposed: very
detailed ones that include all 13 protofilaments that make up the microtubule [10,11] and
minimalist models that contain as few parameters as possible, such as the ones proposed by
Flyvbjerg et al. [12] and Antal et al. [13].

This paper presents a two-state model of microtubule length dynamics that incorporates
a variable rate of switching between a growing and shrinking microtubule. This is a novel
approach—so far, the theoretical models proposed assumed constant rates of transition between
states. We do not account for stochastic avalanches or catastrophes that occur as part of in vivo
and in vitro microtubule experiments. Specifically, based on some simple dynamical rules first
introduced in Ref. [13], in the context of our model, we calculate the mean length of the
microtubule as a function of time, its variance and the diffusion coefficient of the
microtubule tip. We compare our analytical and computational results with experimental
results reported in Ref. [4], and find good qualitative agreement.

This paper is structured as follows: We first (Section 2) give an overview of "one-step
processes”, and define our model. Using the generating function technique, we solve the master
equation for some particular cases to obtain the probability distribution for the lengths, the

average length and the diffusion coefficient (Sections 3 and 4). In Section 5 we discuss the

18 Pa+1 fps2

Fig. 6.1. General definition of a one-step process and its transition probabilities. The process is defined as a Markov process on an integer

sel [n} with jumps allowed only between adjacent sites. Adapted from [1],

38

distribution of positive monomers for the case of variable rates. We compare our analytical
results with the computer simulations and the experimental biological data and conclude with

a summary of our work and some open questions.

6.2 Analytic Model

A starting point for the study of one-step processes is the master equation, which
expresses the conservation of configurational probabilities. In general, consider a system in

state "r" at time "t". Pr (t) is the probability that this system is in this particular state. The time

dependence of Pr is given by the master equation, which states:

dp,
2= AW, -) RW, 0
s s

This is a balance (continuity) equation. The probability of state "r” increases with time
due to states that evolve into state "r" and it decreases with time because of transitions from
state "r" to other states. In this equation, W stands for the transition rates to and from state"r".
Knowing W allows one to calculate all probabilities P, as a function of time.

For the special case of one-step processes, transitions happen only between adjacent states,
labeled as a set of integers "n" (Fig. 1). The evolution of probability p, (t) is described by the

following master equation:

dp
d_tn = Un+1Pn+1 + ln—lpn—l - (#n + An)pn (2)

where u,, is the probability per unit time of a transition from state "n" to state "n — 1",and A,,
is the probability per unit time of a transition from state "n" to state "n + 1" (see Fig. 1). These
quantities can be constants (this is the classical random walk case), or polynomials in n.

In the context of one-step processes, we define the following idealized model for the
microtubule (Fig. 2), based on a theoretical model introduced by Ref. [13]. Using Antal et al.

notation, treat the microtubule as an ordered set of GTP (* + ") and GDP (" — ") monomers. The

33

microtubule evolves according to the following rules:

e Aftachment. A microtubule grows by attachment of a guanosine triphosphate tubulin
unit (GTP+ monomer) at either end. We define A, to be the attachment rate at the left (negative)
end of'the microtubule, and A, the corresponding attachment rate at the right (positive) end of the
microtubule.

e Detachment. A microtubule shrinks by detachment of a guanosine diphosphate tubulin
unit (GDP-monomer) at either ends. We define y, to be the detachment rate at the left
(negative) end of the microtubule, and u, the corresponding detachment rate at the
right (positive) end of the microtubule.

e Conversion. Each GTP* monomer can convert via hydrolysis into a GDP-monomer. We

assume thisrate tobe 1.

(a)

e

eC
@O

‘Z)

(&

Microtubule Growth Microtubule dissociason

®
COCO® OOCOOe®

OOOOSS@ OOOOOOO

OOCOO® oo © O

GTP- tubilin cep

40

(c)

HL LR
gl ra-!
ST T

KL ;'uR

eI
~l

A= AL+ 2R

Fig.6.2. (a) Standard sketch of the complex 13 filament structure of microtubules; (b} ldealized model of microtubule assembly and

disassembly; {c) Our model-cartoon of the overall microtubule prowih and shrinkage. Rales X and p are variable,

Note that this is a general model that includes microtubule growth and shrinkage at both
ends. In reality, the microtubule is polarized. GTP+ units tend to attach to its " + " end. Since
we monitor the overall length of the microtubule, the identity of the polarized ends becomes
irrelevant. Therefore, our model applies to both attached and free microtubules.

Note the following connection between the length dynamics of the microtubule and one-
step processes: at each time step, the length of the microtubule can increase or decrease by
one unit, due to tubulin attachment or detachment. The growth or shrinking processes can
happen at both ends. If L, the length of the microtubule, is our variable, it will increase or
decrease by one. We want to calculate the probability distribution of microtubule lengths, as
well as the average length under various scenarios. We start by writing the master equation for
the length probability:

dP(L, t)
dt

=—[+ 2 +m+w]PLO+ [N+ APL -1, + [+]PL+1,0) (3)

P(L,t) represents the probability of the microtubule to have a certain length L at time ¢t. In the
master equation, the loss term —[4; + A, + y; + p,.]P(L, t) accounts for the change in length due to

41

growth and shnnkage of the microtubule at both ends, with the appropriate rates. The gain terms take

into consideration the configurations that evolve into the present configuration due to attachment

[A; + A]P(L - 1, t) and detachment [g; + u,.]P(L + 1,t). The conversion of the GDP+ into GTP- .
does not play a role in the change of the microtubule length.

We define A = 4; + 4, as the overall growth probability and 4 = u; + p, as the overall shrinkage
probability. The theory applies to 4 and i as general functions of the length L. In reality, this is still an
approximation, since the attachment and detachment probabilities depend on other factors, such as the
identity of the ends, temperature or concentration of tubulins in the surrounding solution. In our
minimalist model, we do not differentiate between the two, and look only at the overall
increase or decrease of microtubule length.

Given the master equation, we first find the probability distribution of microtubule length
for constant attachment and detachment rates. Then, we generalize the model to include rates
that are linear functions of L. Alongside the analytical work, we also present the Monte
Carlo simulation results, and when appropriate, compare our study with the reported

experimental data.

6.3 Probability Distribution of Microtubule Length for

Constant Attachment and Detachment Rates

We review the statement of the simple random walk problem in one dimension: a
drunkard, starting his journey at a lamp post on the street, can step either to the right or left,
with probability p and 1 — p, respectively. Each step is of equal length (let us assume [= 1) and is
independent of the previous one.

We first consider our model with A and g being constants. Just like our random walker, the
microtubule can be in two states: growth with probability A (analogous to the walker moving right with
probability p), or shrinkage with probability 4 (analogous to the walker moving left with probability
1 — p). Our goal is to calculate P (L, t), the probability of microtubule to have length “L" at time "t", (L),

mean microtubule length, and D = £2= define in the literature s the diffusion coefficient of the

microtubule tip.

In our calculations, we use the generating function method, sketched below [1]:

42

(1) Define the generating function as: f(z,t) = X% _., P, z", with z an auxiliary variable.

Some properties of this generating function aref1]:

e Since: 3, P,(t) = 1 and P, (t) = 0, this generating function exists for |z| = 1.
o Also, f(1,8) =1, f'(1,8) = {L(O)), f" (1, £) = {L(£)*) — (L(D)).

(2) Write the master equation in terms of the generating function, and solve it with the
appropriate initial conditions.

(3) If the generating function is known, its first and second order derivatives give us the
mean length and the diffusion coefficient. Also, by expanding the generating function in a

power series in z, one can recover the probability length distribution P(L, t).

6.3.1 Unrestricted Growth

We first assume that the microtubule can only grow with overall rate A:

In this case, the master equation becomes:

dP(L,t)
dt

= —AP(L,t) + AP(L — 1,t) = A(P(L — 1,t) — P(L,1)). (4)

This is known as the Poisson process, with the initial conditionP(L, 0) = §; ¢. This
condition is sufficient and it also covers the case P(L, t) = §; ;, for any initial length.

In terms of the generating function, the master equation becomes:

df (z,t)
dt

= =Af(z,t) + Azf(z, t). | (5)

For the initial condition P(L,t) = &, ; , which translates into f(z,t = 0) = 1, the solutions

is the Poisson distribution;

L

(6)

The average length and its variance are: (L(t)} = At, {L(t)?} — (L(t))? = At. This gives us

43

also the diffusion coefficient to be: D = % (results also reported in Ref. [13]).

6.3.2 Asymmetrical Random Walk: A = u

We take the model one step further, and assume the presence of dissociation processes as
well. In analogy with the random walk problem in one dimension, now the microtubule can
grow or shrink with different rates (from a biological point of view, we assume that the
system constantly shifts in between polymerization and de-polymerization regimes).
This is the case of the asymmetrical random walk with continuous time.

The master equation becomes:

dP(L,t)
— = @A+ WPL O +APL - 1,8) +pP(L+1,0). 7
(a) (b)
14
]
12 A
10 A
A ¥
S 6
v
4 -
2 4
0 T B
0 5 10

Fig. 63. (a) Probability length distribution P(L, t) for conslanl rates A = 1.6 and y = 0.4 (growth regime); (b) Mean length (L(t)) = (A — p)t.
for A = 1.6 and y = 0.4 (growth regime)

44

We use again the generating function technique. Define: f(z,t) = ¥, P, z%, with z being an

auxiliary variable. In terms of f(z), the master equation becomes:

() _ p
= (1= 2C - Df (1) ®

with the general solution:

F) =) ©)

where ()(z) is an arbitrary function of z. Given the initial condition: f(z,0) = 1 (Q1(z) = 1).

Our generating function is:

I (10

From the generating function, by taking the first and second derivatives and evaluating it at

z = 1, we obtain:

e (L)) =(A—-pt
o (L) =A—-W*+ @A+ Wt
e Variance: (L(£)?) — (L(£))* = (A + W)t

. 3 . i
e Diffusion coefficient: D = %

We also recover the probability length distribution for microtubules:
t21+L A L

PO Lo O

o= (u+a-2/udye (11D

2i+L
where 3}, m is Ij|(2t), the |L|th modified Bessel function.

These analytical results are known from the one-dimensional asymmetric random walk
theory. In Fig. 3 we can see the plotted analytical solutions for (L) and P(L, t). The qualitative
agreement with Mitchison and Kirschner's data (Fig. 5(a)) for higher tubulin concentrations is

quite good. (Their data plots are sketched in Fig. 5, also can be found in Ref. [4]).

45

6.4 Mean Microtubule Length for Variable Attachment and

Detachment Rates

Microtubule evolution is a complex process, sensitive to external factors such as
temperature and solution concentration of tubulins. The polymerization and dissociation rates
are in general not constant. We consider a case when the attachment and detachment
probability rates depend linearly on the length of the microtubule. From a physical point of
view, the length of the microtubule cannot become negative, and also it cannot exceed a
certain physical maximum length. We will incorporate these constraints in our analysis and

treat this problem as a one-step process with natural boundaries[1].

(a) (b)

65 -

<Liy> | <L®>

35 =

46

(© (@)

70
9
65 »
80
¢
0 ‘é‘ 60 |4
% ¢ ¥ ¢
e84 355 | ¢
-l . "
-] 50 v ’
L g L/ selif
§ 40 " il & 50 Q
“u O'W,W'»WW
¢ a5
0y
a0
10
T e 0 200 400 600 800 1000
Time Time

Fig. 6.4. {(a) Mean length (L(t)), for variable rates with @ = 0.1 and § = 0.5, Ly = 10, Lo, = 100 (growth regime). (b) Mean length{L(t)),
for variable rates with @ = 0.9 and § = 1, Ly = 70, Lynar = 90 (shrink regime); (c),(d} Associale Monte Carlo results; time unit is 100 MCS.

Specifically, we now consider the growth and shrinkage rates as linear functions of the
microtubule length. The micro-tubule growth rate decreases with the size of the system, and it
becomes zero when the microtubule reaches its maximum size L,,,, (the growth stops). The

shrinkage rate increases with L. Based on the previous notations, we now have:

A= B(Lmax = L) (12)
U= al, (13)

where a and £ are both positive constants.

The master equation now becomes:

d—"ﬂf,’;’—” = —(A(L) + u(L)P(L, t) + A(L)P(L — 1,£) + p(L)P(L + 1,t). (14)

Substituting the expressions for A(L) and p(L),

47

dP(L,t)

TR =((a =)L+ BLiyu)P(L:t) + B (Linaxy —L)P(L — 1,) +aLP(L + 1,t). (15)

Following again the method presented in [1], we use the generating function: f(z,t) =
Y = Py 2%, with z being an auxiliary variable. We consider the initial conditions to be
P(L, O) = 6L,Lo'

In terms of f(z), the master equation becomes:

of(z,t
fgt l_) max(1 — 2)f(z, t). (16)
a
25
| .
15-
E |
E‘ N ,,0"’0/(
< g
g 0 5 10 15
g
; 1.04 b
-3
EI//D
0.5_ /D/
0
D/
D/
0 5 10 15 20
Time (min)

Fig. 6.5. Experimental data {sketch reproduced from Mitchison et al.[4]) (a) Polymerization at 15uM (immunofluorescence method); {b)
Polymerization at 3uM (eleclron microscopy method). The closed symbols show data for plus end, the open symbols show data for the minus

end of the microtubule.

48

For the finite range 0 < L < L4+, with @ and £ positive, the generating function is (more

detailed calculations of a related problem are presented in [1]):
f(z,t) = (a+) max[a(l - €) + (ae + f)z]*[(a + fe + f(1 — €)z)]maxto (17)

where € = e~(@*A)_and with the initial condition: P, (0) = &,,,.
Given this generating function, we can extract information about the average length of the

microtubule as a function of time:

Loa€ + BLpax(1 — €) + BLge
a+f

(L(t)) = (18)

where € = ¢~ (@+F)t,

Knowing the generating function, one can also calculate the variance and diffusion
coefficient. In Fig. 4 we plot (L) for the two regimes (a) overall growth and (b) overall
shrinkage. We show for comparison, the analytical results and the Monte Carlo simulation
results. If we compare these results with Fig. 5(b)(lower concentrations of tubulin in

surrounding solution) in Mitchison's paper we notice, again, a good qualitative agreement.

6.5 Distribution of Positive Monomers

We mentioned earlier that the length of the microtubule can change only due to the addition
of GTP units. For the special case of the unrestricted growth with constant A, the mean number of

positive monomers evolves according to ([13]):
(Ny=21(1—-e7% (19)

For the more general case of unrestricted growth but with variable A, the problem is rather

complex. We start, again, with the master equation:

dP(L,N,t)
—— == —(A) + N)P(LN,t) + (L)P(L = 1,6) + (N + D)P(L N +1). (20)

49

Because of the L dependence of 4, the probability distribution of the number of positive monomers is
also dependent on length. We can think of this as a joint distribution P(L, N, t) of a microtubule
to have length L and a number of monomers N.

The right-hand side of the master equation has "gain terms"” that account for all states that can
create a microtubule of length L with N positive monomers, either through a positive
monomer addition to a microtubule of length L — 1(A(L)P(L — 1, t))or via a conversion of a
positive monomer into a negative one (N + 1)P(L, N + 1)). Likewise, the loss" term (—(A(L) +
N)P(L, N, t)) describes the evolution of the microtubule of length L with N positive monomers into other
states via growth or conversion. Substituting A, we arrive at the following form of the master equation:

dP(L, N, t)

It = —(Flpax — L)+ NYP(LN, D) + B(Lypax — L)P(L—=1, 8} + (N+ 1)P(LN+1) (21)

In order to use, again, the generating function technique, a two-variable generating function

is needed:

flx,y,t) = xLy¥P(L,N,1). (22)
stz.so

The master equation is re-written in terms of this new generating function as:

a d d
af(x-yv t) = —a_yf(x:y: t) + B(—Lmax + Xy (Lae — D) f (x, 3, 8) + Bx(1 - xy)a'f(x:yat)- (23)

50

(a) (b)

40 -
101
35 { JAPAARIPYLIIN
0.75 07 ¢
' L md @
v %
a5 20 41 &
15 { ¢
0.254 10 A
5
D_OJ 0 T 1
0.0 1} 500 1000
t
(c)
60 -
50
40 _
A
L 30 -
v
20 A
10
y=-36.318x + 53.441
0 T T T T L}
0 0.2 0.4 0.6 0.8 1
B

Fig. 6.6 Mecan number of positive monomers; (a) For conslant rates (N} = A{1 —e™"), (b) Monte Carlo simulation results for
variable rate 4 = B(Lq, — L) with Ly = 10,L,,,, = 100 (growth only), (c) Dependence of the average maximum number of

monomers Npg, on §.

Using Maple or Mathematica, one can solve this equation with the initial conditions
P(L,N,0) = &,,1,6nn,- Unfortunately, the analytical solution is quite complicated, and we
were not able to extract useful information regarding the average number of monomers or their
probability distribution. We relied on Monte Carlo simulations instead. For a constant growth

rate, in the asymptotic case, N = A. For A variable, in the limit £ — oo, N plateaus as well (see Fig. 6). In

51

Fig. 6(b) we see the linear relationship between the maximum number of GTP+ and S.Fora

given set of parameters (L0, = 100, Ly = 10), the plateau value decreases as f increases.

6.6 Summary

We investigated a simple two-state model of a free microtubule that switches between

growth and shrinking phases by attachment/detachment of GTP+ units. Our main focus was to
find the time dependence of the mean microtubule length, its variance and the diffusion
coefficient, and to compare it with computer simulation results and experimental data. We
first made the analogy between one-dimensional random walks and the microtubule dynamics,
in the case of constant growth and shrinkage rates. We then extended our study for rates that
are linear functions of L. We also analyzed the distribution of positive monomers for the
growth only case with variable rates. Monte Carlo simulations seem to suggest that in the long
run the average number of GTP+ settles on a plateau, just like for the constant rate situation.
However, the value of this plateau changes (decreases) as our parameter [increases - a novel feature
compared to the constant rates' case.

Although some of our analytical results are in good qualitative agreement with the
experiments, we should point out that this is a simple model that does not include the complex
range of experimental parameters that influence the evolution of microtubules. A new avenue
of research would be to address the issue of the GTP cap and dynamic instability in the context
of this model with variable switching rates between polymerization and de-polymerization

states.

References

(1] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., Elsevier, 2002.
[2] Lodish, et al., Molecular Cell Biology, 5th ed., W.H. Freeman and Company, NY, 2004,
[3] D. Panda, H.P. Miller, L. Wilson, PNAS 96 (1999) 12459.

[4] T. Mitchison, M. Kirschner, Nature (London) 312 (1984) 237.

[5] M. Dogterom, S. Leibler, Phys. Rev. Lett. 70 (1993) 1347.

[6] D.J. Bicout, Phys. Rev. E 56 (1997) 6656.

[7] D.J. Bicout, R.J. Rubin, Phys. Rev. E 59 (1999) 913.

[8] T.L. Hill, Y. Chen, PNAS 81 (1984) 5772.

[9] S. Grego, V. Cantillana, E.D. Salmon, Biophys. J. 81 (2001) 66.

52

[10] V. VanBuren, D.J. Odde, L. Cassimeris, PNAS 99 (2002) 6035.

[11] V. VanBuren, L. Cassimeris, D.J. Odde, Biophys. J. 89 (2005) 2911.

[12] H. Flyvbjerg,T.E. Holy, S. Leibler, Phys. Rev. Lett. 73 (1994) 2372.

[13] T. Antal, P.L. Krapivsky, S. Redner, M. Mailman, B. Charkraborty, Phys. Rev. E 76 (2007) 41907.

53

/*t***ttt******#**tt***!t##*#**t***tt****ktt***************!

/f 2D_main.cpp

i

/f This file contains run instructions for instantiation
/! and execution of two-lane driven diffusive lattice
// Monte Carlo simulation.

i

7

i

/! Author: Josh Gonzalez

// Date: June/20/2007

i

/***#t*****tttttil*i**************###***tttt*t*ttt*********/

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cmath>
#include <time.h>
#include <fstream>
f#tinclude <string.h>

#include "2D_param.h"
#include "Lattice_2D.h"
/I #include "2D_simulation.h"

using namespace std;

f#*!#tt*tkt‘#*************t****t*l**tttttt*t***************/

i Global Variables

/********ttt##t*t***tttt*t*************#**********tttlttt**/

/‘*#****titttt************‘****#*t**#*tt******ttttt*****#**/

i Code

/i*******ilt*******t****tti*****#***********#****t#*####tt#/

int main{int arge, char *argv[])

{

int j;

double i;
double interval;
i=0;

SimConfInfo sim_running_conf;
Lattice 2D* latticePtr = 0;

ZERO(&sim_running_confresult_file name);

/f set default simulation configurattion
set_default_sim_conf{();
if (parse_param{argc,argv) <0)

return -1;
copy_param_to_running_conf{&sim_running_conf);
print_running_conf(&sim_running_conf);

55

latticePtr = new Lattice_2D{&sim_running_conf);

if (latticePtr =10 {
/' log error in creation of myLattice
cout << "ERROR: unable to create myLattice ... exit program” << end|,
return -1;

}

if (NatticePtr->initialize())
// initialization failed, for now exit
exit(-1);

#ifdef TESTMODE

latticePtr->runTest();

cout << "Done with tests” << endl,
Hendif

interval = (sim_running_conf.numSteps)/20;

for (j=0; j < sim_running_conf.numSteps; j++)
{
if(i = interval)
{
latticePtr->snapshol();
1=0;
}
latticePtr->runMonteCarloStep();
latticePtr->exit_ends();
latticePtr->enter();
latticePtr->attach();
latticePtr->detach();
i+

}

latticePir->findClusters();
latticePtr->resultClusters();
cout << "Done with simulation” << end];

if (atticePtr->findClusters() < 0}

/! log error in creation of new cluster
cout << "ERROR: failure while finding clusters" << endl,
return -1;

}

delete latticePtr;

return 0;

}

56

J*t*******tt******t******t#i*********i************t###tt***/

/' 2D _param.h

i

/f This file contains... <add description>
i

/{ Author: Josh Gonzalez
/f Date: June/20/2007
i

e T L L T

#ifndef 2D PARAM_H
#define 2D PARAM_H

#include <iostream>
#include <cstdlib>

using namespace std;

/tt**ttt*ttit*********************##**t#*******#*tt**it****/

I
i Macros
i

/**********i*********#***##*****tlttttt*tttt***tt##********/

#define ZERO(p) memset{(char *)p, 0, sizeof(*p))

/l**‘***‘***********#****‘i*****tt*****#t*t*t*ttttt*t*tt***/

i
i Definitions
/i

/t******************##**f*******!*tttt#t*t*tttt*l**tt***k**/

/! Default values for simulation

#define SIM_ROWS_IN_LATTICE 500

#define SIM_COLUMNS_IN_LATTICE 2

#define SIM_NUMBER._TRIALS 1

#define SIM_NUMBER_MONTE_CARLQ_STEPS 500000
#define SIM_ATTACH_DETACH_STEP 10

#define SIM_NUMBER_OF_PARTICLES 17

#define SIM_POPULATION_RATE I

#define SIM_QI 0.6

#define SIM_Q2 0.2

#ifdef TESTMODE

#define SIM_ATTACH 1
felse

#define SIM_ATTACH 0.2

#endif

#ifdef _TESTMODE

#define SIM_DETACH 1
#eise

#define SIM_DETACH 1

#endif

#define SIM_MAX_SIZE FILENAME 100

#define SIM_DEFAULT_FILENAME "2D_result.txt"
#define SIM_RESULT FILE DEFAULT "summary.txt"
#define SIM_ATTEMPT_FLOW_FILENAME "attemptflow.txt"

57

#define SIM_POSITIVE_FLOW_FILENAME "positiveflow. txt"
#define SIM_NEGATIVE FLOW_FILENAME "negativeflow.txt"
#define SIM_TOTAL FLOW FILENAME “totalflow.txt"
#define SIM_Q3 0.2
#define SIM_G 0.2
fidefine SIM_P 0.5
#ifdef TESTMODE

#define SIM_ALPHA_E 1

ftelse

#define SIM_ALPHA_E 0.5
#endif

#ifdef TESTMODE

#define SIM_BETA_E 1
#else

#define SIM_BETA_E 0.5
#endif

#ifdef TESTMODE

#define SIM_GAMMA _EX 1

#else

#define SIM_GAMMA _EX 0.5
#endif

#ifdef TESTMODE

#define SIM_DELTA_EX I

#else

#define SIM_DELTA_EX 0.5

#endif

l***##*tt**#tttll*t‘***tt**‘*ﬁ‘*tttt***ttl*itttittttttttttt/

i Typedef

e o oo oo AR o R e o O R R R R R ek ok e/

typedef struct sim_conf_info {

int rows; // number of rows in the lattice

int columns; // number of columns in the lattice
int numTrials; /f number of trials

int numSteps; /f number of Monte Carlo steps

int attach_detach_step; // after this many steps, there is a chance of aftach/detach
int number_of particles; // the initial number of particles in the lattice
double population_rate; // initial probability that a particle will be positive

double ql; /1 probability of positive particle to move to the right or of a negative to move left
double q2; /1 probability used for stay put or move opposite direction

double attach; // attach rate

double detach; // detach rate

double g; /f gamma particle charge exchange probability

double p; // populate percentage of lattice

double alpha_e; // enter rate/probability for positivie particles

double beta_e; // enter rate/probability for negative particles

double gamma_ex; // exit rate/probability for positive particles

double delta_ex; // exit rate/probability for negative particles

char result_file_name[SIM_MAX_SIZE FILENAME];

char summary file name[SIM_MAX SIZE FILENAME];

char attempt_file name[SIM_MAX SIZE FILENAME];

char positive_file_name[SIM_MAX SIZE FILENAME];

char negative_file name[SIM_MAX_SIZE FILENAME];
char total file name{SIM_MAX SIZE FILENAME];

58

} SimConflnfo;

00 oo e oo o oo o e oo o ook o e o o ORI o e st Rk Ok

/f Functions declarations
/***********#*****#******#*#************t#*****************/

void set_default_sim_conf{void);

void print_running_conf(SimConflnfo* sim_running_conf);

void copy_param_to running_conf(SimConflnfo* sim_running_conf);
int parse_param(int argc, char **argv);

/ti#*****t*#itttttt*‘t*#*tt**t#***t#ktk‘t*kt*k#**##*tt##tt*/

i Do not place anything after endif

/ti*t*tt*t#t-t*ttt****#********‘**************‘*******i‘#**/

#endif 2D_param_h

59

/t***#***ttt*tt***t*iittttt***ttttt‘*lit****###tt*t*****tt*/

// 2D _param.cpp
/A
// This file contains execution of default parameter
/f configurations for lattice

i’

// Author: Josh Gonzalez

/{ Date: June/20/2007

i

7 o ool o o o ok o e o0 o o o o o oo o o o o o o o e o ol ok

#include "2D_param.h"

JREREE R R AR R KRR R R R DR R R R R DR KRR Rk E KRR AR R Rk DRk k)

b/ Global Variables

% o o e o e o o oo o N e o o o oo o o o e o o ol ok Rk ok ok

SimConfInfo sim_default _conf;

Jk ek ok kol ok ok ko R ok okl e kol ok kR ke kR Rk A/

/ Functions
/*tt*#***t**llltttt***tttlltttttt#**t*t.*#tt***tt*l*‘**ttt*/

void set_default_sim_conf(void)

{
sim_default conf.rows =S8IM_ROWS IN LATTICE;
sim_default_conf.columns =5IM_COLUMNS_IN_LATTICE;
sim_default_conf.numTrials =SIM_NUMBER_TRIALS;
sim_default_conf.numSteps =SIM_NUMBER_MONTE_CARLO_STEPS;

sim_default_conf.attach_detach_step = SIM_ATTACH_DETACH_STEP;
sim_default conf.number_of particles = SIM_NUMBER_OF_PARTICLES;
sim_default confpopulation rate = SIM_POPULATION_RATE;

sim_default_conf.ql =8IM_Q1;
sim_default_conf.q2 =SIM_Q2;
sim_default_conf.attach =S8IM_ATTACH ;
sim_default_conf.detach = SIM_DETACH,;
sim_default conf.g =8IM_G;

sim_default confp =SIM _P;

sim_default conf.alpha e =8IM_ALPHA_E;
sim_default_conf.beta_e =SIM_BETA_E;
sim_default_conf.gamma_ex = SIM_GAMMA_EX;
sim_default_conf.delta_ex = SIM_DELTA_EX;

ZERO(&sim_default_confresult file name);
stnepy(sim_default_confresult file_name,
SIM_DEFAULT_FILENAME,
SIM_MAX_SIZE_FILENAME);

ZERO(&sim_default_conf.summary file_name);
stmepy(sim_default conf.summary file name,
SIM_RESULT_FILE DEFAULT,
SIM_MAX SIZE_FILENAME);

ZERO(&sim_default_confattempt_file_name);

stmepy(sim_default_conf.attempt _file name,
SIM_ATTEMPT_FLOW_FILENAME,

60

SIM_MAX_SIZE_FILENAME);

ZERO(&sim_default_conf.positive_file_name});
strncpy(sim_default_conf.positive_file_name,
SIM_POSITIVE_FLOW_FILENAME,
SIM_MAX SIZE FILENAME),

ZERO(&sim_default confnegative file_name);
strncpy(sim_default_confnegative file name,
SIM_NEGATIVE_FLOW_FILENAME,
SIM_MAX_SIZE FILENAME};

}

void print_running_conf(SimConflnfo* ptr_running_conf)

{

cout << "rows in lattice =" << ptr_running_conf->rows << endJ;
cout << "columns in lattice = " << ptr_running_conf->columns << endl;

cout << "#Trials = " << ptr_running_conf->numTrials << end|;

cout << "#Monte Carlo steps = " << ptr_running_conf->numSteps << endl;

Mcout << "Attach detach step =" << ptr_running_conf->attach_detach_step << endl;

cout << "Number of particles =" << ptr_running_conf->number_of particles << endl;

cout << "Population rate =" << pir_running_conf->population_rate << endl;

cout << "ql =" << ptr_running_conf->ql <<end];

cout << "q2 =" << ptr_running_conf->q2 << endl;*/

cout << "attach = " << ptr_running_conf->attach << endl;

cout << "detach = " << pir_running_conf->detach << end];
cout << "Gamma exchange g =" << ptt_running_conf->g << end|;
cout << "Population percentage p =" << ptr_running_conf->p << endl;
cout << "Enter probability alpha e =" << ptr_running_conf->alpha_e << end|;
cout << "Enter probability beta_e =" << ptr_running_conf->beta_e << end|;
cout << "Exit probability gamma _ex =" << ptr_running_conf->gamma_ex << endl;
cout << "Exit probability delta_ex =" << ptr_running_conf->delta_ex << end];

cout << "Result file name =" << ptr_running_conf->result_file_name << endl;
cout << "Summary file name = " << pir_running_conf->summary_file_name << endl;
cout << "Attempts file name = " << ptr_running_conf->attempt_file_name << endl;
cout << "Positive flow file name = " << ptr_running_conf->positive_file_name << end|;
cout << "Negative flow file name = " << ptr_running_conf->negative_file_name << endl;
cout << "Total flow file name =" << pir_running_conf->total file name << endl;

}
void copy_param_to_running_conf(SimConfInfo* ptr_running_conf)
{
int slen =0;
ptr_running_conf->rows = gim_default_conf.rows;
pir_running_conf->columns = sim_default_conf.columns;
pir_running_conf->numTrials = gim_default_conf.numTrials;
ptr_running_conf->numSteps = sim_default_conf.numSteps;

ptr_running_conf->attach_detach_step = sim_default_confattach_detach_step:
ptr_running_conf->number_of_particles = sim_default_conf.number_of particles;
ptr_running_conf->population_rate = sim_default_conf.population_rate;

ptr_running_conf->q] = sim_defauit_conf.ql;
ptr_running_conf->q2 = sim_default_conf.g2;
ptr_running_conf->attach = sim_default_confattach;

61

ptr_running_conf->detach = sim_default_conf.detach;

ptr_running_conf->g = sim_default_conf.g;
ptr_running_conf->p = sim_default conf.p;
ptr_running_conf->alpha_e = sim_default_conf.alpha_e;
ptr_running_conf->beta e =sim_default conflbeta_e;
ptr_running_conf->gamma_ex = sim_default_conf.gamma_ex;
pir_running_conf->delta_ex = sim_default_conf.delta_ex;

slen = strlen(sim_default_conf.result_file_name);

memcpy(ptr_running_conf->result_file_name,
sim_default_confresult_file_name,
slen);

slen = strlen(sim_default_conf.summary_file_name);
memcpy(ptr_running_conf->summary_file name,
sim_default_confsummary file_name,
slen);
ptr_running_conf->summary_file name[slen] = "\0';
cout << ptr_running_conf->summary_file_name << endl;

slen = strlen(sim_default_conf.attempt_file_name);
memcpy(ptr_running_conf->attempt_file name,
sim_default_conf.attempt_file name,
slen);
ptr_running_conf->attempt_file_name[slen] = "0';
cout << ptr_running_conf->attempt_file_name << endl;

slen = strlen(sim_default_conf.positive_file_name);
memcpy(ptr_running_conf->positive_file_name,
sim_default_conf.positive_file name,
slen);
ptr_running_conf->positive_file_name[slen] = "\0";
cout << ptr_running_conf->positive_file_name << endl;

slen = strlen(sim_default_conf.negative_file_name);
memcpy(ptr_running_conf->negative_file_name,
sim_default_conf.negative_file_name,
slen);
ptr_running_conf->negative_file_name[slen] = "\0";
cout << ptr_running_conf->negative_file name << endl;

slen = strlen(sim_default_conf.total file_name);
memepy(ptr_running_conf->total file name,
sim_default_conf.total file_name,
slen);
ptr_running_conf->total_file_name(slen] = "\0";
cout << ptr_running_conf->total_file_name << endl;

}
int parse_param(int argc, char **argv)
{

int i=0;

char *cl;

char *c2:

62

int slen=0;

while (i <arge) {
cout << "argy[" <<j << "]: " << argv[i] << end];
cl = argv[i];
c2 = argv[t+i];

if (strcmp(cl, "-ro")=0) {
if (isdigit(*c2)) {
sim_default confirows = atoi(c2),
}

else {
cout << "invalid value of rows in lattice (rows = " << ¢2 << end|,
return -1;
}
}
else if (stremp(cl, "-co")y==0) {
if (isdigit(*c2)) {
sim_default_conf.columns = atoi(c2);
}
else {
cout << "“invalid value of columns in lattice (columns = " << ¢2 << end|;
return -1;

}

else if (stremp(c!, "-nt") = 0) {
if (isdigit(*c2)) {
sim_default_confnumTrials = atoi(c2);
}
else {
cout << "invalid value for the number of trials (trials = " << ¢2 << endl;
return -1;

}

else if (stremp(cl, "-st™) = 0) {
if (isdigit(*c2)) {
sim_default_conf.numSteps = atoi(c2);
¥
else {
cout << "invalid value for number of Monte Carlo steps = "' << ¢2 << endl;
return -1;
}
}
else if (stremp(cl, "-ar") =—20) {
if (isdigit(*c2)} {
sim_default_conf.attach = atof{c2);
}
else {
cout << "invalid value for attach rate = " << ¢2 << endl;
return -1;
}

else if (stremp(cl, "-0") == 0) {
slen = strien(c2);
if (slen >= SIM_MAX_SIZE FILENAME) {
cout << "Name [" << c2 << "] for output file is too long" << endl;

63

return -1;

}

memcpy(sim_default_confiresult_file_name, c2, slen);
sim_default_confresult_file_name{slen] ="0";

}
else if (stremp(cl, "-np") ==0) {
if (isdigit(*c2)) {
sim_default conf.number of particles = atoi(c2);

}

else {
cout << "invalid value for number of particles = " << ¢2 << endl;
return -1;

}

'
else if (stremp(cl, "-dr") =0) {
if (isdigit(*c2)) {
sim_default_conf.detach = atof{c2);

1

else {
cout << "invalid value for detach rate = " << ¢2 << endl;
Tetum -1;

'

}
else if (stremp(cl, "~-pr'") =0} {
if (isdigit(*c2)) {
sim_default_conf.population_rate = atof(c2);

}

else {
cout << "invalid value for population rate = " << ¢2 << endl;
return -1;

H

else if (stremp(cl, "-ads") =0) {
if (isdigit(*c2)) {
sim_default conf.attach_detach_step = atoi(c2);

}
else {
cout << "invalid value for attach detach step =" << ¢2 << end];
return -1;
}
}
else if (stremp(cl, "-pprob™) =0) {
if (isdigit(*c2)) {
sim_default conf.ql = atof{c2);
}
else {
cout << "invalid value for positive move probability =" <<¢2 << endl,
return -1;
}

}
else if (stremp(cl, "-sprob") =0) {
if (isdigit(*c2)) {
sim_default conf.q2 = atof{c2);
}
else {
cout << "invalid value for negative move probability =" << c2 <<end];

64

refurn -1;

}

}
else if (stremp(cl, "-g") ==0) {
if (isdigit(*c2)) {
sim_default_conf.g = atof{c2);

}

else {
cout << “invalid value for g =" <<c2 << end|;
return -1;

}

}
else if (stremp(cl, "-p") ==0) {
if (isdigit(*c2)} {
sim_default_conf.p = atof(c2);

}

else {
cout << "invalid value for p =" << ¢2 << endl;
return -1;

}

}
else if (stremp(cl, "-ae") =0) {
if (isdigit(*c2)) {
sim_default_conf.alpha_e = atof{c2);

}

else {
cout << "invalid value for alpha_e =" << ¢2 <<endl;
return -1;

}

}
else if (stremp(cl, "-be") ==0) {
if (isdigit(*c2)) {
sim_default conf.beta_e = atof{c2);

}

else {
cout << "invalid value for beta_e =" << ¢2 <<endl;
return -1;

}

else if (stremp(cl, "-gex") =0) {
if (isdigit(*c2)) {
sim_default conf.gamma_ex = atof(c2);

}

else {
cout << "invalid value for gamma_ex =" << c2 << end];
return -1;

}

3
else if (stremp(cl, "-dex") ==0) {
if (isdigit(*c2)) {
sim_default_conf.delta_ex = atofic2);

}

else {
cout << "invalid value for delta_ex =" << ¢2 << end];
return 01;

}

65

else if (strcmp(cl, "-result™) =— 0) {
slen = strlen(c2);
if (slen >= SIM_MAX_SIZE_FILENAME) {
cout << "Name [" << ¢2 << "] for summary file is too long" << endl,
return -1;
}
memcpy(sim_default_conf.summary_file name, c2, slen);
sim_default_conf.summary_file name[slen] = "\0';
cout << sim_default_conf.summary_file_ name << end|;

else if (stremp{cl, "-attempt") = 0) {
slen = strlen(c2);
if (slen >= SIM_MAX SIZE FILENAME) {
cout << "Name [" << c2 << "] for attempt file is too long" <<endl;
return -1;
3
memcpy(sim_default conf.attempt file name, c2, slen),
sim_default conf.attempt file name[slen] = "0";
cout << sim_default confattempt file name << end],

}
else if (strcemp(cl, "-positive") = 0) {
slen = strlen{c2);
if (slen >= SIM_MAX_SIZE FILENAME) {
cout << "Name [" << ¢2 << "] for positiveflow file is too long" << end|;
return -1;
}
memepy(sim_default_conf.positive_file name, c2, slen);
sim_default_conf.positive_file_name[slen] = “0';
cout << sim_default_conf positive_file_name << endl;
}

else if (stremp(c1, "-negative™) = 0) {
slen = strlen(c2);
if (slen >= 8IM_MAX SIZE FILENAME) {
cout << "Name [" << ¢2 << "] for negativeflow file is too long" << endl;
return -1;
b
memcpy(sim_default conf.negative file name, c2, slen);
sim_default conf.negative file name[slen] = 0"
cout << sim_default_conf.negative_file_name << endl;
}
else if (stremp(c], "-total™) = 0) {
slen = strlen(c2);
if (slen >= SIM_MAX _ SIZE FILENAME) {
cout << "Name [" << ¢2 << "] for totalflow file is too long" << endl;
return -1;
}
memepy(sim_default_conf.total file name, c2, slen);
sim_default confitotal file name[slen] = "0';
cout << sim_default conf.total file name << endl;

return 1;

66

/**iii*t****t*#t*i***********i*****#**#iit*t*tttt*********#/
// RandomNumber.h:

i

/{ This file contains declaration of random functions

I

// Author: Josh Gonzalez

// Date: June/20/2007

/

/**********ﬂ*********#iii*******lt*******t**ttt#t****#*****/

#ifndef RANDOMNUMBER_H
#define RANDOMNUMBER_H

#include <time.h>
#include <cstdlib>

void initialize random_ number();

double getRandomBetween0And1();
int petRandomBetween0 AndMax(int max);

/*t**l#tt****t****##******#*#i#ittt*#*ttt******************/

i Do not place anything after endif

/*#t"******“t*It“tttttttt*tlt#*t‘***#******##********tt*/

#endif RANDOMNUMBER_H

67

JEERRRE R AR E R R R R kR R R AR R IR Rk R R SRRk Rk Rk R

// RandomNumber.cpp

/

// This file contains definition of random number functions
/!

/! Author: Josh Gonzalez

// Date: June/20/2007

I

Sk ke ok ok R A OROR R Rk Rk kR Rk Rk kR Rk Rk

#include "RandomNumber.h"

e
// initialize_random_number
I L T T

void initialize_random_number()

{

time t seconds;

time(&seconds);
srand((unsigned int) seconds);

}

VT e e
/! petRandomBetween0And]

i

// returns random number >=(and < |

I
T LT T T

double getRandomBetween0And1()
{

}

i
/! getRandomBetween0AndMax

1/

// returns random number >=0 and < max

i/
T L L T

return {(double)rand()/(double)RAND_MAX);

int getRandomBetweenO0AndMax(int max)
{

}

return{rand() % max);

68

/*************************##******tt***ttt#t**t**tt****tt**!

/l Lattice_2D.h: interface for the Lattice_2D class.

i

// This file contains all constant, structure, typedef, and class definitions
// for Lattice_2D class.

1

// Author: Josh Gonzalez

// Date: June/20/2007

i

/*tltl##**#t******tttt***tt********************************/

#ifndef LATTICE 2D H
#idefine LATTICE 2D _H

#include <fstream>

#include <vector>

#include <time.h>

#include <list>

#include "Cluster h"
#include "2D_param.h"
#include "RandomNumber.h"”

using namespace std;

#define POSITIVE_PARTICLE 1
#idefine NEGATIVE_PARTICLE -1

#define EMPTY 0
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
class Lattice_2D
{ 0
private:
int TOWS;
int columns;
int numEmptyCells;
int x_coord; //use as working x coordinate
int y_coord; //use as working y coordinate
int x_coord_bond; //x coordinales of cell bonded to x_coord
int y_coord_bond; // y coordinates of cell bonded to y coord
i int total positive;
H int total_negative;
i int positive_current;
i int negative_current;
int attach_positive;
int attach_negative;
int detach_positive;
int detach_negative;
int exit_positive;
int exit_negative;
int enter_positive;
int enter_negative;
int att_ex;
int att_e;

69

int total_enter;

int total_exit;
int total_attach;
int total_detach;

double snap_enter;
double snap_exit;
double snap_attach;
double snap detach;

int lastCell; // x coordinate of last cell
int bondedCellPosition;

int enterCellPosition;

bool noCluster;

SimConfInfo* my_ptr_running_conf}

list<Cluster*> myClusterList;
Cluster* currentClusterPtr;
list<Cluster*>::iterator biggestClusterPir;

vector<int> | _columns;
vector<vector<int> > lattice;

ofstream testLog;
ofstream summaryFile;
ofstream resultFile;
ofstream positiveFlowFile;
ofstream negativeFlowFile;
ofstream totalFlowFile;
ofstream attemptFlowFile;
time_t timeheader;
public:

Lattice 2D(SimConfInfo* ptr_running_conf);
virtual ~Lattice 2D();
bool initialize();
void clear();
void populate();
void runMonteCarloStep();
bool randomlyFindEmptyCell();
void selectRandomCell();
void selectRandomBondedCeli();
void setBondLeftOfCell(int x, int v});
void leftBondMovements();
void setBondRightOfCell(int x, int y);
void rightBondMovements();
void setBondTop(int x, int y);
void setBondBottom(int x, int y);
void verticalBondMovements();
bool isCellEmpty(int x, int y);
bool isCellPositive(int x, int y);
bool isCellNegative(int x, int y);
bool isColumnEmpty(int x);
bool isVerticalBond(int x);
bool isHorizontalBond(int x, int y);
void moveRight(int x, int y);

70

void moveLefi(int x, int y);

void exchange(int x1, int yl, int x2, int y2);
void chargeExchange();

void attach();

void detach();

void snapshot();

void enter();

void exit_ends();

void exit_neg(};

void exit_pos();

void addPositiveParticle(int x, int y);

void addNegativeParticle(int x, int y);

void exitParticle(int x, int y);

int findClusters();

void findBiggestCluster();

int findNumberOfParticles(int x);

void printLattice();

void printLatticeToTestFile();

bool openTestLogFile();

bool openResultFile();

bool openFile(char* file name, ofstream f_handle);
bool openSummaryFile();

bool openPositiveFlowFile();

bool openNegativeFlowFile();

bool openTotalFlowFile();

bool openAttemptFlowFile();

bool openSnapshotsFile();

int runTest();

void testRandom();

void testMoveRight();

void testMoveLeft();

void testExchange();

void testSetBondLeftOfCell();

void testSetBondRightOfCell();

void testSetBondTop();

void testSetBondBottom();

void testExitParticle();

void testEnter();

void testExitEnds();

void testAddPositiveParticle();

void testAddNegativeParticle();

void testLeftBondMovementsPositive();
void testLefiBondMovementsEmpty();
void testLeftBondMovementsNegative();
void testRightBondMovementsNegative();
void testRightBondMovementsEmpty();
void testRightBondMovementsPositive();
void testVerticalBondMovementsEmpty();
void testVerticalBondMovementsSamePolarity();
void testVerticalBondMovementsExchange();
void testIsColumnEmpty();

void testlsVerticalBond();

void testlsHorizontalBond();

void testFindCluster();

71

void logClusters();
void resultClusters();

—
-

JALEL LIS P Ll i it Ll i bttt i)

i Do not place anything after endif
f“t*****##*********#*ktt**tt##**##t*i*#**#ittttt#t********/

#endif LATTICE 2D H

72

F e e T L e T s LY

/ Lattice_2D.cpp

i

/f This file contains the implementation of the Lattice 2D class as well
/I as tests of each of the Lattice_2D functions

/i

/{ Author: Josh Gonzalez

/f Date: June/20/2007

i

/****t*lllllllr*ttl*##***********************************t*t*tt*!

#include "Lattice 2D.h"

L T
/f Lattice_2D::Constructor
i i L

Lattice_2D::Lattice_2D(SimConfInfo* ptr_running_conf)
{
my_ptr_running_conf = ptr_running_conf,
rows = ptr_running_conf->rows;
columns = ptr_running_conf->columns;
numEmptyCells = rows*columns;
/{ regize lattice to the correct number of row and columns
|_columnsresize{columns};
lattice.resize(rows, _columns),
lastCell = lattice.size() - 1;

}

T
// Lattice_2D::Destructor
T

Lattice_2D::~Lattice 2D()
{

}

T T T
// Lattice_2D::initialize
T T
bool
Lattice_2D::initialize()
{
// initialize random number
initialize_random_number();
/ initialize the output stream for test/debug
// and check if it is opened properly

openResultFile();

// remove all particles from the lattice
clear();

populate(};

attach_positive = 0;

attach_negative = 0;

73

detach_positive = (;
detach_negative = (;
exit_positive = 0;
exit_negative = 0;
enter_positive = 0,
enter_negative = {;

i positive_current = 0;
I negative_current = 0;
att e=0;
ait ex=0;

snap_enter = 0;
snap_exit = 0;
snap_attach = 0;
snap_detach = 0;

return true;

}

e
/f Lattice_2D::clear

i
/f Clear the lattice by removing all particles from it
i
L T e
void
Lattice 2D::clear()
{
int i,j;
/! set all slots in the lattice to 0's (no particles)
for (=0, j <|_columns.size(); j++)
{
for (i=0; i< lattice.size(); i++)
lattice[i][j] = EMPTY;
}
}

HHHHITTTHIH T T
/ Lattice_2D::populate

i
/f Populate lattice with particles
i
T
void
Lattice_2D::populate()
{
int i;
b total_positive = 0;
i total_negative = 0;

/I for now assume lattice has 1000 cells (500x2) and half of the cells
/I should contain particles. The number of positive particles is equal
/I to the number of negative particles.

74

/f TODO: use configuration parameters to populate lattice

for (i=0; i < (lattice.size()*(my_ptr_running_conf->p)}; i++)
{
if (frandomlyFindEmptyCell()} {
testLog << "ERROR: in populate, no empty cells lefi!" << endl;
exit(-1);
}
// in empty slot insert positive particle
lattice[x_coord][y_coord] = POSITIVE_PARTICLE;
numEmptyCells--;
i total positivet+;
if ('randomlyFindEmptyCell(}) { ;
testLog << "ERROR: in populate, no empty cells left!" << endl;
exit(-1);
1
/! in empty slot insert positive particle
lattice[x_coord][y_coord] = NEGATIVE_PARTICLE;
numEmptyCells--;
/i total_negative++;

}

T

// Lattice_2D::snapshot

e e

void

Lattice_2D::snapshot()

{
total_enter = enter_positive + enter_negative;
total_exit = exil_positive + exit_negative;
total_attach = attach_positive + attach_negative;
total_detach = detach_positive + detach_negative;

snap_enter = total_enter - snap_enter;
snap_exit = total_exit - snap_exit;
snap_attach = total_attach - snap_attach;
snap_detach = total_detach - snap_detach;

resultFile << snap_enter << "\" << snap_exit << "\t" << snap_attach << "\t";
resultFile << snap detach << endl;

snap_enter = total_enter;
snap_exit = total exit;
snap_attach = total attach;
snap_detach = total_detach;

1

T e i
/f Lattice_2D::enter

L R R
void

Lattice_2D::enter()

75

i

i

1

double rl;
x_coord =0,

rl = getRandomBetween0And1();

if (rl <= my_ptr_running_conf->alpha_e)

{

}

x_coord = lattice.size()-1;
rl = getRandomBetween0And1();

// check for empty space at beginning of lattice
// in order to enter positive particle
enterCellPosition = getRandomBetween(AndMax(2);

switch (enterCellPosition)

{

case 0:

case |:

y_coord = 0;
if (isCellEmpty(x_coord,y_coord))
{

addPositiveParticle(x_coord,y_coord);

enter_positive++;
total positive++;
}
else
att_e++;
break;
coord = 1;

if (isCellEmpty(x_coord, y_coord))
{

else

break;

addPositiveParticle(x_coord, y_coord),
enter positive-++;
total_positive++;

att_e++;

if (r]1 <= my_ptr_running_conf->beta_g)

{

/1 check for empty space at end of lattice
/! in order to enter negative particle
enterCellPosition = getRandomBetween0AndMax(2);

switch (enterCellPosition)

{

case 0:

y_coord = 0;
if (isCellEmpty(x_coord, y_coord))
{

else

addNegativeParticle(x_coord, y_coord);
enter_negative-++;
total_negative++;

att_e++;

76

break;
case 1:
coord = 1;
if (isCellEmpty(x_coord, y_coord))
{

addNegativeParticle(x_coord, y_coord);
enter_negative++;
i total_negativet+;

else
att_et+;
break;

}

return;

}

T i T
/f Lattice_2D::exit_negative
T T
void

Lattice 2D::exit_neg()

doublerl;
if(isCellNegative(x_coord,y_coord))
{
rl = getRandomBetween0And| (),
if (rl <=my ptr running_conf->gamma_ex)
exitParticle(x_coord,y_coord);
exit_negative++;
i total negative--;
}
else
att_ex++;
}

}

e e
/f Lattice_2D::exit_pos
i

void
Lattice 2D::exit_pos()
{
doublerl;
if (isCellPositive(x_coord,y_coord))
{
rl = getRandomBetweenQAnd1(};
if (rl <=my_ptr_running_conf->delta_ex)
{
exitParticle(x_coord,y_coord);
exit_positive++;
i total_positive--;
1
else

77

att_ex++;

}

T T T LT
/I Lattice_2D::exit_ends
e i
void

Lattice 2D::exit_ends()

{
x_coord = 0;
enterCellPosition = getRandomBetween0AndMax(2),
switch (enterCellPosition}
{
case 0;
y_coord = 0;
exit_neg();
break:
case |:
y_coord = 1;
exit_neg();
break;
}
x_coord = lattice.size()-1;
enterCellPosition = getRandomBetween0 AndMax(2);
switch (enterCellPosition)
{
case 0:
y_coord = 0;
exit_pos();
break;
case |;
y_coord = I;
exit pos();
break;
}
return;
}

T s e
/I Lattice_2D::addPositiveParticle
i
void

Lattice_2D::addPositiveParticle(int x, int y)

{

}

I TR T T
// Lattice_2D::addNegativeParticle
HHHTHTIH T T

lattice[x_coord][y_coord] = POSITIVE_PARTICLE;

78

void
Lattice_2D::addNegativeParticle(int x, int y)
{

}

W T
/! Lattice_2D::runMonteCarloStep

lattice[x_coord][y_coord] = NEGATIVE_PARTICLE;

i
L T T
void
Lattice_2D::runMonteCarloStep()
{
selectRandomCell();
selectRandomBondedCell();
if (bondedCellPosition = LEFT)
{
lefiBondMovements();
return;
}
if (bondedCellPosition = RIGHT)
{
rightBondMovements();
return;
}
if (bondedCellPosition = TOP)
{
verticalBondMovements();
return;
}
if (bondedCellPosition = BOTTOM)
{
verticalBondMovements();
return;
}
}

T T T

/f Lattice_2D::randomlyFindEmptyCell

i

// find empty cell and places its coordinates in x_coord and y_coord
I T T

bool

Lattice_2D::randomlyFindEmptyCell()

{
bool loop = true;

if (numEmptyCells = 0)
return false;

while (loop)
selectRandomCell();

if (isCellEmpty(x_coord, y_coord))
loop = false;

79

}

return true;

}

T T e
// Lattice 2D::selectRandomCell

7

// sets x_coord and y_coord randomly
T T

void
Lattice_2D::selectRandomCell()
{
x_coord = getRandomBetween0 AndMax(rows);
y_coord = getRandomBetween0AndMax(columns);
}

S B i e e
/f Lattice_2D::selectRandomBondedCell

i

/f sets x_coord_bond and y_coord_bond
e
void

Lattice_2D::selectRandomBondedCell()

{
bondedCellPosition = getRandomBetween0AndMax(4);

switch (bondedCellPosition)
{
case LEFT: //lefi
setBondLeftOfCell(x_coord, y_coord);
break;
case RIGHT : //right
setBondRightOfCell(x_coord, y_coord);
break;
case TOP ; I/ top
setBondTop(x_coord, y_coord);
break;
case BOTTOM : // bottom
setBondBottom(x_coord, y_coord);
break;
default:
cout << "ERROR: not a valid number for bondedCellPosition " << bondedCellPosition
<< endl;

}

T

// Lattice_2D::setBondLef{OfCell

i

// sets x_coord_bond and y_coord_bond to left side of x and v
T T T

void

Lattice_2D::setBondLeftOfCell(int x, int y)

{
if (x = 0)

80

// set to same cell
x_coord bond = 0;
else
x_coord bond=x-1;
y_coord _bond =y;
}

e i

/! Lattice_2D::setBondRightQfCell

/I

/ sets x_coord_bond and y_coord_bond to right side of x and y
e e

void

Lattice_2D::setBondRightOfCell(int x, int y)

{
if (x = lattice.size(})-1)
// set to same cell
x_coord_bond = lattice.size()-1;
else
x_coord bond =x + |;
y_coord bond =y;
}

Y e
/I Lattice_2D::setBondTop

i

// sets x_coord_bond and y_coord_bond above
T T T T T LT
void

Lattice_2D::setBondTop(int x, int y)

{
if(y =20)
/1 set last cell in the same row
y_coord_bond = 1;
else
y_coord bond = 1;
x_coord_bond = x;
}

e
// Lattice_2D::setBondBottom

i

/I sets x_coord_bond and y_coord_bond above
e
void

Lattice_2D::seiBondBottom(int x, int y)

{
if(y=1)
// set last cell in the same row
y_coord_bond = 0;
else
y_coord _bond = 0;
x_coord_bond = x;
}

i e e

81

/I Lattice_2D::isCellEmpty
i
bool

Lattice _2D::isCellEmpty(int x, int y)

if (lattice[x][y] = EMPTY)
return true;
return false;

}

e e e
/! Lattice_2D::isCellPositive
e i
bool

Lattice_2D::isCellPositive(int x, int y)

if (lattice[x][y] = POSITIVE_PARTICLE)
return true;
return false;

}

T T T I T T
/ Lattice_2D::isCellNegative
e
bool

Lattice_2D::isCellNegative(int x, int y)

if (Jattice[x][y] = NEGATIVE_PARTICLE)
return true;
return false;

}

i
// Lattice_2D::isColumnEmpty
W T T T T
bool

Lattice 2D::isColumnEmpty(int x)

if (isCel[Empty(x, 0) && isCellEmpty(x, 1))
return true;
return false;

}

T L
/I Lattice_2D::isVerticalBond
i e
bool
Lattice_2D::isVerticalBond(int x)
{
// vertical bond is present is both cell have a particle
// not just one
if ((tisCellEmpty(x, 0)) &&
(lisCellEmpty(x, 1))
return true;
return false;

82

T T T T T
// Lattice_2D::isHorizontalBond
I T T T
bool

Lattice_2D::isHorizontalBond(int x, int y)

{

int next_x;
/f take care of end of lattice coordinates
if (x = lattice.size()-1)

return false;

next_x = x+l;

// horizontal bond is present if both cell have a particle

/1 not just one

if ((lisCellEmpty(x, y)) &&
(lisCellEmpty(next_x, y)))
return true;

return false;

}

T T el
/! Lattice_2D::moveRight
L T L
void
Lattice_2D::moveRight(int x, int y)
{

lattice[x+1][y] = lattice[x][y];

// original cell is set to empty after move

lattice[x][y] = EMPTY;

}

LT T T T T T
// Lattice_2D::moveLeft
T
void
Lattice_2D::moveLefi(int x, int y)
{

lattice[x-1][y] = lattice[x][y];

/I original cell is set to empty after move

lattice[x][y] = EMPTY,

i i
/ Lattice_2D::exchange
s
void

Lattice_2D::exchange(int x1, int y1, int x2, int y2)
{

int temp;
temp = lattice[x2][y2];

lattice[x2][y2] = lattice[x 1][y1];
lattice[x1][y1] = temp;

83

3

T T LTI
// Lattice_2D::chargeExchange
e g

void
Lattice_2D::chargeExchange()
{
if(lmy_ptr_running_conf->g = ()
return,
double rl;
rl = getRandomBetween0And1();
if (rl <= my_ptr_running_conf->g)
exchange(x_coord_bond, y_coord_bond, x_coord, y_coord);
}

i
// Lattice_2D::exitParticle
T s

void
Lattice_2D::exitParticle(int x, int y)
{
lattice[x_coord][y_coord] = EMPTY;
}

e
/I Lattice_2D::attach
e

void
Lattice_2D::attach()
{ .
int c;
doublerl;
double a;

a=my_ptr_running_conf->attach;
selectRandomCell(};
if{isCellEmpty(x_coord,y_coord))
{

if(my_ptr_running_conf->attach == 0)
return;

rl = getRandomBetween0And1();
if(x_coord == lattice.size()-1)

{
if{!(isCellEmpty(x_coord-1,y_coord)) || y_coord == 0 && (!(isCellEmpty(x_coord,1)})

|l y_coord = [&& (!(isCellEmpty(x_coord,0))))
a=a*2;

}

if(x_coord = 0)

iff!(isCellEmpty(x_coord+1,y_coord)) || y_coord = 0 && (!(isCellEmpty(x_coord,1)))
|| y_coord =1 && (!(isCellEmpty(x_coord,0))))

84

a=a*2;
if(x_coord != lattice.size()-1 && x_coord != Q)
{
if{}(isCellEmpty(x_coord+1,y_coord)) || /(isCellEmpty(x_coord-1,y _coord)) || y_coord

== () && (!(isCellEmpty(x_coord,1)))
| y_coord = 1 && (!(isCellEmpty(x_coord,}))))

a=a*2;
}
if(rl <=a)
{
¢ = getRandomBetween) AndMax(2);
switch (c)
{
case 0:
addPositiveParticle(x_coord,y _coord);
attach_positive++;
H total_positivet++;
return;
case 1:
addNegativeParticle(x_coord,y_coord);
attach_negative+t;
i total negativett;
return;
}

!
T T
/f Lattice_2D::detach
T T T T e
void
Lattice_2D::detach()

double r1;

r1 = getRandomBetweenGAnd | ();

if{rl <= my_pir_running_conf->detach)

{
ifflmy_ptr_running_conf->detach = 0)
return;
if(isCellPositive(x_coord,y_coord))
{
detach_positive++;
i total positive--;
}
else
{
detach_negativetr;
i/ total_negative--;
}

exitParticle(x_coord,y_coord);

85

refumn;

}

s
/I Lattice_2D::lefiBondMovements
i e
void

Lattice_2D::lefiBondMovements()

{

if ((x_coord = x_coord_bond) && isCellPositive(x_coord, y_coord))
return;

if ((x_coord = x_coord_bond) && isCellNegative(x_coord, y_coord})
{

exitParticle(x_coord, y_coord);

return;

}

if (isCellPositive(x_coord, y_coord})
return;

if (isCellEmpty(x_coord, y_coord) &&
isCellEmpty(x_coord_bond, y_coord_bond})
return;

if (isCellEmpty(x_coord, y_coord) &&
isCellNegative(x_coord_bond, y_coord_bond))
return;

if (isCellNegative(x_coord, y_coord) &&
isCellEmpty(x_coord_bond, y_coord_bond))

{
moveLeft(x_coord, y_coord),
*if(x_coord = 50)
{
negative_current++;
gl
return;
}

if (isCell[Empty(x_coord, y_coord) &&
isCellPositive(x_coord_bond, y_coord_bond))

{
moveRight(x_coord bond, y_coord_bond);
/*if(x_coord = 50)
{
positive_current++;
3*
return;
}

if (isCellNegative(x_coord, y_coord) &&
isCellPositive(x_coord_bond, y_coord_bond))
{

86

}

chargeExchange();
/*if(x_coord = 50)

{
positive_current++;
negative_current-++;
1
return;
}
refurn;

e e e T T T
// Lattice_2D::rightBondMovements
T T e

void

Lattice 2D::rightBondMovements()

{

if (x_coord = x_coord_bond) && isCellNegative(x_coord, y_coord))
return;

if (x_coord = x_coord_bond) && isCellPositive(x_coord, y_coord))
{

exitParticle(x_coord, y_coord);

return;

}

if (isCellNegative(x_coord, y_coord))
return;

if (isCellEmpty(x_coord, y_coord) & &
isCellEmpty(x_coord_bond, y_coord_bond))
return;

if (isCellEmpty(x_coord, y_coord) &&
isCellPositive(x_coord bond, y_coord_bond))
return;

if (isCellEmpty(x_coord, y_coord) &&
isCellNegative(x_coord_bond, y_coord_bond))

{
moveLefi(x_coord_bond, y_coord_bond);
/*if(x_coord = 49)
{
negative current-+;
s
return;
}

if (isCellPositive(x_coord, y_coord) &&
isCellEmpty(x_coord_bond, y_coord_bond}))
{

moveRight(x_coord, y_coord);
/*if(x_coord = 49)
{

positive_current++;

87

s |
retum;

}

if (isCellPositive(x_coord, y_coord) &&
isCellNegative(x_coord bond, y coord bond))

{
chargeExchange();
/*if(x_coord = 49)
{
positive_current++;
negative current++;
3
return;
}
return;

}

T LR T LT
/f Lattice_2D::verticalBondMovements
MR T L T

void
Lattice_2D::verticalBondMovements()
{
Pl int xtemp;

int ytemp;
LTk

// if bond is the same as cell (e.g. bottom bond on bottom cell or top bond on top cell)
if (y_coord = y_coord_bond)
return;

/1 if both cells are empty there is nothing to do

if ((isCellEmpty(x_coord, y_coord) &&
isCellEmpty(x_coord_bond, y_coord_bond)))
return;

/1 if a particle-hole pair exists the particle jumps

if ((isCellEmpty(x_coord, y_coord) &&
(!(isCellEmpty(x_coord_bond, y_coord_bond)))))

{

exchange(x_coord bond, y coord_bond, x_coord, y_coord);
returm;

}

if (!(isCellEmpty(x_coord, y_coord)) &&
isCellEmpty(x_coord_bond, y_coord_bond))
{

exchange(x_coord_bond, y_coord_bond, X_coord, y_coord);
return;

}

/1 if both particle are of equal polarity there is nothing to do
if (lattice[x_coord][y_coord] = lattice[x_coord_bond][y_coord_bond])
return;

88

Ths exchange(x coord bond, y coord bond, x coord, y coord);
xtemp = x_coord_bond;
ytemp = y_coord_bond;

/{ execute movements in cell [x_coord][y_coord]
if (isCellPositive(x_coord, y_coord))

{
setBondRightOfCell(x_coord, y_coord);
rightBondMovements();

}

else

{
/! particle at [x_coord][y_coord] is negative
setBondLeftOfCell(x_coord, y_coord);
lefiBondMovements();

}

/f now execute movements in cell[xtemp][ytemp] which was the other
/{ cell on the original bond

x_coord = xtemp;

y_coord = ytemp;

if (isCellPositive(x_coord, y_coord))

{
setBondRightOfCell(x_coord, y_coord);
rightBondMovements();

}

else

{
// we know particle is negative
setBondLeftOfCell(x_coord, y_coord);
lefiBondMovements();

)

return;

}

T T
/I Lattice_2D::findClusters
T
int

Lattice 2D::findClusters()

{

int x;

noCluster = true;
for (x=0; x < lattice.size(); x++)

// if column x is empty and cluster has not been found

// continue until the start of a cluster is found

if (isColumnEmpty(x) && noCluster = true)
continue;

if (noCluster = false) &&
{(lisHorizontalBond(x,0))&&
(‘isHorizontalBond(x,1)) &&
(YisVerticalBond(x)}))

89

// found end of cluster
currentClusterPtr->addParticles ToCluster(findNumberOfParticles(x));
noCluster = true;
// update end position of cluster with previous column (x-1)
if (isColumnEmpty(x))
currentClusterPtr->setEndPosition(x-1);
else
currentClusterPtr->setEndPosition(x);
/I insert pointer to current cluster in to my list of
// cluster pointers
myClusterList.push_back(currentClusterPtr);

continue;
}
// test to see if the a bond in the current column
if (isVerticalBond(x) ||
isHorizontalBond(x,0) ||
isHorizontalBond(x,1))
{
if (noCluster == true)
{
/ffound a cluster
noCluster = false;
/f create cluster keeping track of it start x position
/! and keep track of its number of particles
currentClusterPtr = new Cluster(x);
if (currentClusterPtr =10)
!/ log error in creation of new cluster
cout << "ERROR; unable to create a new cluster instance” << endl;
return -1;
}
currentClusterPtr->addParticlesToCluster(findNumberOfParticles(x));
/f test for end of lattice
if (x = lattice.size()-1)
{
currentClusterPir->setEndPosition(x);
// insert pointer to current cluster in to my list of cluster pointers
myClusterList.push_back(currentClusterPtr);
H
continue;
'
else
{
currentClusterPir->addParticles ToCluster{findNumberOfParticles(x));
// test for end of lattice
if (x = lattice.size()-1)
{
currentClusterPtr->setEndPosition(x);
/ insert pointer to current cluster in to my list of cluster pointers
myClusterList.push_back(currentClusterPtr);
}
continue;
}

90

}

return 1;

}

T e e
/f Lattice_2D::findBiggestCluster
// set biggestClusterPir to the cluster with the largest number of
// particles
T L e e
void
Lattice 2D::findBiggestCluster()
{
int currentBiggestCount=0;
list<Cluster*>::iterator clusterPtr;

for (clusterPtr = myClusterList.begin();
clusterPtr != myClusterList.end(); clusterPtr++)

if (*clusterPtr)->getNumberOfParticles() >= curreniBiggestCount) {
biggestClusterPtr = clusterPtr;

currentBiggestCount = (*clusterPtr)->getNumberOfParticles();

b

T L
/f Lattice_2D::findNumberOfParticles(int x)
T i]

int
Lattice 2D::findNumberOfParticles(int x)
{
int number;
number = 0;
if ({(isCellEmpty(x,0)))
number++;
if (1(isCellEmpty(x,1)))
number++;
return number;
}

KT T T
/! Lattice_2D::printLattice

/I

// prinis out contenis of each cell two rows by 50
i e
void

Lattice 2D::printLattice()

{

int i,j;

resultFile <<" = Start of printLattice

91

" << endl;

}

for (3=0; j < 1_columns.size(}; j++)

{

resultFile << "=——=—=Row " << j+] <<"

for (i=0; i < lattice.size(); i++)

if (%50 =0) {
resultFile << endl;
resultFile << "[" <<i << " << j << "],
if (1< 50)
resultFile << ™
if (i == 50)
resultFile << " ";
resultFile << ™:";

resultFile << lattice[i][j];

}

resultFile << endl << endl;

}

resultFile << "==—== End of printLattice

" << endl;

T T
/ Lattice_2D::printLatticeToTestFile

H

// prints out contents of each cell two rows by 50
T i i

void

Lattice 2D::printLatticeToTestFile()

{

}

" << endl << end]l;

int ij;

testLog << " Start of printLattice
for (j=0; j < 1_columns.size(); j+-+)

{

testLog << " = Row " << j+] << "

" << endl;

for (i=0; i < lattice.size(); i++)

if (%50 = 0) {
testLog << endl;
teStLOg P n[u << i << u,u <<j << ..]“;

if (i < 50)
testLog <<" ";
if (i=50)

testLog <<"™;
testLog << ":";

testLog << lattice[i][j];
}
testLog << endl << end];
}
testLog << "===== End of printLattice

Y T T T
/I Lattice_2D::openTestLogFile
e i i

92

" << endl;

" << endl << endl;

bool
Lattice_ 2D::openTestLogFile()
{

testLog.open("log 2D.txt");
if (ItestLog.is_open())
{
cout << "Cannot open testLog file: log_2D.txt" << endl;
return false;

}
/ output the time to the test Log file

time (&timeheader),

testLog << "This data is taken on: " << ctime (&timeheader) << endl << end];
return true;

}

e T
// Lattice_2D::openPositiveFlowFile
T e i g

bool
Lattice 2D::openPositiveFlowFile()
{
positiveFlowFile.open(my ptr_running_conf->positive_file_name, fstream::app);
if (!positiveFlowFile.is_open())
{
cout << "Cannot open file: " << my_ptr_running_conf->positive_file_name << endl;
return false;
}
return true;
}

T T
/f Lattice_2D::openNegativeFlowFile
e T

bool
Lattice 2D::openNegativeFlowFile()
{
negativeFlowFile.open(my_ptr_running conf->negative file name, fstream::app);
if (!positiveFlowFile.is_open())
{
cout << "Cannot open file: " << my_ptr_running_conf->negative file_name << endl;
return false;
}
return true;
}

T i

/{ Lattice_2D::openTotalFlowFile

T T e

bool

Lattice 2D::openTotalFlowFile()

{
totalFlowFile.open(my_ptr_running_conf->total_file name, fstream::app);
if (ltotalFlowFile.is_open())

{
93

cout << "Cannot open file: " << my_ptr_running_conf->total_file_name << endl;
return false;

}

return true;

}

e T T T
/f Lattice_2D::openAttemptFlowFile
e L

bool
Lattice_2D::openAttemptFlowFile()
{
attemptFlowFile.open(my_ptr_running_conf->attempt_file name, fstream::app);
if (tattemptFlowFile.is_open(})
{
cout << "Cannot open file: " << my_ptr_running_conf->attempt_file_name << endl;
return false;
}
return true;
}

T T
/f Lattice_2D::openSummaryFile
T
bool

Lattice_2D::openSummaryFile()

{

summaryFile.open(my_ptr_running_conf->summary_file name, fstream::app);
if ('summaryFile.is_open())
{
cout << "Cannot open file: " <<my_ptr_running conf->summary_file_name << endl;
return false;

}

}

R T
// Lattice_2D::openResultFile
T e e el
bool

Lattice_2D::openResultFile()

{

return true;

// TODO: need to get name for configuration parameters
resultFile.open(my ptr running_conf->result_file name);
if (IresultFile.is_open())
{
cout << "Cannot open result file: ";
cout << my_ptr_running_conf->result_file_name << end];
return false;

}
/f output the time to the test Log file

time (&timeheader);

resultFile << "This data is taken on: " << ctime (&timeheader) << endl << endl;
return true;

94

}

IR T T T T

// Lattice_2D::openFile
e e e e

bool

Lattice_2D::openFile(char* file_name, ofstream f hand

{

f_handle.open(file_name);
if (!f_handle.is_open())
{
cout << "Cannot open file: " << file_name << endI;
return false;
}

return true;

}

i
// Lattice_2D::runTest
T
int

Lattice_2D::runTest()

{

openTestLogFile();
// clear the lattice

clear();
testRandom();
testMoveRight();
clear();
testMoveLeft();
clear();
testExchange();
testSetBondLeftOfCell();
testSetBondRightOfCell(),
testSetBondTop();
testSetBondBottom();
clear();
testExitParticle();
clear();
testEnter();
clear();
testAddPositiveParticle();
clear();
testAddNegativeParticle();
clear();
testLeftBondMovementsPositive();
clear();
testLeftBondMovementsEmpty();

clear();
testLefiBondMovementsNegative();

clear();
testRightBondMovementsNegative();

clear();

le)

95

testRightBondMovementsEmpty();
clear();
testRightBondMovementsPositive();
clear();
testVerticalBondMovementsEmpty();
clear();
testVerticalBondMovementsSamePolarity();
clear();
testVerticalBondMovementsExchange();
clear();

testlsColumnEmpty();

clear();
testIsVerticalBond();

clear();
testlsHorizontalBond();

clear();
testFindCluster();

return 1;

}

T e e
/ Lattice_2D::testRandom
e

void
Lattice_2D::testRandom()
{
int i;
testLog <<" Start Random Number Test =——=——=—=" << endl;
for (i=0; i < rows; i++)
{
testLog << "[" << i << "] =" << getRandomBetween0 AndMax(rows);
testLog << "\t" << getRandomBetween0AndMax(columns);
testLog << "\t" << getRandomBetween0AndI() << endl;
}
testLog << "=——==—= End Random Number Test ===—=—=" << end|;
}

g
/f Lattice_2D::testMoveRight
e
void

Lattice_2D::testMoveRight()

{
lattice[0][0] = POSITIVE_PARTICLE;

testLog << "Lattice before testMoveRight" << endl;
moveRight(0,0);
if (!(lattice[0][0] =— EMPTY &&
lattice[1][0] = POSITIVE_PARTICLE))
testLog << "moveRight failed at [0][0]" << end];

else testLog << "Test Passed" << endl;

96

}

g e
/f Lattice_2D::testMoveLeft
N

void

Lattice 2D::testMoveLeft()

{
lattice[lattice.size()-11[1] = NEGATIVE_PARTICLE;
testLog << "Lattice before testMoveLeft" << endl;
moveLefi(lattice.size()-1,1);
if (!(lattice[lattice.size()-1][1] = EMPTY &&

lattice[lattice.size()-2][1] = NEGATIVE_PARTICLE))
testLog << "moveLeft failed at [" << lattice.size()-1 << "][1]" <<endl;

else testLog << "Test Passed" << end|;

}

i i

/f Lattice_2D::testExchange

T T T

void

Lattice_2D::testExchange()

{
lattice[3][0] = POSITIVE_PARTICLE;
lattice[3][1] = NEGATIVE_PARTICLE;
lattice[299][0] = NEGATIVE_PARTICLE;
lattice[299][1] = POSITIVE_PARTICLE;
lattice[125]{0] = EMPTY;
lattice[125][1] = NEGATIVE_PARTICLE;
lattice[421)[0] = POSITIVE_PARTICLE;
lattice[422][1] = EMPTY;

testLog << "Lattice before testExchange" << endl;
printLatticeToTestFile();
exchange(3,0,3,1);

if (!(lattice[3][0] = NEGATIVE_PARTICLE &&
lattice[3][1] = POSITIVE_PARTICLE))
testLog << "exchange failed at [3][0] [3][1]" << endl;
testLog << "Laitice after testExchange” << end];

exchange(299,0,299,1);
if (!(lattice[299][0] = POSITIVE_PARTICLE &&
lattice[299]{1] = NEGATIVE_PARTICLE))
testLog << "exchange failed at [299]{0] [299][1]" << endl;
exchange(125,0,125,1);
if (!(lattice[125][0] == NEGATIVE_PARTICLE &&

lattice[125][1] = EMPTY))
testLog << "exchange failed at [125][0] [125](1]" << endl;

97

exchange(421,0,421,1);

if (!(lattice[421][0] = EMPTY &&
lattice[421][1] = POSITIVE_PARTICLE))
testLog << "exchange failed at [421]{0] [421][1]" <<end];

printLatticeToTestFile();

}

T T e e
// Lattice_2D::testSetBondLeftOfCell
s
void

Lattice_2D::testSetBondLeftOfCell()

{

intx,y;

x=0

y=1

setBondLeftOfCell(x,y);

testLog << "setBondLeft Test 1" <<endl;

testLog << "Cell left of [" <<x <<"][" <<y <<"]is";

testLog << "[" <<x_coord_bond << "][" <<y coord bond << "]" << endl;

x = lattice.size()-1;

setBondLeftOfCell(x,y);

testLog << "setBondLeft Test 2" <<endl;

testLog << "Cell left of [" <<x << "][" <<y <<"]is";

testLog << "[" << x_coord_bond << "][" <<y_coord_bond <<"]" << endl;

}

i
/! Lattice_2D::testSetBondRightOfCell
LT T T T T
void

Lattice_2D::testSetBondRightOfCell()

{

intx,y;

x=0;

v 15

setBondRightOfCell(x,y);

testLog << "setBondRight Test 1" <<end]l;

testLog << "Cell right of [" << x << "][" <<y << "]is";

testLog << "[" <<x_coord_bond << "][" <<y _coord_bond << "]" << endl;

x = lattice_size()-1;

setBondRightOfCell(x,y);

testLog << "setBondRight Test 2" <<end];

testLog << "Cell right of [" << x <<"}[" <<y << "]is ",

testLog << "[" <<x_coord bond << "][" <<y _coord bond << "]" << endl;

}
i e

98

/I Lattice_2D::testSetBondTop
e
void

Lattice_2D::testSetBondTop()

{

int X, y;

x=0

yi= 3

setBondTop(x,y);

testLog << "setBondTop Test 1" << end|;

testLog << "Cell in another row of [" <<x <<"|[" <<y <<"]is™;

testLog << "[" << x_coord_bond << "][" <<y_coord_bond << "]" << end];

x=0;

y=0;

setBondTop(x,y);

testLog << "setBondTop Test 2" << endl;

testLog << "Cell in another row of [" << x << "][" <<y <<"]is";

testLog << "[" <<x_coord_bond << "][" <<y _coord_bond << "]" << endl;

}

e
/I Lattice_2D::testSetBondBottom

N T e e
void

Lattice_2D::testSetBondBottom()

{

intx, y;

x=0;

y= I

setBondBottom(x,y);

testLog << "setBondBottom Test 1" << endl,

testLog << "Cell in another row of [" <<x <<"]["<<y<<"]is";

testLog << "[" << x_coord_bond << "][" << y_coord_bond << "]" << end];

x=0;

y=0;

setBondBottom(x,y);

testLog << "setBondBottom Test 2" << endl;

testLog << "Cell in another row of [" <<x << "|[" <<y <<"]is ";

testLog << "[" << x_coord_bond << "][" <<y _coord_bond << "]" << end];

}

I T T T T
// Lattice_2D::testExitParticle
i G

void
Lattice_2D::testExitParticle()
{
x_coord = 0;
y_coord = 0;

lattice[0][0] = NEGATIVE_PARTICLE;

testLog << "Lattice before movement" << endl;

99

}

printLatticeToTestFile();
exitParticle(x_coord, y_coord),

if (!(lattice[0][0] = EMPTY))
testLog << "exitParticle failed" << endl;

testLog << "Lattice after movement" << endl;
printLatticeToTestFile();

x_coord = lattice size()-1;
y_coord = 1;
lattice[lattice.size()-1][1] = POSITIVE_PARTICLE,

testLog << "Lattice before movement" << endl;
printLatticeToTestFile();
exitParticle(x_coord, y_coord);

if (!(lattice[lattice.size()-1][1] = EMPTY))
testLog << "exitParticle failed" << endl;

testLog << "Lattice after movement" << endl;
printLatticeToTestFile();

e
/f Lattice_2D::testEnter
e

void

Lattice_2D::testEnter()

{

}

testLog << "Enter Test 1" << endl;
enter();

if (isColumnEmpty(0) && isColumnEmpty(lattice.size()-1))
testLog << "Enter failed" << end];
printLattice ToTestFile();

clear();

testLog << "Enter Test 2" << endl;

lattice[0][0] = POSITIVE_PARTICLE;

lattice[0][1] = NEGATIVE_PARTICLE;
lattice[lattice.size()-1]{0] = POSITIVE_PARTICLE;
lattice[lattice.size()-1][1] = POSITIVE_PARTICLE;

enter();

if (!(lattice[0][0] = POSITIVE_PARTICLE &&
lattice[0][1] = NEGATIVE_PARTICLE &&
lattice[lattice.size()-1][0] == POSITIVE_PARTICLE &&:
lattice[lattice.size()-1][1] == POSITIVE_PARTICLE))
testLog << "Enter 2 failed" << endl,
printLatticeToTestFile();

N e L
/f Lattice_2D::testExitEnds

100

R e e

void

Lattice_2D::testExitEnds()

{
testLog << "Exit Ends Test" << endl;
lattice[0][0] = NEGATIVE_PARTICLE;
lattice[0][1] = POSITIVE_PARTICLE,
lattice[lattice.size()-1][0] = POSITIVE_PARTICLE;
lattice[lattice.size()-1]{1] = NEGATIVE_PARTICLE;

exit_ends();

if (!(lattice[0][0] = EMPTY &&
lattice[0][1] = POSITIVE_PARTICLE &&
lattice[lattice.size()-1][0] = EMPTY &&
lattice[lattice.size()-1][1] = NEGATIVE_PARTICLE))
testLog << "Exit Ends failed" << end];
printLatticeToTestFile();

}

e
// Lattice_2D::testAddPostiveParticle
T e T
void
Lattice_2D::testAddPositiveParticle()
{
testLog << "Add Particle Test: Positive" << endl;
x_coord = 0;
y_coord =(;
addPositiveParticle(x_coord,y_coord);
x_coord =20;
y_coord = 1;
addPositiveParticle(x_coord,y_coord);
x_coord = lattice.size()-1;
y coord=1;
addPositiveParticle(x_coord,y_coord);

if (!{lattice[0][0] = POSITIVE_PARTICLE &&
lattice[20][1] = POSITIVE_PARTICLE &é&
lattice[lattice.size{)-1][1] == POSITIVE_PARTICLE})
testLog << "Add Particle (pos) failed" << endl;
printLatticeToTestFile();

}

L T i
/f Lattice 2D::testAddNegativeParticle
T T T

void

Lattice_2D::testAddNegativeParticle()

{
testLog << "Add Particle Test: Negative" << end|;
x_coord = 0;
y_coord = 1;

addNegativeParticle(x_coord,y_coord);
x_coord = 20;
y_coord = 0;

101

addNegativeParticle(x_coord,y _coord);
x_coord = lattice.size()-1;

y_coord =0;
addNegativeParticle(x_coord,y_coord);

if (!(lattice[0][1] = NEGATIVE_PARTICLE &&
lattice[20][0] = NEGATIVE_PARTICLE &&
lattice[lattice.size()-1][0] = NEGATIVE_PARTICLE))
testLog << "Add Particle (neg) failed" << endl;
printLatticeToTestFile();

}

e
/I Lattice_2D::testleftBondMovementsPositive
O T T
void

Lattice 2D::testLeftBondMovementsPositive()

{

testLog << " ——==5tart lefiBondMovements Test=——==———=" <<endI,
testLog << "Testing Positive" <<endl;

X_coord = 1;

y_coord = 0;

lattice[1][0] = POSITIVE _PARTICLE;

setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
lefiBondMovements();

if (1(lattice[1][0] == POSITIVE_PARTICLE))

testLog << "lefiBondMovementsPositive failed" <<end];
testLog << "Lattice after movement" <<endl;
printLatticeToTestFile();

clear();

x_coord =0;
y_coord = 1;
lattice[0]{1] = POSITIVE_PARTICLE;
setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
leftBondMovements();

if (!(lattice[0][1] = POSITIVE_PARTICLE))

testLog << "leftiBondMovementsPositive failed" <<endl,
testLog << "Lattice after movement” <<endl,
printLatticeToTestFile();

}

I T T
/f Lattice_2D::testLefiBondMovementsEmpty
T T
void

102

Lattice_2D::testLeftBondMovementsEmpty()

{
testLog << "'=—==—==Testing Empty=—======" <<endl,
testLog << "Test 2 Empty" <<endl;
x_coord = 1;
y_coord = {;

lattice[1][0] = EMPTY;
lattice[0]{0] = EMPTY;
setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement” <<endl;
printLatticeToTestFile();
leftBondMovements();

if (!(lattice[1][0] = EMPTY && lattice[0][0] = EMPTYY})

testLog << "lefiBondMovementsEmpty failed" <<end],
testLog << "Lattice after movemeni” <<end];
printLatticeToTestFile();

clear();

testLog << "Test 2 Empty ends" <<endl;
x_coord =0;

y_coord = 0;

lattice[0][0] = EMPTY;

lattice[499][0] = EMPTY;
setBondLeffOfCell(x_coord, y_coord);

testLog << "Lattice before movement” <<end];
printLatticeToTestFile();
leftBondMovements();

if (!(lattice[1][0] = EMPTY && lattice[499][0] =— EMPTY))

testLog << "lefiBondMovementsEmpty failed" <<endl;
testLog << "Lattice after movement" <<end);
printLatticeToTestFile();

clear();

testLog << "Test Empty & Neg" <<end|;
x_coord = 1;

y_coord = 0;

lattice[0][0] = NEGATIVE_PARTICLE;
lattice[1][0] = EMPTY;
setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement” <<endl;
printLatticeToTestFile();
lefiBondMovements();

if (!(lattice[1][0] = EMPTY && lattice[0][0] = NEGATIVE_PARTICLE))
testLog << "lefiBondMovementsEmpty failed" <<end|;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

clear(};

103

testLog << "Test Empty & Positive" <<end|;
lattice[1][0] = EMPTY;

lattice[0][0] = POSITIVE_PARTICLE;
setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
lefiBondMovements();

if (!(lattice[1][0] = POSITIVE_PARTICLE && lattice[0][0] = EMPTY))
testLog << "leftBondMovementsEmpty failed" <<endl;

testLog << "Lattice after movement” <<endl;

printLatticeToTestFile();

clear();

x_coord = 0;

y_coord = 0;

testLog << "Test Empty at end" <<end];
lattice[0][0] = EMPTY;
setBondLeftOfCell(x_coord, y_coord),

testLog << "Lattice before movement" <<endl,
printLatticeToTestFile();
leftBondMovements();

if (!(lattice[0][0] = EMPTY))

testLog << "lefiBondMovementsEmpty failed" <<end];
testLog << "Lattice after movement" <<endl;
printLatticeToTestFile();

}

L T T
/f Lattice_2D::testLefiBondMovementsNegative
e T

void
Lattice_2D::testLeftBondMovementsNegative()
{
testLog << =—=Testing Negative " <<end];
testLog << "Test Negative & Empty End" <<endl,
x_coord = 0;
y_coord = 0;

lattice[0][0] = NEGATIVE_PARTICLE,;
lattice[499][0] = EMPTY;
setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
leftBondMovements();

if (I(lattice[0][0] = EMPTY && lattice[499][0] == EMPTY))

testLog << "leftBondMovementsNegative failed" <<endl;
testLog << "Lattice after movement" <<endl;
printLatticeToTestFile();

104

}

clear();

testLog << "Test Negative & Empty Regular" <<endl;
x_coord = |;

lattice[1][0] = NEGATIVE_PARTICLE;

lattice[0][0] = EMPTY;

setBondLeftOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
leftBondMovements();

if (!(lattice[0][0] = NEGATIVE_PARTICLE && lattice[1][0] = EMPTY))
testLog << "lefiBondMovementsNegative failed" <<endl,
testLog << "Lattice after movement" <<end];
printLatticeToTestFile();
testLog << ™ End lefiBondMovements Test " <<endl;

L e T
/1 Lattice_2D::testRightBondMovementsNegative
T e T T

void

Lattice_2D::testRightBondMovementsNegative()

{

testLog << ——==tart rightBondMovements Test—————=—" <<end]l;
testLog << "Testing Negative" <<endl;

x_coord = 1;

y_coord = 0;

lattice[1][0] = NEGATIVE_PARTICLE;
setBondRightOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLattice ToTestFile();
rightBondMovements();

if (!(lattice[1][0] = NEGATIVE_PARTICLE))

testLog << "RightBondMovementsNegative failed" <<endl,
testLog << "Lattice after movement"” <<endl;
printLatticeToTestFile();

clear();

x_coord = 0;
lattice[0][0] = NEGATIVE_PARTICLE;
setBondRightOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
rightBondMovements(),

if (!(lattice[0])[0] = NEGATIVE_PARTICLE))
testLog << "RightBondMovementsNegative failed" <<endl;

105

}

testLog << "Lattice after movement" <<end,
priniLattice ToTestFile();

e
/f Lattice_2D::testRightBondMovementsEmpty
e

void

Lattice_2D::testRightBondMovementsEmpty()

{

testLog << " —=Testing Empty=——"==—"=" <<endl;
testLog << "Test 2 Empty" <<endl;

x_coord = I;

y_coord = 0;

lattice[1][0] = EMPTY,;
lattice[0][0] = EMPTY;
setBondRightOfCell(x_coord, y_coord),

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
rightBondMovements();

if (!(lattice[1][0] = EMPTY && lattice[(][0] = EMPTYY))
testLog << "rightBondMovementsEmpty failed" <<endl;

testLog << "Lattice after movement" <<end];

printLattice ToTestFile();

clear();

testLog << "Test 2 Empty ends" <<endl;
x_coord = 0;

y_coord =0;

lattice[0][0] = EMPTY;

lattice[499][0] = EMPTY;
setBondRightOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
rightBondMovements();

if (!(lattice[1][0] = EMPTY && lattice[499][0] = EMPTY))
testLog << "rightBondMovemenisEmpty failed" <<endl,

testLog << "Lattice after movement” <<end|;

printLattice ToTestFile();

clear();

testLog << "Test Empty & Neg" <<end];
x_coord = 0;

y_coord = 0;

lattice[0][0] = EMPTY;

lattice[1][0] = NEGATIVE_PARTICLE;
setBondRightOfCell(x_coord, y _coord);

testLog << "Lattice before movement" <<end];

106

}

printLatticeToTestFile();
rightBondMovements();

if (!(lattice[1][0] = EMPTY && lattice[0][0] == NEGATIVE_PARTICLE))
testLog << "rightBondMovementsEmpty failed" <<endl;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

clear();

testLog << "Test Empty & Positive" <<endl;
lattice[1][0] = POSITIVE_PARTICLE;
lattice[0][0]= EMPTY;
setBondRightOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLattice ToTestFile();
rightBondMovements();

if (!(lattice[1][0] == POSITIVE_PARTICLE && lattice[0][0] = EMPTY))
testLog << "rightBondMovementsEmpty failed" <<endl;

testLog << "Lattice after movement" <<end];

printLatticeToTestFile();

I e e e e
I/ Lattice_2D::testRightBondMovementsPositive
e e e

void

Lattice_2D::testRightBondMovementsPositive()

{

testLog << "= ==Testing Positive=——-==—" <<end];
testLog << "Test Positive & Empty End" <<endl;

x_coord = 499;

y_coord = 0;

lattice[0][0] = EMPTY;
lattice[499][0] = POSITIVE_PARTICLE;
setBondRightOfCell(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
rightBondMovements();

if (!(lattice[0][0] = EMPTY && lattice[499][0] = EMPTY))

testLog << "rightBondMovementsPositive failed” <<endl;
testLog << "Lattice afier movement" <<endl;
printLatticeToTestFile();

clear();

testLog << "Test Positive & Empty Regular” <<endl;
x_coord = 0;

lattice[1][0] = EMPTY;

lattice[0][0] = POSITIVE_PARTICLE;
setBondRightOfCell(x_coord, y_coord);

107

<<end]l;

}

testLog << "Lattice before movement" <<end];
printLatticeToTestFile();
rightBondMovements();

if (!(lattice[0][0] = EMPTY && lattice[1][0]1 = POSITIVE_PARTICLE})

testLog << "rightBondMovementsPositive failed" <<endl;
testLog << "Lattice after movement” <<endl;
printLatticeToTestFile();

testLog << " End rightBondMovements Test

i
/I Lattice 2D::testVerticalBondMovementsEmpty
e L e T

void

Laitice 2D::testVerticalBondMovementsEmpty()

{

testLog <<" Start VerticalBondMovements Test
testLog << "Test 2 Empty (1)" <<endl;

x_coord =0;

y_coord =0;

lattice[0][0] = EMPTY;
lattice[0][1] = EMPTY;
setBondTop(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (1(lattice[0][0] =— EMPTY && lattice[0][1] = EMPTY))

testLog << "verticalBondMovementsEmpty failed" <<endl;
testLog << "Lattice after movement" <<endl;
printLatticeToTestFile();

clear();
testLog << "Test 2 Empty (2)" <<endl;

x_coord = 0;

y_coord = 0;

lattice[0][0] = EMPTY,;
lattice[0][1] = EMPTY;
setBondBottom(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verlicalBondMovements();

if (*(Jattice[0][0] = EMPTY && lattice[0][1] = EMPTY))

testLog << "verticalBondMovementsEmpty failed” <<end];
testLog << "Lattice after movement”" <<endl;
printLatticeToTestFile();

clear();
testLog << "Test | Empty 1 Negative (1)" <<endl,

108

" <<endl;

lattice[0][0] = EMPTY;
lattice[0][1] = NEGATIVE_PARTICLE;
setBondTop(x_coord, y_coord);

testLog << "Lattice before movement” <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (!(lattice[0][0] = EMPTY && lattice[0][1] = NEGATIVE_PARTICLE))
testLog << "verticalBondMovementsEmpty failed” <<endl;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

clear(};
testLog << "Test | Empty | Negative (2)" <<endl;

lattice[0][0] = EMPTY;
lattice[0][1] = NEGATIVE_PARTICLE;
setBondBottom(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLattice ToTestFile();
verticalBondMovements();

if (1(lattice[0][0] = EMPTY && lattice[0][1] = NEGATIVE_PARTICLE))
testLog << “verticalBondMovementsEmpty failed" <<endl;

testLog << "Lattice after movement” <<endl,

printLatticeToTestFile();

clear();

testLog << "Test | Empty 1 Positive (1)" <<end];
lattice[0][0] = POSITIVE_PARTICLE;
lattice[0][1] = EMPTY;

setBondTop(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (I(lattice[0][0] = POSITIVE_PARTICLE && lattice[0][1] = EMPTY))
testLog << "verticalBondMovementsEmpty failed” <<endl;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

clear(};
testLog << "Test 1 Empty 1 Positive (2)" <<endl;

lattice[0][0] = POSITIVE_PARTICLE;
lattice[0][1] = EMPTY;
setBondBottom(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (!(lattice[0][0] = POSITIVE_PARTICLE && lattice[0][1] = EMPTY))

testLog << "verticalBondMovementsEmpty failed" <<endl;
testLog << "Lattice after movement" <<end|;

109

printLatticeToTestFile();
}

T
/I Lattice_2D::testVerticalBondMovementsSamePolarity
R L T L
void
Lattice_2D::testVerticalBondMovementsSamePolarity()
{
testLog << "Test Same Polarity Positive” <<end|;
x_coord = 0;
y_coord = 0;
lattice[0][0] = POSITIVE_PARTICLE;
lattice[0][1]= POSITIVE_PARTICLE;
setBondTop(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (!(lattice[0]{0] = POSITIVE_PARTICLE && lattice[0][1] = POSITIVE_PARTICLE))
testLog << "verticalBondMovementsSamePolarity failed” <<endl;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

clear();

y_coord = 1;

testLog << "Test Same Polarity Negative" <<endl;
lattice[0][0] = NEGATIVE_PARTICLE;
lattice[0][1]= NEGATIVE_PARTICLE;
setBondBottom(x_coord, y_coord};

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verticalBondMovements();

if ({(Jattice[0][0] = NEGATIVE_PARTICLE && lattice[0][1] = NEGATIVE_PARTICLE))
testLog << "verticalBondMovementsSamePolarity failed" <<endl;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

}

T T T T
/I Lattice 2D:testVerticalBondMovementsExchange
L T T

void

Lattice_2D::testVerticalBondMovementsExchange()

{
testLog << "Test Exchange Negative over End" <<end|;
x_coord = 0;
y_coord = 0;

lattice[0]{0] = POSITIVE_PARTICLE;
lattice[0]{1] = NEGATIVE_PARTICLE;
setBondTop(x_coord, y_coord);

testLog << "Lattice before movement" <<end];

110

printLatticeToTestFile();
verticalBondMovements();

if (!(Jattice[1][1] = POSITIVE_PARTICLE && lattice[499][0] = NEGATIVE_PARTICLE))
testLog << "verticalBondMovementsExchange failed" <<end],

testLog << "Lattice after movement" <<end];

printLatticeToTestFile();

clear();
testLog << "Test Exchange No End" <<endl;
x_coord = 1;

lattice[1][0] = NEGATIVE_PARTICLE;
lattice[1][1] = POSITIVE_PARTICLE;
setBondTop(x_coord, y_coord);

testLog << “Lattice before movement"” <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (!(lattice[0]{1] = NEGATIVE_PARTICLE &#& lattice[2][0] = POSITIVE_PARTICLE))
testLog << "verticalBondMovementsExchange failed" <<endl;

testLog << "Lattice after movement" <<end|;

printLatticeToTestFile();

clear();

testLog << "Test Exchange Positive over End" <<endl;
x_coord = 499;

y_coord = 1;

lattice[499][0] = NEGATIVE_PARTICLE,;
lattice[499][1] = POSITIVE_PARTICLE;
setBondBottom(x_coord, y_coord);

testLog << "Lattice before movement" <<endl;
printLatticeToTestFile();
verticalBondMovements();

if (!(lattice[498]{1] = NEGATIVE_PARTICLE &4& lattice[0][0] = POSITIVE_PARTICLE))
testLog << "verticalBondMovementsExchange failed" <<endl;

testLog << "Lattice after movement" <<endl;

printLatticeToTestFile();

}

T i
/f Lattice_2D::testlsColumnEmpty
T i i
void

Lattice_2D::testlsColumnEmpty()

{
testLog << "Test of method isColumnlsEmpty() " <<end];
if (isColumnEmpty(0))
{

testLog << "column with values " << lattice[0][0] << "," << lattice[0][1];
testLog << " is empty" << end|;

}
lattice[0][0] = POSITIVE_PARTICLE;

111

if (lisColumnEmpty(0))

{
testLog << "column with values " << lattice[0][0] << "," << lattice[0][1];
testLog << " is not empty" << endl;

}

lattice[0](1] = POSITIVE_PARTICLE,;
if (lisColumnEmpty(0))

{
testLog << "column with values " << lattice[0][0] << "," << lattice[0][1];
testLog << " is not empty" << endl,

}

lattice[0][0] = EMPTY;

if (lisColumnEmpty(0)}

{
testLog << "column with values " << lattice[0][0] << "," << lattice[0][1];
testLog << " is not empty" << endl;

H

}

R e g
/f Lattice_2D::testlsVerticalBond
T T T
void
Lattice 2D::testIsVerticalBond()
{
testLog << end] << "Test of method isVerticalBond()} " <<endl;
if ('isVerticalBond(0))
{

testLog << "column with values " << lattice[Q][0] << "," << lattice[0][1];
testLog <<" does not have a vertical bond" << endl;

}

lattice[0][0] = POSITIVE_PARTICLE;
if (tisVerticalBond(())

{
testLog << "column with values " << lattice[0][0] << ™" << lattice[0][1];
testLog << " does not have a vertical bond" << end];

}

lattice[0][1] = POSITIVE_PARTICLE;

if (isVerticalBond(0))

{
testLog << "column with values " << lattice[0][0] << "," << lattice[0][1];
testLog <<" does have a vertical bond" << endl;

}

lattice[0][0] = EMPTY;

if (fisVerticalBond(())

{
testLog << "column with values " << lattice[0][0] << "," << lattice[0][1];
testLog << " does not have a vertical bond" << endl;

112

L T
// Lattice_2D::testIsHorizontalBond
T i
void

Lattice_2D::iestIsHorizontalBond()

{
testLog << endl << "Test of method isHorizontalBond() " <<end];
if (tisHorizontalBond(0,0))
{
testLog << "row with values " << laitice[0][0] << "," << lattice[1][0];
testLog << " does not have a horizontal bond" << endl,

}

lattice[1][0] = POSITIVE_PARTICLE;

if (!isHorizontalBond(0,0))

{
testLog << "row with values " << lattice[0][0] << "," << lattice[1][0];
testLog << " does not have a horizontal bond" << end];

}

lattice[0][0] = POSITIVE_PARTICLE,;

if (isHorizontalBond(0,0))

{
testLog << "row with values " << lattice[0][0] << "," << lattice[1][0];
testLog << " does have a horizontal bond" << endl;

}

lattice[1][0] = EMPTY;

if (lisHorizontalBond(0,0))

{
testLog << "row with values " << lattice[0][0] << "," << lattice[1][0];
testLog << " does not have a horizontal bond" << endl;

}

T T
// Lattice_2D::testFindCluster
e e e
void

Lattice_2D::testFindCluster()

{

testLog << endl << "Test of findCluster method" << endl;

testLog <<endl;

testLog << "Test 1: Start and Middle" <<endl,

testLog << "Should show one cluster of 2 at 0 and one cluster of 5 at 250/252" <<end;
// add one cluster at the start of the lattice

lattice[0][0] = POSITIVE_PARTICLE;

lattice[1][0] = NEGATIVE PARTICLE;

/fadd another cluster in the middle of the lattice
lattice[250][0] = NEGATIVE_PARTICLE,;
lattice[250][1] = POSITIVE PARTICLE;
lattice[251][1] = POSITIVE_PARTICLE;
lattice[252][0] = POSITIVE_PARTICLE;
lattice[252][1] = NEGATIVE_PARTICLE;

113

findClusters();
logClusters();

testLog << "Test 2: End (one Cluster)" <<endl;
testLog << "Should show one cluster of 4 at the end of lattice" <<end];

/fadd one cluster at the end of the lattice
lattice[(lattice.size()-3)1[0] = POSITIVE_PARTICLE;
lattice[(lattice.size()-2)][0] = POSITIVE_PARTICLE,
lattice[(lattice.size()-1)][0] = POSITIVE_PARTICLE;
lattice[(lattice.size()-1)][1] = NEGATIVE_PARTICLE;

findClusters();
logClusters();

testLog << "Test 3: End 2 (one Cluster) " <<end];
testLog << "Should show one cluster of 2 at the end of lattice” <<end];

//add one cluster at the end of the lattice
lattice[(lattice.size()-1)][0] = POSITIVE_PARTICLE;
lattice[(lattice.size(})-1)][1] = NEGATIVE_PARTICLE;

findClusters();
logClusters(};

clear();

testLog << "Test 4: Connect Clusters at both ends" <<endl;

testLog << "Should show one cluster starting lattice end and ending at lattice beginning/5 particles"
<<endl;

/fadd one cluster at the beginning of the lattice

lattice[0][1] = POSITIVE_PARTICLE;

lattice[1][1] = NEGATIVE_PARTICLE;

lattice[1][0] = NEGATIVE_PARTICLE;

/fadd one cluster at the end of the lattice
lattice[(lattice.size()-1)][0] = POSITIVE_PARTICLE;
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

findClusters();
logClusters();

testLog << "Test 5: Cluster at one end and single particle at other end (one Cluster)" <<endl;
testLog << "Test 1" <<endl;
testLog << "Should show one cluster of 3, starting at the end of the lattice" <<endl;

/fadd one cluster at the beginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE,;

lattice{0][1] = POSITIVE_PARTICLE;

/fadd one particle at the end of the lattice
lattice[(lattice.size()-1)]{1] = POSITIVE_PARTICLE;

findClusters();
logClusters();

114

<<endl;

testLog << "Test 6: Cluster at end single particle at the beginning (one Cluster)" <<endl;
testLog << "Should show one cluster of 4, starting near the end of the lattice” <<endl;

/ladd one cluster at the end of the lattice
lattice[(lattice.size()-2)][0] = POSITIVE_PARTICLE;
lattice[(lattice.size(}-1)][0] = NEGATIVE_PARTICLE;
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

/fadd one particle at the begginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE;

findClusters();
logClusters();

testLog << "Test 7: Connect single particles at both ends (no Cluster)" <<endl;
testLog << "Should show a cluster of two, starting at end of lattice" <<end];

/fadd one particle at the beginning of the lattice
lattice[0][0] = POSITIVE_PARTICLE,

//add one particle at the end of the lattice
lattice[(lattice.size(}-1)][0] = NEGATIVE_PARTICLE;

findClusters();
logClusters();

testLog << "Test 8: Do not connect single particles at ends (no Cluster) " <<endl;
testLog << "Should show no cluster” <<endl;

//add one particle at the beginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE,;

/fadd one particle at the end of the lattice where no horizontal bond exists

lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

findClusters();

logClusters();

testLog << "Test 9: Connect single particles at both ends (one Cluster)" <<endl;

testLog << "Should show two clusters, one of two at the end of the lattice and one of 3 in the middle"
/fadd one particle at the beginning of the lattice

lattice[0][1] = NEGATIVE_PARTICLE;

//add one particle at the end of the lattice
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

ffadd cluster in middle

lattice[244][0] = NEGATIVE_PARTICLE;
lattice[245][0] = POSITIVE_PARTICLE;
lattice[246][0] = NEGATIVE_PARTICLE;

findClusters();

115

logClusters();

testLog << "Test 10: Do not connect single particles at ends (one Cluster) " <<endl,
testLog << "Should show one cluster in middle of size 3" <<endl;

/fadd one particle at the beginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE;

/fadd one particle at the end of the lattice where no horizontal bond exists
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

/fadd cluster in middle

lattice[341](1] = NEGATIVE_PARTICLE,
lattice[341][{0] = POSITIVE_PARTICLE;
lattice[340](1] = POSITIVE_PARTICLE;

findClusters();
logClusters();

testLog << "Test 11: Connect single particles at both ends (multiple Clusters)" <<end|;
testLog << "Should show four clusters, one of two at the end of the lattice and three others of 2,3 and 5 in
the middle" <<endl;

/fadd one particle at the beginning of the lattice
lattice[0][1] = NEGATIVE_PARTICLE;

//add one particle at the end of the lattice
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

/fadd clusters in middle

lattice[244][0] = NEGATIVE_PARTICLE;
lattice[245][0] = POSITIVE _PARTICLE;
lattice[246][0] = NEGATIVE_PARTICLE;
lattice[12](1] = POSITIVE_PARTICLE;
lattice[11][1] = NEGATIVE_PARTICLE;
lattice[122][0] = POSITIVE_PARTICLE;
lattice[122][1] = NEGATIVE_PARTICLE;
lattice[123][1] = NEGATIVE_PARTICLE;
lattice[124][1] = NEGATIVE_PARTICLE,;
lattice[124][0] = NEGATIVE_PARTICLE,;

findClusters(};
logClusters();

testLog << "Test 12: Do not connect single particles at ends (multiple Clusters) " <<endl;
testLog << "Should show 3 clusters in middle of sizes 2,3 and 5" <<endl;

//add one particle at the beginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE,;

/fadd one particle at the end of the lattice where no horizontal bond exists
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

/fadd clusters in middle
lattice[341][1] = NEGATIVE_PARTICLE;

116

lattice[341][0] = POSITIVE_PARTICLE;
lattice[340][1] = POSITIVE_PARTICLE;
lattice[12][1] = POSITIVE_PARTICLE;
lattice[11][1] = NEGATIVE_PARTICLE;
lattice[122][0] = POSITIVE_PARTICLE;
lattice[122][1] = NEGATIVE_PARTICLE;
lattice[123][1] = NEGATIVE_PARTICLE;
lattice[124][1] = NEGATIVE_PARTICLE;
lattice[124][0] = NEGATIVE_PARTICLE:

findClusters();
logClusters();

testLog << "Test 13: Cluster at end single particle at the beginning (multiple Clusters)" <<endl;
testLog << "Should show one cluster of 4, starting near the end of the lattice and 3 other clusters in the
middle" <<endl;

/{add one cluster at the end of the lattice
lattice[(lattice.size()-2)][0] = POSITIVE_PARTICLE;
lattice[(lattice.size()-1)][0] = NEGATIVE_PARTICLE;
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

/fadd one particle at the begginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE;

//add clusters in middle

lattice[341][1] = NEGATIVE_PARTICLE;
lattice[341][0] = POSITIVE_PARTICLE;
lattice[340][1} = POSITIVE_PARTICLE;
lattice[12][1] = POSITIVE_PARTICLE;
lattice[11][1] = NEGATIVE PARTICLE;
lattice[122][0] = POSITIVE_PARTICLE;
lattice[122][1] = NEGATIVE_PARTICLE;
lattice[123][1] = NEGATIVE_PARTICLE;
lattice[124][1] = NEGATIVE_PARTICLE;
lattice[124][0] = NEGATIVE_PARTICLE;

findClusters();
logClusters();

testLog << "Final Test 14: Cluster at one end and single particle at other end (multiple Clusters)" <<endl;

testLog << "Test 1" <<endl;

testLog << "Should show one cluster of 3, starting at the end of the lattice and 3 others clusters in the
middle" <<endl;

/fadd one cluster at the beginning of the lattice
lattice[0][0] = NEGATIVE_PARTICLE;
lattice[0][1] = POSITIVE_PARTICLE;

//add one particle at the end of the lattice
lattice[(lattice.size()-1)][1] = POSITIVE_PARTICLE;

/{add clusters in middle
lattice[341][1] = NEGATIVE_PARTICLE;

117

lattice[341][0] = POSITIVE_PARTICLE;
lattice[340][1] = POSITIVE_PARTICLE;
lattice[12][1] = POSITIVE_PARTICLE;
lattice[11][1] = NEGATIVE_PARTICLE;
lattice[122][0] = POSITIVE_PARTICLE;
lattice[122][1] = NEGATIVE_PARTICLE;
lattice[123][1] = NEGATIVE PARTICLE;
lattice[124][1] = NEGATIVE_PARTICLE;
lattice[124][0] = NEGATIVE_PARTICLE;

findClusters();
logClusters();

}

T T T T T LT T
/f Lattice_2D::logClusters
T T T T T
void
Lattice_2D::logClusters()
{

int i;

list<Cluster*>::iterator clusterPir;

testLog << "Number of cluster found =" << myClusterList.size() << endl;

i=1;
for (clusterPtr = myClusterList.begin(); clusterPtr '= myClusterList.end(); clusterPtr++)
{

testLog << " == Cluster [" <<i << "]:" << end],

testLog << "Number of particles: " << (*clusterPir)->getNumberOfParticles() << endl;
testLog << "Start position: " << (*clusterPir)}->getStartPosition() << endl;
testLog << "End position; " << (*clusterPtr)->getEndPosition() << endl;

testLog << "====" << endl;
i+

}

myClusterList.clear();

clear();

}

Y i
/f Lattice_2D::resultClusters()
T L T e
void
Lattice_2D::resultClusters()
{
int i;
list<Cluster*>::iterator clusterPtr;
total_enter = enter_positive + enter_negative;
total_exit = exit_positive + exit_negative;
tota]_attach = attach_positive + attach_negative;

total_detach = detach_positive + detach_negative;
findBiggestCluster();

testLog << "\nEnterExit\tAtt.\tDet.\n" << endl,

118

"

i

i

resultFile << "Number of clugter found = " << myClusterList.size() << endl,
i=1:
for (clusterPtr = myClusterList.begin(}; clusterPtr = myClusterList.end(); clusterPtr++)
{
resultFile << " == Cluster [" << i << "]:" << end]l;
resultFile << "Number of particles: " << (*clusterPtr)->getNumberOfParticles() << endl;
resultFile << "Start position: " << (*clusterPtr)->getStariPosition() << endl;
resultFile << "End position: * << (*clusterPtr)->getEndPosition(} << endl;
resultFile << " =" << endl;
i+
}
if (myClusterList.size() > 0) {
resultFile <<" Biggest cluster =——=" << endl;
resultFile << "Number of particles: " << (*biggestClusterPtr)->getNumberOfParticles{) << endl;
resultFile << "Start position: " << (*biggestClusterPtr)->getStartPosition() << endl;
resultFile << "End position: " << (*biggestClusterPir}->getEndPosition(} << endl;

}

/f print flow results to appropriate files
if(openPositiveFlowFile())

{
/! gamma value | size of lattice [enter | exit | attach | detach
positiveFlowFile << my_ptr running_conf->g << "W" << my_pfr_running_conf->rows << "\t";
positiveFlowFile << enter_positive << "\t" << exit_positive << "it";
positiveFlowFile << attach_positive << "Wt" << detach_positive << endl;
add positive current above
}

iflopenNegativeFlowFile())

// gamma value | size of lattice | enter [exit | attach | detach
negativeFlowFile <<my_ptr running_conf->g << "t" << my_pir_running_conf->rows << "t";
negativeFlowFile << enter_pegative << "\t" << exit_negative << "4";
negativeFlowFile << attach_negative << "\t" << detach_negative << endl;
add nepative current above
}
iflopenAttemptFlowFile())
{
// gamma value | size of lattice | enter | exit | attach | detach
attemptFlowFile << my_ptr_running_conf->g << "\t" << my_ptr_running_conf->rows << "\";
attemptFlowFile << att_e << ™" << att_ex << endl;

}
if(openTotalFlowFile())

{
// gamma value | size of lattice | enter | exit | attach | detach
totalFlowFile << my_ptr_running_conf->g << "" << my_ptr_running_conf->rows << "t";
totalFlowFile << total_enter << "t" << total_exit << "\t";
totalFlowFile << total_attach << "\t" << total_detach << end];
add total current above
}

// print result to to summary file

if (openSummaryFile()) {
// gamma value | size of lattice | number of clusters | biggest cluster # particles
summaryFile << my ptr_running_conf->g << "{" << my pir_running_conf->rows << "\t";
summaryFile << myClusterList.size() << "\t";

119

if (myClusterList.size() = 0) {
//summaryFile << "0\t 0 \t 0" << endl,

}
else {
//summaryFile << (*biggestClusterPtr)->getStartPosition() << "\t";
/fsummaryFile << (*biggestClusterPtr)->getEndPosition() << "\t";
summaryFile << (*biggestClusterPir)->getNumberOfParticles() << endl;
i change above endline to tab
i summaryFile << total positive << "\t" << lotal_negative << end];
}
}
myClusterList.clear();
clear();

120

JEEk bk ok kR kRl E Rk Rk kR Rk kR kR kR

/i Cluster.h:

i

// This file contains structure and class definitions of Cluster class
i

/! Author: Josh Gonzalez

// Date: June/20/2007

/

/**tt****t*titi***l*#*#***i***********t***********t#tt*t#*t/

#ifndef Cluster H
fidefine Cluster H

class Cluster

{ .
private:
int start_position_x;
int end_position_x;
int totalNumberOfParticles;
public:
Cluster(int x);
virtual ~Cluster();
void setEndPosition(int x);
void setStartPosition(int x);
int getStartPosition();
int getEndPosition();
void addParticlesToCluster(int number);
int getNumberOfParticles();
b

fre e e e s ko sk ok s sk kol ek oo s ok ok o ol O R RO R R O NOR R R R

i Do not place anything after endif

/****tt***tttttttt#tltttttt#t******‘i****************i*l***/

#endif _Cluster H

121

j******IHI‘*****#********t*****t*tlltt*i*********************!
/' Cluster.cpp

i

// This file contains the implementation of the Cluster class

i

// Author: Josh Gonzalez

/f Date: June/20/2007

i

L T e e T e Ty

tinclude "Cluster.h"

T L T T
/f Cluster::Constructor
T T L T L L T

Cluster::Cluster(int x)
{

start_position_x = x;
totalNumberOfParticles = 0;
}

L T L T T
/{ Cluster::Destructor
T T T L T T L

Cluster:;~Cluster()
{

}

T T T T T T L L
/f Cluster::setEndPosition
T T L L L

void
Cluster::setEndPosition(int x)
{

end_position_x =x;
}

T T L L T
// Cluster::setStartPosition
L L L L

void
Cluster::setStartPosition(int x)
{

start_position_x = x;
}

L T L i
// Cluster::getEndPosition
T T T
int

Cluster::getEndPosition()

{

retumn end_position_x;

122

}

T i
I/ Cluster::getStartPosition
e e
int

Cluster::getStartPosition()

{

}

O L T T
/! Cluster::addParticlesToCluster
T T L
void

Cluster::addParticlesToCluster(int number)

{

}

i
/{ Cluster::getNumberOfParticles
W T LT
int

Cluster::getNumberOfParticles()

{

}

return start_position_x;

totalNumberQfParticles += number;

return totalNumberOfParticles;

123

APPENDIX B: C++ CODE FOR AVERAGE RESULTS
PROGRAM

124

/l*#*****ltt***ttt*l*tttttl‘*#*ttttl**tt!*#t****ttlt***#t*t/

/' Read Summary.cpp

M

/f This file contains code to average the results of multiple Monte Carlo
// trials of Lattice_2D simulation

I

/f Author: Josh Gonzalez

// Date: June/11/2008

7

1 ko o o oo o o o o oo o o OB o o e o oo o o o o e e ook S

#include <fstream>
#include <cmath>

using namespace std;

int main(int arge,char *argv[])

{
float gamma;
int size;
int number_of clusters;
int size_of biggest clusters;
int enter;
int exit;
int attach;
int detach;
int total_positive;
int total_negative;
int positive current;
int negative_current;
int total_current;
int sum_total_positive;
int sum_total negative;
int sum_positive_current;
int sum_negative_current;
int sum_total_current;
int sum_number_of_clusters;
int sum_size of biggest_clusters;
int sum_enter;
int sum_exit;
int sum_attach;
int sum_detach;
double averageenter;
double averageexit;
double averageattach;
double averagedetach;
double averagenumber;
double averagesize;
double averagePositive;
double averageNegative;
double averagepositivecurrent;
double averagenegativecurrent;
double averagetotalcurrent;

double num_runs;
char *cl;

125

char *summary location;
char *average location;
char *attempt_location,
char *positive_location;
char *negative_location;
char *total_location;
char *average_attempt;
char *average_positive;
char *average negative,
char *average_total;

int i;

printf("argv[1]: %s\n",argv[1]);
cl =argv[l];
num_runs = atoi(cl);

summary_location = argv{2];
/fprintf("summary_location %s\n",summary_location);
average location = argv[3];
attempt_location = argv[4];
positive_location = argv[5];
negative_location = argv[6];
total_location = argv{7];
average attempt = argv[8];
average positive = argv[9];
average negative = argv([10];
average_total = argv[11];

ofstream averagefile;

averagefile.open{average location);

averagefile << "Averages File \n#Runs per Gamma value =" << num_runs << endl;
averagefile << "Gamma'tSize\tA vgHClst tAvgSizeBigClst.\ttotalpos. \ttotalneg.” << endl;
add total positive and total negative above

ofstream averageattempt;

averageattempt.open(average_attempt);

averageattempt << "Average Attempt\n#Runs per Gamma value =" << num_runs << endl;
averageaitempt << "Gamma'tSize\tEnter\tExit\tAttach\tDetach" << endl;

ofstream averagepositive;

averagepositive.open(average positive);

averagepositive << "Average Positive\n#Runs per Gamma value = " << num_runs << end];
averagepositive << "Gamma\tSize\tEntertExit\tAttach\tDetach” << endl;

ofstream averagenegative;

averagenegative.open(average negative);

averagenegative << "Average negative\n#Runs per Gamma value =" << num_runs << endl;
averagenegative << "Gamma\tSize\tEnter\tExit\tAttach\tDetach” << endl,

ofstream averagetotal;

averagetotal open(average_total);

averagetotal << "Average total\n#Runs per Gamma value =" << num_runs << endl;
averagetotal << "Gamma'tSize\tEnter\tExit\tAttach\tDetach" << endl;

FILE * summaryFile;

126

i=0;

summaryFile = fopen(summary_location,"r"),
if (summaryFile = NULL) //if pointer does not exist(can't open file) prints error message

{
printf("ERROR: unable to open summary.txt\n");

sum_number_of_clusters = (;
sum_size of biggest clusters = 0;
sum_total positive = 0;

sum_total negative = 0;

while(fscanf(summaryFile,"%f %d %ed %d %d

%d",&gamma,&size,&number_of clusters,&size of biggest clusters,&total_positive,&total_negative)!=EQOF)

{

sum_number_of clusters += number_of_clusters;
sum_size of biggest clusters += size_of biggest_clusters;
sum_total positive += total positive;

sum_total negative += total negative;

Hprintf(" [%d] = %f %d %d %d\n", i, gamma, size,

number_of clusters,size_of biggest clusters);

<< "\t"-

14+
if (i = num_runs) {

averagenumber = sum_number_of clusters/num_runs;

averagesize = sum_size_of biggest clusters/num_runs;

averagePositive = sum_total_positive/num_runs;

averageNegative = sum_total negative/num_runs;

averagefile << gamma << "\t" << size << "t" << averagenumber << "\t" << averagesize

averagefile << averagePositive << "\t" << averageNegative << end|;
sum_number_of clusters = {;

sum_size of biggest clusters = 0;

sum_total_positive = 0;

sum_total_negative = 0;

i=0;

}

printf{"done reading file\n\n");
fclose(summaryFile);

averagefile.close();

FILE * attemptFile;

attemptFile = fopen(attempt_location,"r"};

if (attemptFile == NULL) //if pointer does not exist(can't open file) prints error message

{
printf("ERROR: unable to open attemptflow.txt\n");

sum_enter = ();
sum_exit = 0;
i=0;

127

while(fscanf{attemptFile,"%f %d %d %d",&gamma,&size,&enter, &exit)!=EOF)
{
sum_enter += enter;
Sum_exit += exit;
i++;
if(i = num_runs)
{
averageenter = sum_enter/num_runs;
averageexit = sum_exit/num_runs;
averageattempt << gamma << "\t" << gize << "\t" << averageenter << "\t" <<
averageexit << endl;
i=0;
sum_enter = 0;
sum_exit = 0;
}
}
printf("done reading file\n\n"};
fclose(attemptFile);
averageattempt.close();

FILE * positiveFile;
positiveFile = fopen(positive_location,"r");
if (positiveFile = NULL) //if pointer does not exist(can't open file) prints error message

{
printf("ERROR: unable to open positiveflow.txt\n");

sum_enter = (;

sum_exit = 0;

sum_attach = 0;
sum_detach = 0;
sum_positive_current = 0;
i=0;

while(fscanf{positiveFile,"%f %d %d %d %d %d
%d", & gamma,&size, &enter,&exit, &attach, &detach,&positive_current)!=EOF)

sum_enter += enter;
sum_exit += exit;
sum_attach += attach;
sum_detach += detach;
sum_positive_current += positive_current;
i++;
if(i = num_runs)
{
averageenter = sum_enter/num_runs,
averageexit = sum_exit/num_runs;
averageattach = sum_attach/num_runs;
averagedetach = sum_detach/num_runs;
averagepositivecurrent = sum_positive_current/num_runs;
averagepositive << gamma << "{" << size << "\t" << averageenter << "\t" <<
averageexit << "\{" << averageattach << "\t";
averagepositive << averagedetach << "\t" << averagepositivecurrent << end];
i=0;

128

sum_enter = 0;
sum_exit = 0;
sum_attach = 0;
sum_detach = 0;
sum_positive_current = 0;
1
}
printf(*done reading file\n\n");

felose(positiveFile),
averagepositive.close();

FILE * negativeFlowFile;
negativeFlowFile = fopen(negative_location,"r");
if (negativeFlowFile == NULL) //if pointer does not exist(can't open file) prints error message

{
printf("ERROR: unable to open negativeflow.txt\n");

sum_enter = 0,

sum_exit = 0;

sum_attach = 0;
sum_detach = 0;
som_negative_current = 0;
i=0;

while(fscanf(negativeFlowFile,"%f %d %d %d %d %ed
%d",&gamma,&size,&enter,&exit, &attach,&detach &negative current)!=EQOF)
{
sum_enter += enter;
sum_exit += exit;
sum_attach += attach;
sum_detach += detach;
sum_negative_current += negative_current;
i++:
if(i = num_runs)
{
averageenter = sSum_enter/num_runs;
averageexit = sum_exit/num_runs;
averageattach = sum_attach/num_runs;
averagedetach = sum_detach/num_runs;
averagenegativecurrent = sum_negative_current/numn_runs;
averagenegative << gamma << "\t" << size << "\t" << averageenter << "\t" <<
averageexit << "\t" << averageattach << "\t";
averagenegative << averagedetach << "\t" << averagenegativecurrent << endl;
i=0;
sum_enter = 0;
sum_exit = 0;
sum_attach = 0;
sum_detach = 0;
sum_negative_current = 0;
}
}
printf("done reading file\n\n");
fclose(negativeFlowFile),
averagenegative.close();

129

FILE * totalFlowFile;
totalFlowFile = fopen(total location,"r");
if (totalFlowFile = NULL) //if pointer does not exist(can't open file) prints error message

{
printf{"ERROR: unable to open totalflow.txt\n");

sum_enter = 0;
sum_exit = 0;
sum_attach = 0;
sum_detach = 0;
sum_total_current = 0;
i=0;

while(fscanf(totalFlowFile,"%f %d %d Yed %ed %d
%d",&gamma,&size,&enter,&exit,&attach,&detach,&total _current)!=EOF)
{
sum_enter += enter;
sum_exit += exit;
sum_attach += attach;
sum_detach += detach;
sum_total_current += total_current;
i
if(i = num_runs)
{
averageenter = sum_enter/num_runs;
averageexit = sum_exit/num_runs;
averageatlach = sum_attach/num_runs;
averagedetach = sum_detach/num_runs;
averagetotalcurrent = sum_total current/num_runs;
averagetotal << gamma << "\t" << size << "\t" << averageenter << "\{" << averageexit
<< "it" << averageattach << "\t";
averapetotal << averagedetach << "\t" << averagetotalcurrent << end];
i=0;
sum_enter = 0;
sum_exit = 0;
sum_atiach = 0;
sum_detach = 0;
sum_lotal_current = 0;
}
}
printf("done reading file\n\n");
fclose(totalFlowFile);
averagetotal close();

return 0;

130

APPENDIX C: C++ CODE FOR MICROTUBULE
GROWTH DYNAMICS

131

/t*k*l**************t*#tt**tt*##tttt*tt**t*****************/

// RandomNumber.h:

I

// This file contains declaration of random functions for
// microtubule growth dynamics

1/

// Author: Josh Gonzalez

// Date: June/20/2007

/

/**#*#****tt******#*i******tt**#***#*****ttt!!l**tttttitt**/

#ifndef _RANDOMNUMBER_H
#define RANDOMNUMBER_H

#include <time.h>
#include <cstdlib>

void initialize random_number();

double getRandomBetween0AndI();
int getRandomBetween0AndMax(int max);

/*tt1*t*#******##********tt‘*ttt*!*‘t*tttilt*l*tt*****i****/

i Do not place anything after endif

/*i******t*ilttttt**t#*****#***********t************ttttttt/

#endif RANDOMNUMBER_H

132

/t***‘**“‘**************tt#tt*t**tt**t##ii#*******t*ttt***/

// RandomNumber.cpp:

/

// 'This file contains definition of random functions for microtubule
/I growth dynamics

I

/! Author: Josh Gonzalez

/{ Date: June/20/2007

1/

/*‘#t#*******t*ttt**t***************#*#*t********ttlti*#**i/

#include "RandomNumber.h"

R e T e
/l initialize_random_number
T TR T

void initialize_random_number()

{

time t seconds;

time(&seconds);
srand((unsigned int} seconds);

}

L L T L L T
/ getRandomBetween0And]

/

// returns random number >= 0 and < 1

/
T T T L

double getRandomBeiween0Andl1()
{

}

T T T T
/f getRandomBetween(0AndMax

/

// returns random number >=0 and < max

i

L T L T T T

return ((double)rand()/(double}RAND_MAX);

int getRandomBetween0) AndMax(int max)
{

}

return(rand() % max);

133

/******t****i**i********t******t**tt*****tt##****#*i*i*****/

/f Changing Lattice Length

/ Functions.h:

/i

// This file contains declaration of microtubule growth functions
i

{/ Author: Josh Gonzalez

// Date: June/19/2009

1

/**ttttttt#ttlk***#*****i**********¢****###***#**tttttt**tt/

#ifndef FUNCTIONS_H
#define _FUNCTIONS_H

#include <time.h>
finclude <iostream>
#include <cmath>
#include <fstream>

using namespace std;

T T T
/f Functions
e e
void intro(); //displays title and prompts user to input variables
bool openResulisLogFile(); //write results

void setlnitialRates();

void setNumberPositiveSites();

//void setRatioAndX();

void growORshrink();

void positive_change negative();

void updateRates();

void runSetFor1 TimeStep();

void averageFor] TimeStep();

void reportResults();

void runTrial();

/t*******t********ttt*ttt*tii**i***#**********t******#**t#*/

i Do not place anything after endif

j#*************t**t**tt*ttttt***t**t*********************0*/

#endif FUNCTIONS_H

134

]**#******************ttt#tt****ttt*t*#********************f

/f Functions.cpp:

I

/! This file contains constants and definitions of functions for
// microtubule growth dynamics

I

/1 Author: Josh Gonzalez

/f Date; June/22/2009

I/t

l**t*t**************#tii#************#****t*ttttt‘l**t*****/

#include "Functions.h"
#include "RandomNumber.h"

T
// Definitions and Globals
L
#define L_max 100

#define L_initial 10

#define Beta 0.8

#define Alpha 0.1

int L;

int L_final{100];

int t;

int positiveSites;

int positive_Sites[100];
double L_sum;

double L_average;
double positive sum;
double positive_average;
double lambda;

double mu;

double x;

ofstream resultsLog;

AT T

// intro

HHT I

void intro()

{
cout << "Dynamic Lattice Length" << endl;
cout << "Max size of lattice is " << L_max << end];
cout << "\nlnitial size of lattice is " << L_initial << endl;
cout << "Beta is = " << Beta << endl;
cout << "nAlpha is =" << Alpha << end];

resultsLog << "Changing Lattice Length Average Resuits\n" << endl;

resultsLog << "Max size of Lattice = " << L_max << endl;
resultsLog << "nlnitial size of lattice is " << L_initial << endl;
resultsLog << "\nBeta is = " << Beta << end|;

resultsLog << "\nAlpha is = " << Alpha << endl;

resultsLog << "\nt\tAverageLength";

resulisLog << "tAveragePositiveSites" << endl;

return;

135

T T T T
// setInitialRates
THTTTHITHTET T T]

void setlnitialRates()
{
L =L_initial;
lambda = (Beta*(L_max - L))/L._max;
mu = Alpha*L;
retum;
}

T T
/! setNumberPositiveSites
T
void setNumberPositiveSites()

{
positiveSites = getRandomBetween0AndMax(L_initial+1);

return;

}

PRI 1
// setRatioAndX
TN T
void setRatioAndX()

{

double r;

r = lambda;
x = 1/(r+1);

return;

}

2/
I]
// growORshrink
T
void growORshrink()

{

double r;
r = getRandomBetween0And1();

if(r <= lambda)

{
return;
}
if(r > lambda)
{
L+
positiveSites++;
}
return;

136

}

T T T T
/! positive_change negative
T T
void positive_change_negative()

{

double r;

if(positiveSites > 0)

{
r = getRandomBetween0And1();
if(r <=.5)
{

positiveSites—;

}

}

return;

}

i

// updateRates

e

void updateRates()

lambda = (Beta*(L._max - L))/L_makx;
mu = Alpha*L;
return;

}

i

// runSetFor1 TimeStep

I T

void runSetFor] TimeStep()

{

int n;

int i;

for(n=0;n<100;n++)

{
setInitialRates();
setNumberPositiveSites();
for(i=0;i<t;i++)
{

" setRatioAnd X();
growORshrink();
if(L==0)

{

break;
}
if{lL=L_max)
{

break;
}

137

positive_change_negative();
updateRates();
}

L_final[n] = L;
positive_Sites[n] = positiveSites;
}

return;

}

LT T T
/! averageFor1 TimeStep
I i
void averageFor1 TimeStep()

{
int n;
L sum={;
positive_sum = 0;
for(n=0;n<100;n++)
{
L_sum +=L_final[n];
positive_sum -+= positive_Sites[n];
}
L_average = L_sum/100;
positive_average = positive_sum/100;
return;
}
T
// reportResults
T L T T
void reportResults()
{
resultsLog <<t << "\t" << 1. average << "\t" << positive average << end];
returm;
}
I T
// runTrial

T
void runTrial()

{
for(t=10;t<=1000;t=t+10)
{
runSetForl TimeStep();

I cout << t << "{" << x << endl;
averageFor1 TimeStep();
reportResults();

}

resultsLog.close();

138

retum;

}

T T
// openResultsLogFile
e e

bool
openResultsLogFile()

{

resultsLog.open("summary.txt");
if (resultsLog.is_open())

cout << "Cannot open resultsLog file: summary.txt" << endl,
return false;

3

return true;

139

!***t##********#t#***#***#******#l*t**tittttttt**kk***##***/

/{ Changing Lattice Length

/" Main.cpp:
/{ Execution of code for Microtubule growth dynamics
i

/! Author; Josh Gonzalez
/ Date: June/19/2009
i

/****t*i****************#1******##**##**tt****t**tt*ttlttt*/

#include <iostream>
#include <iomanip>

#include <cmath>

#include "Functions.h"
#include "RandomNumber.h"

using namespace std;

int main()

{
initialize_random_number();
openResultsLogFile();
intro();
runTrial();

return 0;

140

