
EXPLORING TEXT-BASED ANALYSIS OF TEST-CASE

DEPENDENCIES OF WEB APPLICATIONS

by

Camille Cobb

2012

c© 2012 Camille Cobb
All Rights Reserved

TABLE OF CONTENTS

LIST OF TABLES . v
LIST OF FIGURES . vi
ABSTRACT . viii

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Web Applications . 3
2.2 Challenges and Goals of Testing Web Applications 3
2.3 Generating Test Cases for Web Applications 5

2.3.1 Static Models . 5
2.3.2 Concolic Testing . 5
2.3.3 Navigation Models . 6
2.3.4 User-Session-Based Testing . 6
2.3.5 Statistical Usage-Based Models 7

3 FOCUS: TEST CASE DEPENDENCIES 9

3.1 Problem . 10

4 TEXT-BASED APPROACH TO ESTIMATING
DEPENDENCIES . 12

4.1 Observation 1: Static Extensions Imply Independence 13
4.2 Observation 2: Action Words Suggest a Write, Read, Edit, or Kill to

the Application State . 13
4.3 Observation 3: Direct Objects Reveal the Portion of the Data Store

Being Affected . 14
4.4 Key Insight: Action Words and Direct Objects Imply Dependencies . 15

iii

4.5 Methodology for Determining Dependencies 16
4.6 Alternative Approach: Monitoring Data Accesses 17

5 FEASIBILITY STUDY, RESULTS AND OBSERVATIONS . . . 19

5.1 Subjects . 20
5.2 Experiment: Methodology and Results 21

5.2.1 Parsing Unique Resources . 21
5.2.2 Manually Identifying Action Words 22
5.2.3 Classifying Resources by Static Extensions and Action Words 25
5.2.4 Identifying Direct Objects . 27
5.2.5 Assuming Dependencies . 29

5.3 Feasibility Study Conclusions . 32

6 AUGMENTING THE TEST CASE GENERATION PROCESS
TO UPHOLD DEPENDENCIES . 33

7 CONTRIBUTIONS AND FUTURE WORK 36

7.1 Contributions . 36
7.2 Future Work . 37

BIBLIOGRAPHY . 38

iv

LIST OF TABLES

5.1 Subject application characteristics 20

5.2 User session set characteristics . 21

5.3 Action words found in each application 23

5.4 Percent of unique resources and requests in user accesses that contain
a static extension or action word. 27

5.5 Direct objects found in each application 28

5.6 Number of dependent resources identified in unique resources for each
application . 30

v

LIST OF FIGURES

2.1 Typical structure of a web application. 4

2.2 Example of a typical request. 7

3.1 Example of a Dependency. 10

3.2 Dependence relationship between writes, reads, edits, and kills to the
same data in shared application state. 11

4.1 A human could easily assume dependencies between these resources. 13

4.2 Methodology for estimating dependencies. 16

4.3 A set of resource names with action words, static extensions, and
direct objects found. 17

5.1 Manually identified “read” action words and which applications they
are in. 24

5.2 Manually identified “write” action words and which applications they
are in. 25

5.3 Manually identified “edit” action words and which applications they
are in. 25

5.4 Manually identified “kill” action words and which applications they
are in. 26

6.1 Sprenkle et al.’s test case generation process [16]. 34

6.2 Example of augmentation process. 34

6.3 Proposed update to the test case generation process. 35

vi

6.4 Example of test cases with no valid ordering that upholds all
dependencies. 35

vii

ABSTRACT

Web applications must be reliable as the number and popularity of web applica-

tions increases. Web applications are difficult to test because of the large input space

and frequent changes. Thus, their characteristics demand an effective way of automat-

ing the test case generation process. Web application test cases often depend on what

happened to the shared, persistent application state in previous test cases—I call this

an inter-test-case dependency, or simply a dependency. Current test suite generation

processes do not represent dependencies, and generated tests suites often violate de-

pendencies, which negatively impacts the effectiveness of the test suite. This thesis

explores the feasibility of computing dependencies from an application’s resources. I

propose a novel text-based approach to analyzing resources based on the insight that

resources contain embedded context since they were written by human developers. In

a feasibility study of five deployed web applications, I correctly identify several de-

pendencies and show the promise of a text-based approach. I propose a process for

augmenting the test case generation process to produce test suites that better uphold

estimated dependencies. I identify several avenues of future work, including sugges-

tions for improvements to the text-based methodology for estimating dependencies to

improve the accuracy of dependency estimates and implementation of the proposed

augmented test case generation process.

viii

Chapter 1

INTRODUCTION

Web applications are applications that are accessed over a network, generally

through a web browser on the Internet, to accomplish some task. Unlike static web

sites, web applications dynamically generate many of the pages that users see based on

various factors such as the user’s session history or the contents of a common database.

Since web applications are accessed in a web browser, they are compatible with a variety

of operating systems and can be updated and maintained without requiring users to

acquire or install new software. Well-known web applications include search engines

like Google, online tutorial applications like Sakai and WebAssign, financial services

like TurboTax and online banking, and online stores like eBay and Amazon.

Web applications are becoming increasingly common, and people are becoming

more and more dependent on these applications to accomplish tasks such as manag-

ing money and buying goods. It is therefore imperative that web applications work

properly and consistently, which means they must be thoroughly tested; however, test-

ing web applications is difficult and expensive because of their large input space and

frequent changes.

One approach to making the testing of web applications cost-effective and easier

is to automate the testing process. Although this is promising, current automated

testing methods are not efficient or accurate enough. The goal of my thesis is to

improve an existing automated test case generation process by modeling dependencies

between test cases.
The contributions of my work are:

1. the identification of the inter-test-case dependency problem

1

2. a methodology for finding dependencies based on a text-based approach to ana-
lyzing an application’s resources

3. a feasibility study that shows the promise of a text-based approach to estimating
dependencies

4. an augmented test case generation process to produce test suites that uphold
inter-test-case dependencies.

The remainder of this thesis is organized as follows: in Chapter 2, I convey

background information about web applications, the important factors in generating

good test cases for web applications, previous approaches to generating test cases for

web applications, and the limitations of the current state-of-the-art. Chapter 3 de-

tails the test-case dependency problem, which my thesis aims to improve. I propose

a text-based approach to estimating test-case dependencies in Chapter 4 and discuss

the methodology I have developed to automatically find dependencies. I designed and

implemented a feasibility study, summarized in Chapter 5, which shows the promise

of the text-based approach. In Chapter 6, I propose an augmented test case gener-

ation process to produce test suites that adhere to inter-test-case dependencies. The

conclusions of this work and suggested areas of future work are discussed in Chapter

7.

2

Chapter 2

BACKGROUND

In this chapter, I expound on what constitutes a web application. I explain

what makes web applications particularly difficult to test and the goals of a set of test

cases for web applications. I discuss previous approaches to testing web applications

and the limitations of these approaches.

2.1 Web Applications

A web application is a set of web pages and components that form a system in

which user input (navigation and data input) affects the system’s state. Users interact

with a web application in a browser, making requests over a network using HTTP,

as shown in Figure 2.1. When a user’s browser transmits an HTTP request to a

web application server, the application produces an appropriate response, typically an

HTML document that the browser displays. A response can be either static, in which

case the content is the same for all users, or dynamic such that its content depends on

a user’s behavior and input from the current session (session state) or the contents of

the application’s shared data store (application state).

2.2 Challenges and Goals of Testing Web Applications

Web applications present unique testing challenges. Often, frequent changes are

made to web application code to correct errors and update the functionality of the

application. These changes must be made without making the application unavailable

for any significant amount of time because users expect the application to be avail-

able at all times. Additionally, web application components (the browser, server, and

data store) are often geographically distributed, and errors can occur in any of these

3

Figure 2.1: Typical structure of a web application.

components, which makes testing more difficult. Finally, web applications have a large

input space. That is, there is an especially large set of user behaviors that impact

the execution of the web application since responses are often generated dynamically

based on the session state and application state. Since it is impractical to test every

possible scenario of use, it becomes important to concentrate on testing behavior that

is typical of real users. These properties of web applications make traditional software

testing methods difficult, expensive, ineffective, and infeasible when applied to web ap-

plications. Thus, effective, automated, and cost effective testing solutions are needed

for web applications.

The process of testing the functionality of a web application involves generat-

ing effective test cases, executing the generated test cases, and using oracles to the

compare expected and actual results of the executed test cases. My work focuses on

automatically generating effective test cases.

Measuring the effectiveness of a test case is nontrivial. The goal of testing a web

application may be to determine how the application responds to heavy loads, ensure

that there are no security vulnerabilities, or expose faults in the web application code.

My research concentrates on testing the functionality of a web application, rather

than testing security or excessive loads. Measuring fault detection requires faults to

be seeded into the application code. Unfortunately, this introduces problems such as

faults that are unrealistic or biased toward certain types of test cases. Code coverage,

a measurement of how much of the application’s source code will be executed when a

test suite is executed, is a widely accepted and much simpler metric of a test suite’s

4

effectiveness.

2.3 Generating Test Cases for Web Applications

Previous research has examined several approaches to generating test cases for

web applications including static models, concolic testing, navigation models, user-

session-based testing, and statistical usage-based models.

2.3.1 Static Models

A static model seeks to model the structure of a system, which is generally

achieved by examining application code. Static models have been successful for cre-

ating test cases for many kinds of software and were also effective for testing some

of the first web applications, which had fewer dynamic features compared to newer

web applications. Dynamic features of modern web applications, particularly the dy-

namically generated pages and non-traditional control flow, make it difficult to create

effective test cases based on a static model of a web application [1, 5, 11, 12]. Ap-

proaches based on modeling web applications with finite state machines (FSMs) and

using coverage criteria based on FSM test sequences are not meant to represent invalid

inputs and suffer from the state explosion problem, which has been partially addressed

by constraining inputs [2].

2.3.2 Concolic Testing

Several groups propose applying concolic testing to web application testing to

generate white-box-based test cases with the goal of achieving branch or bounded path

coverage [3, 19]. Concrete and symbolic execution and constraint solving are combined

to automatically and iteratively create new input values to explore additional control

flow paths through a PHP script. While this approach achieves good code coverage, it

is not necessarily an accurate representation of real users.

5

2.3.3 Navigation Models

Application navigation is a challenge unique to web applications. Unlike tradi-

tional GUI-based applications, users can circumvent the application’s desired naviga-

tion constraints by utilizing the browser’s features, such as the back button, location

bar, bookmarks, or multiple windows. Tonella and Ricca [17] found that 47% of user

sessions included an infeasible navigation, which is a navigation that does not fol-

low any edge in their extracted model of the web application, presumably caused by

browser-based navigation. Proper enforcement of navigation constraints is important

and should be tested in addition to legal navigation paths through the application.

Some researchers proposed building a navigation model of the application [10,

17, 13, 18] for use in testing and application understanding, among other tasks. Wang

et al. proposed essentially spidering the application from a defined start page and using

a combinatorial approach to input values into the application’s forms to generate the

navigation model [18]. Tonella and Ricca’s navigation is similarly generated by spider-

ing the application from a start page and inputting values from equivalence classes into

forms [17]. They augmented their navigation model with usage information, adding

usage-based probabilities to the edges.

Neither Wang et al.’s nor Tonella and Ricca’s navigation model generation is

completely automated. Both require the values to be input into forms to be known

beforehand. Another limitation of both approaches is that neither seems to explicitly

handle navigation that may depend on different application state (e.g., if a search fails

to find any matches because of the contents of the database).

2.3.4 User-Session-Based Testing

A promising approach that is more representative of real user behavior is user-

session-based testing. User-session-based testing records the actual user accesses to

older versions of the application and parses them into user sessions, which are then used

as test cases. Each user session is a sequence of user requests in the form of resources

and parameter name-value pairs, as in the example request shown in Figure 2.2. Often,

6

Figure 2.2: Example of a typical request.

the resource contains path information. I refer to the non-path part of the resource as

the resource name. The request recorder treats hidden parameters the same as regular

parameters. We say a user session begins when a request from a new Internet Protocol

(IP) address arrives at the server and ends when the user leaves the web site or the

session times out, after a 30 minute gap between two requests from a user [15].

While user-session based-testing is inexpensive and creates test cases that are

representative of actual users, it generates too many test cases, many of which are

redundant. Additionally, direct replay of collected user accesses is limited to user

behavior, which might not produce good code coverage.

2.3.5 Statistical Usage-Based Models

A statistical model is based on the frequencies of the users’ usage patterns,

as recorded in the user sessions, which are inexpensive and simple to obtain. Usage

information is important to model because user behavior does not follow exactly a

statistically determined model and, when given several options, users tend not to choose

between the options equally [16].

Sant et al. [13] proposed generating test cases using a model of user sessions

that requires less space than the original user sessions. The model has two parts:

a navigation model (called a control model by Sant et al.) that represents a user’s

navigation through a web application and a data model that represents the parameter

values associated with these requests.

Sprenkle et al. [16] proposed modularizing navigation models and data models

7

to allow testers to choose navigation and data models that are appropriate to the spe-

cific application being tested. Tuning the navigation model’s configuration—including

how requests are represented and the amount of history used—affects the resulting

navigation model and generated abstract test cases [16]. A tester can generate many

test cases from one abstract test case by adding parameter values generated from dif-

ferent data models to the abstract test cases [13]. Alternatively to using the whole set

of user sessions to generate the statistical usage-based models, the original set of user

sessions can be partitioned based on user privilege and used separately as input to the

test case generation process to generate test cases specific to certain types of users as

described in previous work with coauthors [14].

These approaches have advanced the state-of-the-art of testing web applications,

but still present significant limitations. In the remainder of this thesis, I focus on one

limitation, inter-test-case dependencies, and my approach to addressing this limitation.

8

Chapter 3

FOCUS: TEST CASE DEPENDENCIES

One property of web application test cases is that their execution is often affected

by what has happened to the shared, persistent application state in a previous test case.

Consider the example of an online tutorial application shown in Figure 3.1. Professors

must create quizzes before students can take them. If a student attempts to access a

quiz before it has been created, then the student will be unable to access the quiz and

the application will correctly execute error code rather than application code. In this

case, errors in the source code for accessing the quiz could not be detected, and the

test suite has diminished code coverage. We call this an inter-test-case dependency, or

simply a test-case dependency.

Currently, navigation models represent the intra-test case dependencies but fail

to represent inter -test case dependencies. That is, the current navigation models ac-

count for the history within a single user session, which ensures that dependencies that

come from session state are upheld. For example, a user must log in before accessing

restricted pages. The session state contains a token representing that a user has logged

in which is checked when a user attempts to access a restricted page. Since the current

navigation and data models concentrate on a user’s navigation of the application in-

dependent of other users [10, 17, 13, 18], they are unable to account for dependencies

that come from application state—dependencies that are based on the contents of a

shared data store or database. Dependencies between test cases within the generated

test suite that are not upheld negatively impact the ability of the test suite to cover

code and expose faults. When a dependency is not upheld, the application should

execute error code. While the error case should be tested, it does not need to be tested

repeatedly. Test cases executed in an order that upholds inter-test case dependencies

9

Figure 3.1: Example of a Dependency.

execute application code that represents valid, although not necessarily correct, func-

tionality and likely increases the amount of code covered. In previous work evaluating

automatically generated test suites, our lab group observed that this was a significant

problem that prevented effective test suites in terms of code coverage.

Thus, the goal of my thesis project is to estimate inter-test-case dependencies

automatically and adapt the test case generation process to uphold dependencies.

3.1 Problem

Inter-test-case dependencies result from changes to the shared data store (ap-

plication state). Since these changes are caused by clients’ requests to the server, an

inter-test-case dependency is actually a dependency between requests, which make up

a test case. These requests can be in the same or different test cases. Dependencies

between two requests in the same test case can be represented by current navigation

models regardless of whether the request impacts session state or application state. I

focus on finding dependencies between requests in different test cases.

A request can result in data being written, read, edited, or deleted (killed) in

the shared data store or could be independent of the application state. Although more

sophisticated relationships between writes, reads, edits, and kills could be explored

more extensively in future work, I estimate dependence based on the intuitive assump-

tion about dependencies that (a) data cannot be read, edited, or killed until it has

been written to the application state and (b) once it has been deleted (killed) from the

application state, data can no longer be read or edited. Figure 3.2 represents this de-

pendence relationship. Although an edit or kill could also involve a read to the shared

10

Figure 3.2: Dependence relationship between writes, reads, edits, and kills to the
same data in shared application state.

data store, this does not impact the dependence relationship and is not represented

separately.

Manually determining all dependencies is tedious and error prone even for some-

one who is very familiar with the application. Thus, an automated approach to esti-

mating dependencies is necessary. In order to automatically determine dependencies

between requests, we must know two things: (1) if a request results in a write, read,

edit, or kill and (2) what specific portion of the data store is being affected by the

request. With this information, we can augment an automated test case generation

process to uphold dependencies in generated test suites.

11

Chapter 4

TEXT-BASED APPROACH TO ESTIMATING DEPENDENCIES

My hypothesis is that a text-based approach to analyzing test cases can be used

to estimate test-case dependencies, which can be incorporated into a data model to

generate test cases that are more representative of actual usage and better adhere to

inter-test-case dependencies.

I propose a novel text-based approach to estimating test-case dependencies. My

key insight is that URL requests contain embedded content, which may be leveraged

to identify dependencies between test cases without requiring source code and at a low

cost. Resources are likely to contain useful information since they are written by a

human web application developer so that the source code is easier to develop and

easier to understand later. For example, a human can easily make assumptions about

dependencies between the set of resources shown in Figure 4.1: ViewQuiz is dependent

on CreateQuiz because a human could infer that CreateQuiz writes a quiz to the

shared data store and ViewQuiz reads the quiz from the shared data store. This

example illustrates the intuition behind my approach. The text content of resource

names often reveals the developer’s intent. In the previous example, the verb “create”

suggests a write to the application state, and the direct object “quiz” establishes what

is being written to the application state. I call words, generally verbs, that suggest

whether a request is a write, read, edit, or kill action words. Direct objects in the

resource name reveal which portion of the shared data store is being affected. A shared

direct object among a set of requests suggests a dependency among those requests.

Although resource names often have intuitive meaning to humans, it is difficult for a

computer to automatically detect this meaning and assume dependencies.

12

Figure 4.1: A human could easily assume dependencies between these resources.

4.1 Observation 1: Static Extensions Imply Independence

Many resource names end in static extensions like html, ico, js, and pdf. This

suggests that the request results in a read to a static file and will not change or be

affected by the application state. With very high confidence, we can assume that

requests whose resource names end in a static extension are independent of any other

requests. Once a request is known to be independent, it can be ignored for the rest of

the dependency estimation process.

4.2 Observation 2: Action Words Suggest a Write, Read, Edit, or Kill to

the Application State

Action words within a resource name suggest whether the request results in a

write, read, edit, or kill to the application state. Because of the ambiguity of words’

meanings and the limited context from resources alone, I propose manually identifying

action words that can be classified as write, read, edit, or kill with high confidence as

a first step and consider the challenges to automating this step later.

In a preliminary study (see Chapter 5), I found a relatively small set of action

13

words, which was essentially universal across a broad range of applications. The clas-

sification of action words is the only manual aspect of my proposed methodology for

estimating dependencies, and since action words are universal, a tester would generally

not need to perform this manual step. Although incorrect classification of action words

could severely impact the effectiveness of this approach, a tester could easily configure

the set of classified action words to fit a specific application—presumably with only ba-

sic knowledge of the application’s source code or domain (ex. banking, tutorial, etc.).

I expect that manually configuring the set of action words would also enable testers to

estimate dependencies for applications written in languages other than English.

4.3 Observation 3: Direct Objects Reveal the Portion of the Data Store

Being Affected

Direct objects within a resource name reveal which portion of the shared data

store a request affects. As with action words, current software tools are insufficient in

determining which words are direct objects. Unlike the action words, direct objects

are application-specific, which necessitates an automated approach to finding direct

objects. Direct objects within a resource name are only useful once we know how the

request is changing the application state, so we look for direct objects in resources

that have been classified as write, read, edit, or kill. As a first approach, I assume

that every non-action word in a resource is a direct object—I refer to this set of words

as “potential direct objects.” A word could be assumed to be a direct object based

on its part of speech or the word ordering within the resource, but this is difficult to

determine and not necessarily unambiguous. My approach results in the most inclusive

set of direct objects.

Not every potential direct object suggests which portion of the application state

is being accessed. For example, words like “to” and “in” may be common among several

resources without suggesting a dependency. Linguists refer to these unimportant words

as “stop words” and have established widely accepted lists of the most common stop

words. We do not consider a stop word to be a direct object. In computer science and,

14

specifically, in the web application domain, there are several additional stop words.

For example, a servlet is a commonly used Java class that receives client requests and

generates appropriate responses, so the word “servlet” has no significant meaning in a

web application context. Within a given application, the name of the application is also

treated as a stop word. The application’s name would presumably not be revelatory

of which part of the data store is being accessed since it refers to the application itself.

Finally, the meaning of words in the resource path is different from the meaning of

words in the resource name, so we do not consider words in the resource path direct

objects. When a potential direct object is found in only one unique resource name, it

may reveal what portion of the data store is being affected, but since no other resource

names suggest access or changes to the same portion of the shared data store, it cannot

suggest a dependency and is not considered a direct object.

As with the set of action words, a tester could configure the stop words or even

the final set of direct objects to be application-specific by specifying stop words.

4.4 Key Insight: Action Words and Direct Objects Imply Dependencies

Given a set of resources classified as write, read, edit, or kill and a set of direct

objects, we can create groupings of resources that access or change the same portion of

the shared data store and assume that the dependency pattern from Figure 3.2 holds

within each grouping of resources that have a direct object in common.

Optionally, if a direct object is found in a resource name that does not contain

one of the manually classified action words, a tester could manually examine the re-

source to determine whether a dependency estimate could be made within the context

of the request. An area of future work is to explore the possibility of iteratively deter-

mining the meaning of unclear action words and finding more direct objects to make

additional dependency estimates.

15

Figure 4.2: Methodology for estimating dependencies.

4.5 Methodology for Determining Dependencies

I have developed a methodology for estimating dependencies that leverages the

above insights. The set of unique resources for an application and the manually identi-

fied and classified action words are taken as input, and a set of test-case dependencies

are output as shown in Figure 4.2. The intuition behind this methodology is to handle

the resources for which we have the most confidence in the classification first.

1. Classify resources with known static file extensions as independent.

2. Identify resources that contain one of the manually identified and classified action
words.

3. Identify direct objects within the resources from step 2.

4. Assume dependencies between resources from step 2 with shared direct objects
from step 3.

5. Optionally, use the direct objects from step 3 to make more assumptions about
dependencies.

For the set of resources in Figure 4.1 and a set of action words that includes

view (read), create (write), edit, and remove (kill), this methodology will estimate the

same dependencies that a human would assume, as shown in Figure 4.3. The circles

in this figure represent nodes in the dependency graph for these resources. In step

1 of the methodology, the resource index.html would be classified as independent

since it ends in the static extension html. Next, in step 2, the resources ViewQuiz,

16

Figure 4.3: A set of resource names with action words, static extensions, and direct
objects found.

CreateQuiz, EditQuiz, and RemoveQuiz would be classified as indicating a read, write,

edit, and kill, respectively. In this case, Quiz is the only non-action word in these

resources and would be identified as a direct object in step 3, indicating that these

resources access or change the portion of the application state representing a quiz.

The dependencies indicated by the arrows in Figure 4.3 would be assumed in step 4 of

the methodology and follow the dependence relationship proposed in Figure 3.2. The

resource RecordQuiz in this example also contains the direct object Quiz. In step 5,

a tester could manually determine that the context of the word “record” implies that

it is an action word indicating a write to the application state, thereby assuming an

additional dependency.

4.6 Alternative Approach: Monitoring Data Accesses

An alternative approach to estimating test-case dependencies involves instru-

menting application code to monitor data accesses or changes and executing test cases

to determine the type of access or change and the portion of the data store that each

request maps to. This approach could be explored in future work, but would likely

17

have many of the same limitations as the text-based approach. For example, a de-

pendency is likely to be violated in any test suite executed for this purpose (since the

dependencies are still unknown). If a request violates a dependency, the usual access

or change to the data store could not occur, and a single resource would be mapped

to different accesses or changes to the data store. Determining which of the mappings

represent correct functionality and therefore imply a dependency would be difficult.

Static analysis of the source code could be performed to identify the parts of

the code that result in accesses to the database, and an application’s resources could

be mapped to its source code to estimate dependencies; however, static analysis of

the source code is costly, and mapping resources to source code is not straightforward.

This method would likely result in overestimates of inter-test-case dependencies, which

would substantially limit the amount of user behavior that could be represented in test

suites without violating dependencies and could result in diminished code coverage.

18

Chapter 5

FEASIBILITY STUDY, RESULTS AND OBSERVATIONS

I designed an empirical study to determine the feasibility of the text-based

approach. The goal was to answer these research questions:

1. Can we automatically parse resources into words? The answer to this question
tells us if a text-based approach to estimating dependencies between resources is
possible.

2. Can we manually identify action words in resources that indicating a write, read,
edit, or kill? If so, is the set of action words a reasonable size—large enough to
have breadth in a variety of applications but manageable to manually find and
reasonable to store?

3. How common are action words in resources across a wide range of applications?
If they are universal, then manually identifying action words is not inhibitive to
the proposed methodology.

4. How many resources can be automatically classified as independent or as indicat-
ing a write, read, edit, or kill using action words and static extensions? How often
are those resources used in the collected user sessions? If action words are found
in common resources, the dependencies found with the text-based approach are
likely to handle dependencies between the most common requests.

5. Can we automatically identify direct objects in resources?

6. Are direct objects universal across a wide range of applications? If direct objects
are universal, we can use a list of direct objects rather than going through the
process of programmatically identifying direct objects.

7. Can we correctly assume dependencies based on classified action words and direct
objects? If not, what additional information is required to assume dependencies?

19

Subject # of Classes NCLOC # of Unique Resources
Masplas 9 609 20
Book 11 5279 29
CPM 76 7430 83
Logic 106 10704 90
Logicv2 135 16491 120
DSpace 291 29430 215

Table 5.1: Subject application characteristics

5.1 Subjects

I studied five publicly deployed web applications on servers administered by

Sprenkle et al.’s research group [16, 14]. The applications are written in Java using

servlets and JSPs and consist of a backend data store, a Web server, and a client

browser. Since my testing techniques are language-independent—requiring resources

but not source code for testing, these techniques can easily be extended to other web

technologies.

I used 9 subject user-session sets from user requests to the applications, col-

lected by Sprenkle et al. [16, 14]. The applications were of varying sizes (1K-50K

non-commented lines of code), technologies, and representative of web application ac-

tivities and usages: an e-commerce bookstore (Book) [8]; a course project manager

(CPM) used as part of computer science courses at the University of Delaware; an on-

line symbolic logic tutorial (Logic and a significantly revised version, Logicv2) used as

part of philosophy courses at Washington and Lee University; and a customized digital

library (DSpace) used by our research group to make our publications easily search-

able and accessible [6]. Table 5.1 summarizes the applications’ code characteristics

including the number of unique resources in each application.

Book was the only application for which an email was sent to local newsgroups

asking for volunteer users. These user requests were also used by Sant et al. [13]. For

the remaining applications, users accessed the applications naturally, i.e., they were

not solicited for experiments. Accesses for each application were collected over a long

period of time: CPM: 5 academic semesters, Logic: 2 academic semesters, DSpace: 3.5

years.

20

Subject # User Sessions # Requests % Lines Cvd
Masplas 169 1107 89%
Book 125 3564 61%
CPM 890 12352 78%
Logic 497 16,179 80%

Logicv2 374 16,052 78%
DSpace1 1087 12,277 74%
DSpace2 5012 14,110 46%
DSpace3 3853 15,126 45%
DSpace4 7687 38,155 49%

Total 19,525 127,827 –

Table 5.2: User session set characteristics

I had access to user sessions, that is the original user accesses converted into user

sessions using Sprenkle et al.’s framework [15], useful in answering question 4. Before

processing user accesses, accesses from IP addresses that are known to be spiders, bots,

or malicious were removed to reduce the noise from non-users and better create models

of human users’ navigations. The DSpace user sessions are partitioned by the time

periods in which they were collected to provide more sets of user session subjects to

model and compare.

Table 5.2 shows the characteristics of the collected user sessions, in terms of

the number of user sessions (totaling over 19,000 sessions), the number of user requests

(totaling nearly 128K), and the percent of application code covered by the user sessions

using Cobertura [4]. I report line coverage to show that the user sessions cover a large

portion—but not all—of the application.

5.2 Experiment: Methodology and Results

5.2.1 Parsing Unique Resources

To answer question 1, I created a script to automatically split the unique

resources into words by splitting at camel cased transitions and on non-alphanumeric

characters (ex. /, and ?). These scripts took on the order of a second to execute for

each application.

In our applications, only 15 of the 557 total unique resources contained words

21

that arguably should have been split and were not. Fourteen of those contained com-

pound words that represented a single concept—ex. “mydspace” and “callpapers.”

Only one unique resource—masplas05/submitfile.jsp—contained a word (submit-

file) that definitely should have been split but was not. No resources were incorrectly

split when they should not have been.

For the purposes of this study, I manually corrected the “submitfile” parsing

error, but tools such as AMAP [9] could be used to automatically expand abbreviations,

and Samurai [7] could be used to automatically split words that were not split with

camel casing and non-alphanumeric characters if necessary.

Since Camel casing and punctuation correctly split words in all but a few re-

sources, this fundamental part of the text-based approach can be implemented at a

very low cost, answering question 1.

5.2.2 Manually Identifying Action Words

The first part of my methodology for estimating test-case dependencies is man-

ually identifying and classifying action words as write, read, edit, or kill. My goal is to

find a set of action words that can be classified with high confidence in any context.

To answer question 2, I began by looking at the parsed resource names for

all of the applications except Logicv2, which was added to the set of applications

later. I noted words that seemed to have an obvious classification; however, many of

these words’ classifications no longer seemed obvious without the context of the re-

source. For example, the word format suggests an edit in the context of the resource

dspace/dspace-admin/format-registry but could also be used as a noun. To view

the words out of context, I wrote a script that generated the list of unique words in

each application. Even without context information, identifying and classifying words

as write, read, edit, or kill was difficult and somewhat error prone. For example, I

initially assumed that the word record indicated a write, but I later realized that it

should not be considered an action word because it is used as a noun in the book appli-

cation (ex. in the resource bookstore/EditorialRecords.jsp). Some words clearly

22

Subject # Action Words # Write # Read # Edit # Kill
Masplas 3 2 1 0 0
Book 2 0 2 0 0
CPM 9 3 2 2 2
Logic 13 4 4 3 2

Logicv2 12 4 4 3 1
DSpace 11 2 6 2 1
Total 22 5 10 3 4

Table 5.3: Action words found in each application

indicate an interaction with the application state but have an unclear classification.

For example, login must indicate at least a read, since logging in requires the pass-

word to be checked against the database but could also include an edit if information

about the login is recorded to the database. I did not include these words in the set of

action words, but future work could explore classifying these to produce a conservative

dependency estimate. Other words seemed ambiguous in the initial pass at identifying

and classifying action words but were actually acceptable action words. For example,

view could be used as a noun or a verb but indicates a read in either case. Even

the final set of action words that was used to estimate dependencies contained a word

that was not used as my classification predicted: rather than implying a change to the

application state (i.e., an edit) change was used in the Logic application to proceed to

the next question in a quiz and therefore meant a read. In future work, a researcher

could examine the resources in a larger set of applications to find a more exhaustive

set of classified action words, which could be given to testers so that they do not need

to manually identify or classify action words themselves. Thus, manually identifying

and classifying action words is possible, albeit very difficult, which answers question 2.

Answering question 3, I found and classified 22 action words in the resources of

the subject applications; the breakdown of how many write, read, edit, and kill words

are in the unique resources of each application is shown in Table 5.3. Figures 5.2,

5.1, 5.3, and 5.4 show which action words were contained in the applications, broken

down by the classification of the action words. The grey words are in an application’s

resources but not in the collected user access logs (i.e., none of the resources containing

23

Figure 5.1: Manually identified “read” action words and which applications they are
in.

the gray action words were accessed by real users). The high degree of overlap between

action words in various applications suggests that action words are universal across a

variety of applications.

Some action words may seem to be conspicuously absent. For example, read,

write, download, and store could easily be classified with high confidence as read,

write, write, and write, respectively; however, none of the resources that I examined

contained these words, and I chose to only include action words that were actually

present in the resources for the examined applications. I believe that a slightly larger

sampling of applications would provide a more exhaustive list of the most common

action words. In fact, just adding Logicv2 to the set of applications that I manually

examined for action words would have revealed the action word read. I did not include

the words undo or import, because, like login, their classification is ambiguous. It is

unclear if undo is an edit or a kill, and import could be a write or a read depending

on whether it indicates an external or internal import.

All of these issues point to the need for a configurable set of action words. With

basic knowledge of an application, in the context of a specific application, testers could

identify additional action words with a clearly defined classification or remove action

words that were incorrectly classified.

24

Figure 5.2: Manually identified “write” action words and which applications they are
in.

Figure 5.3: Manually identified “edit” action words and which applications they are
in.

Thus, action words are relatively universal across a variety of applications, and

manually identifying and classifying action words is not inhibitive to the proposed

methodology for estimating dependencies, answering question 3.

5.2.3 Classifying Resources by Static Extensions and Action Words

To answer question 4, I wrote scripts to automatically classify resources in each

application based on the static extensions or action words they contained. Given lists

of static extensions and write, read, edit, and kill action words, the scripts generated

a text file for each application with a list of resources denoted as independent, write,

25

Figure 5.4: Manually identified “kill” action words and which applications they are
in.

read, edit, kill, or unclassified. The execution of these scripts took on the order of a

second for each application.

Table 5.4 shows the percent of unique resources and the percent of requests in

the original set of user sessions containing a static extension or action word. The total

percent handled indicates the percent of unique resources and the percent of requests

that contain either a static extension or an action word—that is, the maximum percent

of resources for which a dependency could be found. Although the lists of resources

and collected user sessions that I analyzed had been scrubbed of many of the resources

or requests with with static file extensions, classifying resources with static extensions

as independent handles a sizable portion of the resources and user requests even in

the scrubbed files—on average, 12.4% of unique resources and 12.5% of user requests

in the collected user accesses. Overall, this small set of action words is present in a

large percentage of the resources and user requests across all of these applications—on

average, 47% of unique resources and 57.7% of user requests, at least 6.9% of unique

resources and 24.59% of the user requests, and as much as 75% of the unique resources

and 93% of the user requests. This adds further assurance that action words are

universal across a variety of applications. Since these action words are present in such

a large percentage of the requests in user accesses, the resources containing action

words are commonly used.

26

Table 5.4: Percent of unique resources and requests in user accesses that contain a
static extension or action word.

One remaining open question is whether we could address the possibility of

requests with static extensions that generate files with static extensions. For exam-

ple, the resource logic2/Professor/ExportGrades.xls generates a spreadsheet from

students’ grades in the data store.

A large percentage of unique resources and user requests in collected access logs

across all of the subject applications that I examined contain a manually identified

action word, which suggests that the text-based approach will estimate dependencies

between resources that are representative of the most common user behavior.

5.2.4 Identifying Direct Objects

To answer question 5 I took a semi-automated approach to finding direct

objects because it was easier given the format of the data (i.e., the intermediate text

file representations generated to be interpreted by a human). I expect the process

could be fully automated by generating more consistent intermediate file (or by not

generating intermediate files and just passing the data directly between scripts). I

27

Subject # Potential Direct Objects # Direct Objects
Masplas 4 1
Book 3 0
CPM 18 9
Logic 15 7

Logicv2 28 11
DSpace 74 53

Table 5.5: Direct objects found in each application

wrote scripts that found all of the words in the resources classified as write, read, edit,

or kill that were not action words and refer to these as potential direct objects. These

scripts executed in less than one second for each application. Then, I manually deleted

potential direct objects that were stop words and potential direct objects that were

only in one resource name until I was left with only actual direct objects. The stop

words I used were: servlet, catch, to, for, by, and all file extensions.

Table 5.5 shows the number of potential direct objects and direct objects found

for each application. The number of direct objects is small compared to the total

number of unique resources, and the elimination process for potential direct objects

significantly reduces the number of direct objects found. Since the number of direct

objects for each application is much smaller than the number of unique resources, the

direct objects are much easier for a tester to examine than the entire set of unique

resources and seems to indicate that words are commonly reused throughout an appli-

cation, thereby defining the vocabulary of the application.

For each application, the direct objects are some of the most common words in

the collected user sessions. This shows that resources containing these direct objects,

which this methodology is likely to find dependencies for, are commonly used. The

direct objects identified for CPM, Logic, Logicv2, and DSpace made sense given the

domain of the application. For example, quiz is a direct object in Logic and Logicv2,

online tutorial applications, and collection is a direct object in DSpace, a document

repository. Although no direct objects are found for Book and only one direct object

was found for Masplas, this is not surprising since both are small applications and

since Book was automatically generated, meaning that our intuition that a human

28

developer would create resource names with intuitive meaning does not necessarily

hold for this application. This methodology successfully identifies direct objects in the

subject applications, answering question 5.

As I expected, the direct objects are not universal, answering question 6. There

is only a small amount of overlap of direct objects in different applications (except

between Logic and Logicv2, which is not surprising) and the overlapping direct objects

seem relatively generic or domain-specific for applications within similar domains: File

is a direct object in Masplas, Logicv2, and DSpace; course is a direct object in Logicv2

and CPM; password is a direct object in Logic, Logicv2, DSpace; group is a direct

object in CPM and DSpace; and the direct object question in Logic and Logicv2 is

the singular of the direct object questions in DSpace.

Thus, the proposed methodology for finding direct objects, which could easily

be automated, find direct objects that are application- or domain-specific.

5.2.5 Assuming Dependencies

I wrote a script that creates a text file with the unique resources—classified as

write, read, kill, or edit—grouped by the direct object contained in the resource name

for each application. This script executed in less than one second. I manually assumed

dependencies between these grouped resources to answer question 7. The number of

direct objects determines the number of groupings of resource names and, thereby, the

number of sets of dependent resources.

My methodology found several dependencies that were confirmed to be correct

based on a manual check, confirming question 7, that we can correctly assume de-

pendencies based on classified action words and direct objects. In Logic, for example,

this methodology correctly estimated that the resource Logic/Admin/CreateStudent

must occur before and cannot occur after Logic/Admin/DeleteStudent, since the lat-

ter resource represents a kill to the direct object quizzes being created by the former

resource.

29

Subject # of Dependent Resources Identified % of Unique Resources
Masplas 2 10
Book 0 0
CPM 28 34
Logic 36 40

Logicv2 60 50
DSpace 105 49

Table 5.6: Number of dependent resources identified in unique resources for each
application

Step 5 of the methodology for estimating dependencies, making assumptions

about the dependency of resources containing one of the identified direct objects but

no action word, would reveal several additional dependencies. For example, given that

quiz is a direct object in the Logic application, a tester could easily determine that

Take implies an access to the quiz data in the application state based on the context of

the resource Logic/Student/TakePracticeQuiz and assumed dependencies between

other resources that contain the direct object quiz.

Figure 5.6 shows the number of unique resources identified within a set of de-

pendent resources for each application, and the percent of unique resources in each

application for which a dependence relationship was found. The resources found to be

dependent is significantly smaller than the entire set of unique resources and would

be much easier for a tester to manually examine to confirm whether the estimated

dependence relationships are correct.

The largest set of dependent resources is 17, found in Logic and DSpace (i.e.,

17 unique resources contained an action word and a shared direct object). Currently,

we assume that all of the reads within one of those sets of dependent resources are

independent of one another and have the expected dependence relationship with all of

the writes, kills, and edits. We make the same assumption for all of the writes, kills,

and edits as well. Whether this assumption is valid is an open question that should

be addressed in future work. For example, must all of the writes for one piece of data

occur before any of the reads, edits, or kills for that data or can a piece of data be

read, edited, or killed after just one write?

30

Other open questions that should be answered in order to more accurately esti-

mate dependencies include:

1. What do we do when there are multiple action words in one resource? If they
are both the same classification? For example, in the resource
dspace/pubs/submit/upload-file-list.jsp in DSpace, both submit and upload

are writes to the shared data store. If they are not the same classification? For
example, in the resource dspace/pubs/submit/cancel.jsp in DSpace, submit
is a read, but cancel is a kill.

2. What if a resource shows up in multiple groupings of dependent resources? For
example, the resource scheduler/servlet/ViewGroupGradesServlet in CPM
contains two direct objects—Group and Grades—and is, therefore, part of two
groupings of dependent resources.

Currently I assume that there are no dependencies between different direct ob-

jects. Future work could examine relationships between direct objects. In Logic, for

example, the data refered to by the direct object question is contained within the

data referred to by the direct object quiz, and dependence relationships exist between

resources containing these direct objects (ex. deleting a quiz also deletes a question).

I expect that the dependencies found with this methodology could help improve

code coverage if the estimated dependence relationships were upheld in a generated

test suite; however, several of the dependencies were over- or underestimates. For

example, if one resource was incorrectly assumed to belong to a set of dependent

resources, this methodology would overestimate that the incorrectly grouped resource

had a dependence relationship with all of the other resources in that grouping. In Logic,

the resource Logic/documentation/studentView.jsp was incorrectly associated with

several other resources, including Logic/Admin/CreateStudent; however, the former

resource is independent of the latter, since it simply refers to documentation that shows

what a student user of the application would see rather than to an access of the student

direct object. In CPM, the dependence between the resources containing the direct

objects demo and sched were underestimated—these words were used as synonyms in

the application but seen as independent direct objects by this methodology.

31

Since no direct objects were found for Book and since it was automatically

generated, it is not surprising that there were also no dependencies discovered for

Book. Similarly, only one dependence relation was found in Masplas between the two

resources that contain the only direct object found for the application. Masplas is

essentially a write-only application, so this is not surprising.

This methodology correctly identifies several dependencies. Although additional

questions must be answered to improve the accuracy of this approach, I expect that

generating test suites that correctly uphold the dependencies that this approach already

finds would more realistically represent user behavior and improve code coverage.

5.3 Feasibility Study Conclusions

The feasibility study confirmed my intuitions that a text-based approach is

promising. I have shown that it is possible to manually identify action words that

indicate accesses or changes to a shared application state and classify them as write,

read, edit, or kill. I found that action words are universal across applications of varying

sizes from a wide range of domains and that direct objects are application- or domain-

specific.

Although this approach can only estimate dependencies where the resource

names reflect what the application does in terms of the data store, it does find de-

pendencies between resources that are commonly used by actual users. Since each of

the scripts I wrote to find dependencies executes in less than one second, my proposed

methodology quickly estimates dependencies and significantly reduces the dependency

results for a tester to check. This feasibility study also points to several ways that

the text-based approach to estimating dependencies could be configured to improve

results, which could be explored in future work.

32

Chapter 6

AUGMENTING THE TEST CASE GENERATION PROCESS TO
UPHOLD DEPENDENCIES

Dependency estimations can be used to generate test cases that uphold test case

dependencies and, therefore, achieve better code coverage. I propose augmenting the

test case generation process developed by Sprenkle et al. [16] to uphold dependencies.

The process, shown in Figure 6.1, takes collected user sessions as input, builds naviga-

tion and data models, and generates a suite of new test cases for the web application

that represent users. From a set of user sessions and a navigation model specification,

the intra-session navigation analyzer uses the navigation model and abstract test case

criteria to produce a set of abstract test cases. Each abstract test case represents the

navigation of a single user. That is, an abstract test case is a series of partially specified

requests that include the resource and parameter names but not parameter values, like

those shown in Figure 6.2. A data model is constructed through analysis of the original

set of recorded user sessions. The abstract test cases and the data model are input to

the test case generator to produce a set of test cases—the test suite.

In the proposed augmented test case generation process, a set of dependency

estimates is input to the test case generator along with the abstract test cases and

the data model, as shown in Figure 6.3. Instead of using only the data model to fill

in parameter values in the abstract test suite, the dependence relationships would be

leveraged as shown in Figure 6.2. Since no reads, edits, or kills to a specific piece of

data can occur until it has been written, we use the data model to fill in the parameter

value and anticipate a dependency violation if a read, edit, or kill request occurs before

a write request. We can use the data model to determine the parameter values for

write requests and keep track of the parameter values for direct objects that have been

33

Figure 6.1: Sprenkle et al.’s test case generation process [16].

Figure 6.2: Example of augmentation process.

written. Subsequent reads, edits, or kills should only fill in parameter values that have

been used in previous write requests. We also keep track of parameter values for direct

objects that have been killed. Once a parameter value has been used in a kill, it should

not be used in subsequent reads or edits. In any case where there is no “live” parameter

value, the data model or when there is no known dependence relationship for a request,

the data model is used to fill in the parameter value.

Since generating test suites has a low cost terms of time and space [16], a large

number of test suites can be generated at a low cost. Knowledge of the anticipated

dependency violations within a test suite could be used to choose test suites with the

fewest anticipated violations, which are likely to achieve better code coverage.

34

Figure 6.3: Proposed update to the test case generation process.

Figure 6.4: Example of test cases with no valid ordering that upholds all dependen-
cies.

Although this proposed test case generation process augmentation is for Spren-

kle et al.’s test case generation process, I believe that it could be applied to other

automated test case generation processes.

An alternative approach to generating test cases that uphold the estimated de-

pendencies is reordering the generated test cases. This process should be analogous

to def-use in compilers, but it is complicated because a valid ordering is not always

possible because a test case may include multiple requests with contradicting depen-

dence relationships. For example, in Figure 6.4, the quiz cannot be viewed until it

is created, but the question also cannot be viewed before it is created. Determining

the best possible ordering (i.e., the ordering with the fewest dependency violations) is

difficult.

35

Chapter 7

CONTRIBUTIONS AND FUTURE WORK

In this chapter, I reflect on the contributions of my work presented in this thesis

and propose directions for future work.

7.1 Contributions

The contributions of my work presented in this thesis are:

1. Identification of the inter-test-case dependency problem—that depen-
dencies between test cases in automatically generated test suites are not repre-
sented by current test case generation processes and are often violated, which
significantly limits the code coverage of generated test suites.

2. A text-based methodology for estimating dependencies that leverages
the intuition that web application requests contain embedded context since they
were written by human developers. Action words within a resource can indicate a
write, read, edit, or kill to the shared application state and direct objects within
a resource indicate which portion of the application state is affected. My key
insight is that dependency estimates can be made based on these action words
and direct objects.

3. The design, implementation, and analysis the results of a feasibility
study that shows the promise of a text-based approach to estimating dependen-
cies. I showed that action words are universal across a variety of applications,
and that a relatively small set of action words is contained in a large number of
the resources of the applications that I studied. Direct objects are application-
or domain-specific, and can be found automatically given a set of resources and
action words. The direct objects found for the applications I studied matched our
expectations of the applications’ vocabulary relatively well. Finally, this study
showed that correct dependencies can be discovered with this approach.

4. An augmented test case generation process to produce test suites that
uphold inter-test-case dependencies or detect anticipated dependency violations.

36

7.2 Future Work

Future work in estimating inter-test-case dependencies includes:

1. Methodology improvements, such as identifying and classifying a more ex-
haustive set of action words by examining more web applications, exploring con-
figuration options to allow testers to more accurately estimate dependencies in
the context of a specific application,

2. Implementation of the alternative approach to estimating dependen-
cies, proposed in Chapter 4, which involves instrumenting application code and
monitoring the database to determine which requests result in a write, read, edit,
or kill to the database and what portion of the database is accessed or changed,

3. Evaluating the accuracy of dependency estimates from the text-based approach
and the text-based approach compared to manually identified dependencies, and

4. Applying dependencies to the data or navigation model and to test suite
reduction. Evaluate test suites generated using the augmented test case gener-
ation process in terms of code coverage relative to test suites generated without
knowledge of inter-test-case dependencies.

37

BIBLIOGRAPHY

[1] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Modelling methods
for web application verification and testing: state of the art. Software Testing,
Verification, and Reliability, 19(4):265–296, 2009.

[2] Anneliese A. Andrews, Jeff Offutt, Curtis Dyreson, Christopher J. Mallery,
Kshamta Jerath, and Roger Alexander. Scalability issues with using FSMs to
test web applications. Information and Software Technology, 2009.

[3] Shay Artzi, Adam Kieżun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar,
and Michael D. Ernst. Finding bugs in dynamic web applications. In Int’l Symp.
on Software Testing and Analysis, July 2008.

[4] Cobertura. http://cobertura.sourceforge.net/, 2012.

[5] G Di Lucca, A. Fasolino, F. Faralli, and U.D. Carlini. Testing web applications.
In International Conference on Software Maintenance, 2002.

[6] DSpace Federation. http://www.dspace.org/, 2012.

[7] Eric Enslen, Emily Hill, Lori Pollock, and K Vijay-Shanker. Mining source code
to automatically split identifiers for software analysis. In 6th IEEE Working Con-
ference on Mining Software Repositories (MSR), May 2009.

[8] Open source web applications with source code. http://www.gotocode.com, 2003.

[9] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova,
Lori Pollock, and K. Vijay-Shanker. Amap: Automatically mining abbreviation
expansions in programs to enhance software maintenance tools. In MSR 2008: 5th
Working Conference on Mining Software Repositories, May 2008.

[10] Chaitanya Kallepalli and Jeff Tian. Measuring and modeling usage and relia-
bility for statistical web testing. IEEE Transactions on Software Engineering,
27(11):1023–1036, 2001.

[11] Chien-Hung Liu, Kung D. C., Pei Hsia, and Chih-Tung Hsu. Structural testing of
web applications. In International Symposium on Software Reliability Engineering
(ISSRE), 2000.

38

http://cobertura.sourceforge.net/
http://www.dspace.org/
http://www.gotocode.com

[12] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In Int’l
Conf. on Software Engineering (ICSE), 2001.

[13] Jessica Sant, Amie Souter, and Lloyd Greenwald. An exploration of statistical
models of automated test case generation. In International Workshop on Dynamic
Analysis (WODA), May 2005.

[14] Sara Sprenkle, Camille Cobb, and Lori Pollock. Leveraging user-privilege classi-
fication to customize usage-based statistical models of web applications. In In-
ternational Conference on Software Testing, Verification and Validation (ICST).
IEEE, Apr 2012.

[15] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. A case study
of automatically creating test suites from web application field data. In Workshop
on Testing, Analysis, and Verification of Web Services and Applications, 2006.

[16] Sara Sprenkle, Lori Pollock, and Lucy Simko. A study of usage-based navigation
models and generated abstract test cases for web applications. In International
Conference on Software Testing, Verification and Validation (ICST). IEEE, Mar
2011.

[17] Paolo Tonella and Filippo Ricca. Statistical testing of web applications. Journal
of Software Maintenance and Evolution, 16(1-2):103–127, 2004.

[18] Wenhua Wang, Yu Lei, Sreedevi Sampath, Raghu Kacker, Rick Kuhn, and James
Lawrence. A combinatorial approach to building navigation graphs for dynamic
web applications. In International Conference on Software Maintenance (ICSM),
2009.

[19] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Ina-
mura, and Zhendong Su. Dynamic test input generation for web applications. In
Int’l Symp. on Software Testing and Analysis, 2008.

39

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 Web Applications
	2.2 Challenges and Goals of Testing Web Applications
	2.3 Generating Test Cases for Web Applications
	2.3.1 Static Models
	2.3.2 Concolic Testing
	2.3.3 Navigation Models
	2.3.4 User-Session-Based Testing
	2.3.5 Statistical Usage-Based Models

	3 Focus: Test Case Dependencies
	3.1 Problem

	4 Text-Based Approach to Estimating Dependencies
	4.1 Observation 1: Static Extensions Imply Independence
	4.2 Observation 2: Action Words Suggest a Write, Read, Edit, or Kill to the Application State
	4.3 Observation 3: Direct Objects Reveal the Portion of the Data Store Being Affected
	4.4 Key Insight: Action Words and Direct Objects Imply Dependencies
	4.5 Methodology for Determining Dependencies
	4.6 Alternative Approach: Monitoring Data Accesses

	5 Feasibility Study, Results and Observations
	5.1 Subjects
	5.2 Experiment: Methodology and Results
	5.2.1 Parsing Unique Resources
	5.2.2 Manually Identifying Action Words
	5.2.3 Classifying Resources by Static Extensions and Action Words
	5.2.4 Identifying Direct Objects
	5.2.5 Assuming Dependencies

	5.3 Feasibility Study Conclusions

	6 Augmenting the Test Case Generation Process to Uphold Dependencies
	7 Contributions and Future Work
	7.1 Contributions
	7.2 Future Work

	Bibliography

