
TOWARDS AN AUTOMATED AND CUSTOMIZABLE LINEAR

CRYPTANALYSIS OF A SUBSTITUTION-PERMUTATION

NETWORK CIPHER

by

Bipeen Acharya

2015

© 2015 Bipeen Acharya
All Rights Reserved

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . vii

Chapter

1 INTRODUCTION . 1

1.1 The Internet of Things . 1

1.2 Motivation for Research . 1

1.3 Possible solution . 3

1.4 Contributions of Thesis . 3

1.5 Outline of Thesis . 4

2 BACKGROUND . 6

2.1 Embedded system . 6

2.2 Cryptography . 7

2.3 Lightweight cryptography . 8

2.3.1 Public Key Cryptography . 9

2.3.2 Private Key Algorithms . 9

2.3.3 Block Ciphers . 10

2.3.3.1 Substitution-Permutation Cipher 11

2.3.3.2 PRESENT . 12

2.4 Cryptanalysis . 13

2.4.1 Linear Cryptanalysis . 13

2.4.2 Finding the best linear expression 14

2.4.3 Piling-up Lemma . 14

iii

3	 LICS : LINEAR CRYPTANALYSIS OF SUBSTITUTION

PERMUTATION NETWORK . 16

3.1 Motivation . 16

3.2 Related Work . 17

3.3 Limitations of Current Work . 17

3.4 Goals . 18

3.5 SPN Cipher . 18

3.6 Overview . 20

3.6.1 Generating a Linear Approximation Table 20

3.6.2 Generating Linear Approximations 21

3.6.3 Generating a Linear Expression 22

3.6.4 Extracting Key Bits . 23

3.7 Linear Cryptanalysis of an SPN . 23

3.8 Implementation . 25

3.9 Discussion . 26

4 CONCLUSION . 27

4.1 Contributions . 27

4.2 Future Work . 28

iv

LIST OF TABLES

3.1 Representation of an S-Box . 19

3.2 Representation of permutation . 19

3.3 Subkey pairs and their corresponding probability bias 26

v

LIST OF FIGURES

2.1 Classification hierarchy of Lightweight Cryptography 8

2.2 Round-1 of an SPN . 11

2.3 Layers of a PRESENT encryption 12

3.1 Encryption example for a single round 20

3.2 Framework for linear cryptanalysis 21

3.3 Generating a linear expression . 24

vi

ABSTRACT

The increasing scale of the Internet of Things exposes the proprietors and users

to a number of security threats in terms of invasion of privacy, identity thefts and

the like. It is therefore absolutely necessary that the Internet of Things be secure

so that communications between these computing devices can happen undisturbed by

any illegitimate third party. Lightweight cryptography has emerged as one of the best

solutions to make the communication secure. Cryptanalysis of a cipher is important

to measure and evaluate the strength of a cipher. In this thesis, I explain in detail

the process of linear cryptanalysis on a Substitution Permutation Network of 4 rounds.

I provide an in-depth background of all key concepts and ideas to make this paper

accessible to all kinds of readers. I also provide an open-source Python implementation

of the linear cryptanalysis, which can be easily customized and expanded to perform

stronger cryptanalysis or to extend to other cryptanalysis techniques. This paper

provides a sound framework on linear cryptanalysis, which can be built upon for further

research on cryptanalysis techniques.

vii

Chapter 1

INTRODUCTION

1.1 The Internet of Things

The definition of the Internet of Things (IoT) is somewhat unclear and is subject

to discussion. There has been a lot of commentary on how it should be defined, and

there is not a common consensus yet. Variations in the definition also stem from

geographical boundaries; while places like China and Europe have accepted the term

Internet of Things, the United States refers to it with phrases like smart grid and smart

device [1]. Regardless of what the definition is, there is a clear understanding of what

the IoT generally entails. Van Kranenburg et al. [1] mentions that the IoT is driven

by two major ideas: first, the increasing ubiquity of internet connectivity, and second,

the drastic miniaturization of computing devices. Therefore, the Internet of Things is

simply a large network of connected computing devices. While it is usually the case

that devices interact with humans, the IoT contains and will contain devices that will

interact with one another without necessitating human interaction. It is estimated that

around 50 billion devices will be connected by the year 2020 [2].

The systems mentioned above encompass a large number of computing devices

that are in use today. These devices are programmed to do very specific tasks. Micro­

processors, Radio Frequency Identification (RFID) tags, sensor networks and mobile

devices are examples of these systems that are becoming increasingly inter connected

and ubiquitous in their use [3].

1.2 Motivation for Research

The IoT is growing, meaning, large and bulky computing devices are being

replaced by small computing systems that still maintain the processing power and speed

1

of the larger devices. Additionally, these systems are becoming increasingly connected

to one another. This interconnection of thousands to millions of devices creates an

intricate network of systems that interact with one another to provide a number of new

applications for the devices. The applications can range from sensors in automobiles

to protecting the environment by monitoring the air and water quality. Although the

idea itself has been around for a while, it is only now becoming increasingly popular.

With the development and advancement of new sensors and the decrease in price of

computing technologies and power, the Internet of Things is becoming more integrated

into everyday life.

The functionality provided by the Internet of Things comes at a cost. Being a

part of the Internet of Things is the same as being a part of a large online database in

that it poses a number of security threats to humans in the form of invasion of privacy,

identity thefts and the like. A system that is a part of this network is subject to attacks

from external sources. If it is compromised, it could result in serious consequences.

For example, if someone attacks the system that a parent is using to monitor her

baby, one can only imagine the consequences the situation could entail. Therefore, the

advancement of the Internet of Things requires that the systems involved are secured

from external attacks of any kind.

Achieving a satisfactory level of security for computing devices has been a chal­

lenge for the computing world. It is even more challenging to make the computing

devices involved in the IoT secure because these devices are essentially very small com­

puting devices with specific computational tasks. These devices do not have resources

to allocate in providing robust security measures as most of their computational power

is used in completing the task they are specifically programmed for. Security is never

the prime objective of building an embedded system. Nevertheless, when a system is

built, it so happens that security is imperative. Allocating resources to provide secu­

rity could result in a decrease in efficiency of the device in terms of speed or in over

consumption of power. Hence, these devices are limited as to what can be used to

provide a satisfactory level of security.

2

Since the devices involved in the Internet of Things are connected to one an­

other and must communicate frequently to keep the network operating to its maximum

capability, there is no room for failure in these communications. To ensure that these

communications are fail-proof, there should be no room for an eavesdropper to affect

the communication. Even though most security approaches are undertaken only after

the systems are well developed and in use, this cannot be the case here because of the

structure of the Internet of Things and the amount of information and data at stake.

1.3 Possible solution

Lightweight cryptography, which entails ciphers specifically designed for devices

with less computational power, seems to be one of the best approaches to achieve this

goal. With encryption and decryption of messages between devices, it can be ensured

that no intruder can play any role in disturbing communication between these systems.

While research in the area of lightweight cryptography for the Internet of Things is

very active — with frequent development of new lightweight ciphers, it is still at a

very primitive level. Therefore, it is important that researchers and scientists alike

cooperate in developing cryptographic ciphers that are robust against possible security

breaches.

1.4 Contributions of Thesis

My goal in this thesis is to strengthen the general knowledge of cryptanalysis,

specifically cryptanalysis of lightweight substitution permutation block ciphers. For

that reason, I focus on evaluating the strength of two simple block ciphers by per­

forming linear cryptanalysis on them. The discussions available on this thesis can

serve as a basic introduction to cryptography and cryptanalysis in embedded systems.

The knowledge obtained from this paper can then be extended to help researchers in

understanding and designing secure ciphers and systems in the future.

During the course of my research on lightweight cryptography on embedded

systems, I realized that the existing literature assumes that the reader has more than

3

basic knowledge of the topics under discussion. As a result, I found it difficult to find

and read papers when I was starting research in this area. As my first contribution,

I have discussed the key concepts without assuming any knowledge of the concepts

beforehand from the reader. Therefore, even new researchers wanting to learn about

the cryptography and cryptanalysis in the Internet of Things can read my thesis to

prepare themselves to dive deeper into other more extensive research papers.

Additionally, there is active research in cryptanalysis of various new and coming

ciphers, but the research fails to provide implementation of these cryptanalysis tech­

niques for readers to better understand the approach and methodologies. The processes

involved and the steps taken in performing cryptanalysis are also not discussed in detail.

As my second contribution, I have provided an implementation of linear cryptanalysis

of a Substitution Permutation Network cipher and the block cipher PRESENT. This

implementation will help the reader understand the linear cryptanalysis technique bet­

ter as the reader can easily follow the implementation together with the discussion.

The implementation, written in Python, is the first step towards an automated and

customizable linear cryptanalysis that can be improved for a stronger cryptanalysis or

extended for other cryptanalysis techniques.

1.5 Outline of Thesis

•	 In Chapter 2, I introduce the reader to a number of topics and concepts that are

imperative in understanding the rest of the thesis. This chapter also discusses

the existing works on lightweight cryptography and cryptanalysis present in the

literature.

•	 Chapter 3 discusses the limitations of the current state-of-the-art in providing a

sound implementation of linear cryptanalysis for block ciphers. Then, it provides

specifics of my implementation approach and methodologies, which complements

the Python implementation released with this paper.

4

•	 Chapter 4 summarizes the contributions made in this thesis in terms of help­

ing strengthen the general understanding of linear cryptanalysis of Substitution-

Permutation Networks. It then outlines future areas of research that are possible.

5

Chapter 2

BACKGROUND

My thesis is focused on linear cryptanalysis of lightweight substitution-permutation

ciphers. This topic generally entails a number of key terms and concepts that are not

straightforward and it helps to provide an overall background of different parts of the

topic. It is also beneficial to the reader to clarify what kind of domains I am referring

to for these ciphers to be used in. I will provide a brief introduction to embedded sys­

tems and go on to discuss cryptography and cryptanalysis and conclude this chapter

by discussing the cipher I will be using for cryptanalysis.

2.1 Embedded system

An embedded system is a combination of hardware and software designed for a

specific purpose. It is generally embedded into larger computing systems and forms a

part of a complete system [4]. Typical examples of embedded systems include cellular

phones, mobile cameras, GPS sensors etc. Modern automobiles contain many small

embedded sensors that continuously monitor and control the operations of a vehicle.

Embedded computing systems are generally small in size, which comes at a

cost. The small size necessitates that the power consumption of these devices be kept

at a minimum because they are generally incapable of withstanding high heat and it

is also difficult to dissipate heat due to the small surface area. Therefore, the devices

cannot be fed with data and computations that require tremendous amount of energy

consumption. Another important property to note about an embedded system is that

their tasks are mostly time-constrained and require high accuracy [5]. For example,

sensors used in a car or a plane are responsible for performing their tasks in real-time

with great accuracy or it could result in a serious consequence.

6

Therefore, it is integral that embedded systems perform their specified functions

without failure. However, it is not always the case that it is the system’s failure to

perform a task. Often, there is some form of an external intrusion that causes the

system to fail in its task. Similarly, with the Internet of Things becoming increasingly

intricate, the embedded systems often have to communicate with one another, which

involves sharing a large amount of data that contain valuable and private information

about individuals and companies. As is so common, there will, without doubt, be

eavesdroppers trying to listen in on these communications between systems. It is

absolutely not right for this to be allowed to happen. Therefore, it is imperative that

the communication between these systems be secured to the maximum. Cryptography

is a solution for this problem, which I will explain in the next section.

2.2 Cryptography

Cryptography is a study of mathematical techniques and algorithms that keep

messages secure by making data accessible to and modifiable by only authorized users

[6]. Cryptography also ensures that the origin of the data can be authenticated and

not repudiated by users. Cryptographic algorithms are used to encrypt and decrypt

information with the use of keys to achieve the services mentioned above. There are a

number of conventional cryptographic algorithms that would serve the purposes men­

tioned above without difficulty. However, most of the conventional algorithms perform

complex operations on numbers, and this is not ideal for an embedded system because

complex operations involve high computations, which results in increased power con­

sumption. Therefore, a recent development in cryptography is the use of algorithms or

protocols that are tailored specifically for use in resource-constrained environments like

sensors, smart cards and actuators [7]. For the scope of my work, I focus my attention

on such cryptographic algorithms, i.e, lightweight cryptographic algorithms.

7

2.3 Lightweight cryptography

Lightweight cryptography has been frequently cited as an approach that can

provide a sufficient level of security without requiring the devices to compromise on

speed and power [7]. As the name suggests, lightweight cryptography provides algo­

rithms or protocols that are lightweight, i.e, they work efficiently without requiring the

computations necessary of conventional cryptographic algorithms. Hence, lightweight

cryptography helps secure the resource constrained embedded computing devices better

in comparison to conventional cryptographic algorithms.

As like conventional cryptography, lightweight cryptographic algorithms are

mainly divided into two classes: Public Key Algorithms and Private Key Algorithms.

Figure 2.1 demonstrates this classification hierarchy of lightweight cryptography.

Figure 2.1: Classification hierarchy of Lightweight Cryptography

8

2.3.1 Public Key Cryptography

Public key or asymmetric key cryptography involves the use of pairs of private

and public keys. There are a set of public keys that are easily available to the public

and the sender and receiver have their own private keys that they use with the public

key to encrypt and decrypt messages. This is made possible by Diffie and Hellman’s

realization that there are functions that are easy to calculate but very difficult to invert

without extra information [8]. The use of a public key actually serves as an advantage

because the communicating parties need not share their private key with one another.

Public key algorithms operate by performing complex arithmetic operations on large

numbers and benefit from the fact that it is very difficult for an intruder to derive the

keys in reasonable time. Despite their potential strength, most public key algorithms

are computationally very expensive and hence are not suitable for most embedded

applications. Elliptic Curve Cryptography is the only public key cryptographic method

that has shown potential in embedded systems because of reduced processing needs [6].

2.3.2 Private Key Algorithms

Also called symmetric key algorithms, private key algorithms differ from Public

Key algorithms because they use the same key for encryption and decryption. Hence,

the keys have to be kept confidential between the sender and the receiver of data.

Symmetric key algorithms are often considered to be very quick and are used commonly

for encryption and decryption [9].

Symmetric key algorithms are generally sub-divided into block and stream ci­

phers, which differ distinctly in the key generation. Block ciphers partition the plain

text into chunks or blocks of data and work with a relatively large partition of data.

They take a k-bit block of plaintext as input, and output a corresponding a k-bit block

of ciphertext during the encryption process [10]. The decryption process is handled

similarly. On the other hand, stream ciphers generate a pseudo-random key stream

and use it to encrypt the plaintext one bit at a time typically using the bit-wise XOR

operation. For this reason, there are a number of differences between a stream cipher

9

cryptographic algorithm and a block cipher, even though they might act similarly on

certain modes of operation. Stream ciphers generally run faster than block cipher

algorithms and are generally preferred over block ciphers for applications with less

computational resources like small embedded devices [11]. Since stream ciphers work

with one bit at a time, they have relatively low memory requirements compared to

block ciphers. Stream ciphers are also noted to have drawbacks because of the lengthy

initialization phase before the first usage. However, there is not a general consensus

on which of the two ciphers is better.

The remainder of this thesis focuses on block ciphers and block cipher crypt­

analysis. We are now going to look at block ciphers in more detail.

2.3.3 Block Ciphers

A block cipher is a function that takes as inputs a k-bit key and an n-bit string

and outputs an n-bit string. Usually, block ciphers consist of a sequence of operations

that are run on the n-bit string (or plaintext) for a number of rounds. Each round

generates a key that is called the roundkey. The first round takes the n-bit plaintext

and the last round returns the n-bit ciphertext after r rounds [8]. The round functions

need to be invertible because it is important for the receiver of the ciphertext to be

able to decrypt it into plaintext. Therefore the functions that are used for encryption

are generally Substitution-Permutation Networks. Substitution adds confusion into

the cipher with the use of substitutionboxes. The substitution layer possesses non­

linear properties, and the large lookup tables required for implementing them require

a large amount of memory resources and are difficult to invert [12]. Permutation

adds diffusion to the cipher by dissipating the redundancy of the plaintext and by

spreading the plaintext over the ciphertext. Even though a number of different linear

operations can be combined to make the computations more complicated, the fact that

permutations are linear operations makes the permutation operation easily invertible.

Hence, ciphers relying solely on diffusion can be broken with minimal effort.

10

2.3.3.1 Substitution-Permutation Cipher

This section describes the components of a Substitution Permutation Network

(SPN), which will be the primary focus of the following chapter. An SPN is a block

cipher that consists of R rounds (R > 1). If N is the size of the input block to the

cipher, then an R round cipher needs R+1 N-bit subkeys. Each round makes use of the

round subkeys for the operations whereas the (R + 1)th subkey is required in the end

to produce the ciphertext. Each round of the network consists of three layers during

encryption. The key mixing layer consists of an XOR operation between the data

block input for that round with the round key. The substitution layer takes the input

block (of size N) and divides it into M sub-blocks of size n (N = Mn). Each of these

sub-block forms an input to a n × n S-Box. This is the non-linear part of the cipher.

The permutation layer then consists of a linear transformation of the bits. Since this

is a linear mapping, the final round does not usually contain a permutation layer as it

can be easily reversed and ,therefore, adds no security. The final (R + 1)th subkey is

XOR’d with the output from the round R to form the ciphertext. Decryption in an

SPN follows the same operations in the reverse order.

Figure 2.2 shows the first round of an SPN with a 4-bit block size. The input

to the S-Boxes are 2-bits.

Figure 2.2: Round-1 of an SPN

11

2.3.3.2 PRESENT

PRESENT is a block cipher designed by Bogdanov et al. [13] with lightweight

cryptography and hardware efficiency in mind. It is an example of a Substitution

Permutation Network that consists of 31 rounds. PRESENT has an input block length

of 64 bits and the key sizes supported are 80 bits and 128 bits. I am going to work with

the 80-bit version in this thesis. PRESENT was designed with hardware efficiency in

mind, and has also been adopted by the ISO/IEC 29192 as suitable for lightweight

cryptography [14]. Each round of PRESENT consists of three main layers: key mixing

layer, a permutation layer and a non-linear substitution layer. The key mixing layer is

a 64-bit XOR operation to generate round keys Ki for 1 ≤ i ≤ 32. The substitution

layer is a 64-bit non-linear transform that makes use of the 4-bit S-box 16 times in

parallel. The permutation layer is a 64-bit linear bit-by-bit permutation.

Figure 2.3: Layers of a PRESENT encryption

12

2.4 Cryptanalysis

While development of new and innovative ciphers is important for preventing

new and improved attacks on systems, it is also equally important to ensure that the

ciphers that are developed are strong and fail-proof against these attacks. Cryptanal­

ysis is a technique used to make sure that ciphers provide provable security against

these attacks. Cryptanalysis is the science of evaluating the strength of cryptographic

primitives and protocols [15]. Cryptanalysis is a very common and important approach

to study and improve the strength of cryptography. From as early as the development

of the Data Encryption Standard, which was one of the revolutions in cryptography,

cryptographers have tried to find weaknesses in algorithms [8]. This, in turn, allows

strengthening the cryptographic algorithms for better security through cryptography.

Cryptanalysis on block ciphers is generally performed by attempting to recover parts

of the plaintext or the secret key.

2.4.1 Linear Cryptanalysis

Linear Cryptanalysis is a known plaintext attack, meaning that an intruder

gets hold of parts of the plaintext corresponding to the captured ciphertext blocks.

Introduced by Mitsuru Matsui in the 1990s, it is one of the most popular cryptanalysis

techniques. Linear cryptanalysis uses linear approximations to model non-linear steps

in the encryption process. Recovering the key bits or part of the key bits is the final

goal of linear cryptanalysis. Linear cryptanalysis studies the evolution of parities of

data bits during the encryption process [15]. The goal of linear cryptanalysis is to

approximate non-linear operations of a cipher using linear approximations of the form

P [i1, i2, i3,ia] ⊕ C[j1, j2, j3,jb] = K[k1, k2, k3,kc]

where A[i1, i2, i3,in] represents A[i1]⊕ A[i2]⊕A[i3] ⊕ ... ⊕A[in] for a set A and

A[i] represents the i − th bit of A [16]. The sets P , C and K represent the plaintext,

13

ciphertext and the key bits respectively. The equation represents the XOR ”sum” of a

plaintext bits and b ciphertext bits.

If we assume that an approximation holds with a probability p, the cipher is very

difficult to break with linear cryptanalysis if p =
2
1 because that gives an indication

of a perfectly random cipher without any weaknesses of linearity. Therefore, linear

cryptanalysis works the best when the probability bias, denoted by |p − 1 |, is large
2

enough, i.e, the probability is far from being random).

2.4.2 Finding the best linear expression

One of the most important obstacles to tackle in linear cryptanalysis is finding

the best linear expression. Since the S-boxes are the only non-linear components of an

SPN, the properties of the S-boxes are to be considered to figure out the best linear

expressions for approximation. By looking at all possible inputs and outputs to an

S-Box, linear approximations can be developed, and these approximations can be used

to find a linear expression with a large enough bias.

2.4.3 Piling-up Lemma

To find the probability bias of a linear expression, cryptanalysts use what is

called the piling-up lemma. Since looking at all possible combinations of plaintexts

and ciphertexts is impossible during cryptanalysis, this lemma is used to approximate

the probability of a linear expression [16]. The lemma is stated as follows:

Lemma: Given n independent random variables X1, X2, X3, ...Xn taking on val­

ues from {0,1}, then the bias t = p − 1 of the sum X = X1 ⊕ X2 ⊕ X3 ⊕ ... ⊕ Xn is2

given by:

nn
t = 2n−1 tj (2.1)

j=1

where t1, t2, t3, ... tn are the biases of the terms X1, X2, X3, ...Xn.

Therefore, this lemma is used to combine the individuals biases of the terms

to calculate an approximate of the probability of linear expression, which gives an

14

indication of how well linear cryptanalysis would work for a given expression or if it

would work.

In the next section, I will use this lemma to find a linear expression that can

be used to perform linear cryptanalysis on a Sustitution-Permutation Network of 4

rounds.

15

Chapter 3

LICS : LINEAR CRYPTANALYSIS OF SUBSTITUTION

PERMUTATION NETWORK

After discussing the key concepts and ideas necessary for understanding linear

cryptanalysis, I am now going to focus attention on a specific Substitution-Permutation

Network (SPN) cipher and guide the reader through the process of implementing lin­

ear cryptanalysis on the cipher. This chapter summarises the motivations on why an

efficient linear cryptanalysis technique is helpful for cryptanalysis, and points the limi­

tations of the current state-of-the-art in helping implement linear cryptanalysis. Then,

it provides an open source automated and customizable framework for implementing

linear cryptanalysis on a Substitution-Permutation Network cipher.

3.1 Motivation

The research for new and efficient methods of lightweight cryptography for use

in embedded systems is growing rapidly. However, despite increasing popularity of

these cryptographic techniques amongst researchers, the understanding of these tech­

niques is still beyond clear. The existing literature summarises definitions and results

of these techniques without really going into detail about the processes involved and

the steps taken in performing cryptanalysis. However, understanding various crypt­

analysis techniques is imperative to cryptography to make sure that new ciphers that

are developed provide provable security against these attacks. Therefore, my goal in

this paper is to make the process of performing linear cryptanalysis of an SPN as clear

as possible so that it can help in understanding and implementing improved linear and

other forms of cryptanalysis.

16

3.2 Related Work

There have been many block ciphers that have been developed recently with

hardware and software efficiency in mind. Hong et al. [17] proposed a low-resource

block cipher called HIGHT with hardware efficiency in mind. They claimed that it

was proper for use in sensors and RFID tags. The authors claim that differential and

linear cryptanalysis of HIGHT are not sufficiently efficient, claiming that it provides

enough security for use in embedded systems. Apart from that, there does not seem

to be a whole lot of research done on the efficiency of HIGHT against cryptanalysis

techniques.

Because of its increasing popularity in the realms of lightweight cryptography,

cryptanalysis of PRESENT has been massively performed. Even though the designers

of PRESENT have claimed that differential and linear cryptanalysis of PRESENT

are practically covered in their design [13], cryptanalysts have continued to perform

variations of differential and linear cryptanalysis on PRESENT. Wang [18] claims that

a 16-round PRESENT can be broken using 264 chosen plaintexts and 264 memory

accesses. Collard and Standaert [14] propose a statistical saturation attack that exploits

a cipher by exploring a generic way to find partitions for a given cipher that can lead

to efficient attacks. The name statistical saturation attack refers to the fact that

it exploits the weaknesses in the diffusion properties of a cipher. PRESENT has a

particular weakness in its diffusion layer and hence is a good target for the proposed

statistical saturation attack. Ohkuma [19] has shown, through the use of linear single-

bit paths, that the linear deviation of paths can be higher than what the designers

of PRESENT initially claimed. They call the portions of keys where this happens

weak keys and hence they show that linear cryptanalysis is possible with 263.5 known

plaintexts for 32% of the keys.

3.3 Limitations of Current Work

Despite significant amount of research on different block ciphers and substitution-

permutation networks, there does not exist an easy-to-understand implementation of

17

linear cryptanalysis. Except for the tutorial presented by Heys [20], there does not

seem to be a work of literature that helps in understanding the process. Even their

tutorial is made difficult to follow because of the lack of implementation code and the

fact that their discussion is only valid for a particular SPN structure that they define

in the paper.

3.4 Goals

As a result of the lack of a research paper that explains the process of linear

cryptanalysis to even beginners doing research on cryptanalysis, I have produced this

comprehensive paper that provides the background of important concepts (in Chapter

2) and explains the whole process of linear cryptanalysis on an SPN. More significantly,

I will release an open source framework for implementing linear cryptanalysis that helps

a great deal in understanding a general 4-round linear cryptanalysis. This framework

will be customizable so that it can be improved upon to be used for improved cryptanal­

ysis technique as well as other forms of cryptanalysis. I use the Python programming

language to implement linear cryptanalysis of an SPN for up to 4 rounds. Python is a

particularly good choice for the purpose because it is one of the most popular languages

used by researchers nowadays, making sure that it will be useful for others to build

upon. The implementation is also very easy to understand, even for people with not

much knowledge about programming, because it is a very high-level language.

3.5 SPN Cipher

Before discussing the cryptanalysis, I am going to separate the SPN cipher that

I am using into its components. The SPN chosen is a 4 round cipher that takes a 16­

bit block of input. The encryption process of this SPN has three layers: substitution,

permutation and the key mixing layer. The substitution takes place using a 4 × 4

S-box that is used 4 times in parallel. The 16-bit data block is broken into four 4-bit

sub-blocks which form the input to the S-Box. Substitution, as mentioned above, is a

non-linear mapping. The S-Box used for this paper is shown in Table 3.1. It should be

18

, 0, 0],

noted that this is just an example of an S-Box and could vary depending on the size

and structure of the SPN.

Table 3.1: Representation of an S-Box

Input(x) 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output S(x) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Since we are using a 4 × 4 S-Box 4 times in parallel, if an input to the cipher

was a 16-bit value like [1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1], after the substitution part,

the resulting output would be [0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0]. The entire input

is divided into 4 4-bit values and then the integer equivalent of the 4-bit values are

substituted with their corresponding outputs from the table.

The permutation part of the round involves transposition of the bits. It is a

symmetric permutation defined as in Table 3.2. It is a simple permutation where the

output i of S-Box j is connected to the input j of S-Box i. Figure 3.1 demonstrates

the effects of the permutation layer.

Table 3.2: Representation of permutation

Input(x) 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

The third layer of the SP network simply involves an XOR operation between

the data block for that round and the round key. If the input data block to this layer is

[1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0] and the round key for that round is [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1

then the output from the key mixing layer is [1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0]. This

is just the result of XOR-ing individual bits of the data block and the round key.

Figure 3.1 demonstrates the 1 round encryption of a 16-bit plaintext in the

mentioned cipher.

19

Figure 3.1: Encryption example for a single round

Now that we understand the different components of a SPN, we are going to

look at how to analyse these components to perform linear cryptanalysis on the SPN.

3.6 Overview

The process of linear cryptanalysis of a cipher requires a number of steps from

understanding the cipher to carefully approximating paths to exploit the linearity (or

the deviation from perfect randomness) of the cipher. Figure 3.2 demonstrates the

process.

3.6.1 Generating a Linear Approximation Table

The linear approximation table is the first step that provides an indication of

where the cipher is weak and can be exploited. To construct a linear approximation

table, all inputs and outputs to the S-Boxes should be enumerated. Since our S-boxes

are 4x4, all possible inputs and outputs can be enumerated using a 16x16 linear ap­

proximation table. The linear approximation table gives values for the probabilities

of equations involving all possible inputs and outputs holding true. That is, all linear

20

Figure 3.2: Framework for linear cryptanalysis

equations that can be formed using the 4 bits as inputs and 4 bits as outputs are en­

compassed in this table. Whenever the probabilities of these equations are high, it gives

an indication that these equations could potentially be used to form approximations

to exploit for linear cryptanalysis.

3.6.2 Generating Linear Approximations

The information from the linear approximation table can help find the necessary

linear approximations by looking at the probabilities of the linear equations holding

true. The only other information needed in coming up with these approximations are

the active S-Boxes for each round. When combined together, the active S-Boxes and

the linear equations form the linear approximations. The approximations are formed

such that they result into an expression that takes place with a high probability. The

current framework generates linear approximations using a random approach. It goes

through the S-Boxes of the first round to choose random inputs and outputs for the

21

first round. Thereafter, the inputs for the consecutive rounds are the results of the

outputs of the previous rounds passed through the Permutation boxes. It is necessary

to check, during random approximation generation, to make sure that whenever there

is an input to an S-Box, there is an output too and vice-versa. This check also is also

sufficient to ensure that there is always a path that reaches the final round.

An example approximation generated is as below:

S12 : X2 = Y0 ⊕ Y1

S13 : X0 ⊕ X2 = Y0

S14 : X0 ⊕ X1 ⊕ X2 = Y0 ⊕ Y1

S21 : X1 ⊕ X2 ⊕ X3 = Y0 ⊕ Y1

S22 : X1 ⊕ X3 = Y0

S31 : X0 ⊕ X1 = Y0 ⊕ Y3

S32 : X0 = Y3

3.6.3 Generating a Linear Expression

Now that we know how to generate the approximations, the approximations are

combined together to generate a linear expression. Combining the approximations en­

tails following the path taken by the equations and the S-Boxes to generate the linear

expression and its respective probability. Provided with the linear approximations, the

current framework automatically generates a linear expression. That is, when linear

approximations involving the S-boxes and the inputs to and outputs from them are

given, a linear expression is automatically generated that can be used to perform linear

cryptanalysis. In addition, the framework also checks to ensure that the linear expres­

sion generated is valid by going through the individual approximations and following

the paths specified by the approximations.

22

3.6.4 Extracting Key Bits

After generating the linear expression, it is finally used to extract key bits. As a

matter of fact, the linear expression generated consists of output from the second-last

round of the cipher. With the help of possible key bits and pairs of plaintext and

ciphertext, an expression is used to check how well a certain key bit does in the key

mixing layer to form an equation that holds with a probability that is the farthest from

1
2 (farthest from randomness). That key bit is then decided to be the actual key bit.

This process of extracting key bits is described in more detail in the next section.

The following section illustrates the process of linear cryptanalysis of an SPN

using specific approximations.

3.7 Linear Cryptanalysis of an SPN

A detailed discussion of the linear cryptanalysis technique for the particular

SPN is available in Heys [20]. I will describe the process of extracting the key bits at

a very high level in this paper. The implementation of linear cryptanalysis provided

with this paper should be read alongside this paper to have a better understanding of

the whole process of linear cryptanalysis.

For the sake of consistency and ease, I use the same approximations provided

in Heys [20]. Due to the lack of time, the current implementation does not generate

usable linear approximations in the sense that those approximations do not lead to

good linear expressions. In the next chapter, I have outlined the work that could be

done to generate good linear approximations.

The approximations that I use are:

S12 : X1 ⊕ X3 ⊕ X4 = Y2

S22 : X2 = Y2 ⊕ Y4

S32 : X2 = Y2 ⊕ Y4

S34 : X2 = Y2 ⊕ Y4

23

These approximations can then be combined or concatenated together to get a

linear expression by following the structure of the SPN and the active S-Boxes. The

structure and the path followed by the approximation can be seen in Figure 3.3. Then,

we can generate an expression that consists of only plaintext bits and the data bits

from the second last round of S-boxes. The generated expression is as follows:

U4,5 ⊕ U4,7 ⊕ U4,13 ⊕ U4,15 ⊕ P4 ⊕ P6 ⊕ P7 = 0

where each Pi are the i-th bit value of a plaintext P and Uj,k is the k-th bit

input value to the corresponding S-Box in the j-th round.

Figure 3.3: Generating a linear expression

We only get an expression up to the second to last round of the cipher because

the approximations provided include S-boxes up to the second to last round. Since

we took the output from the second last round (or the input to the last round) of the

cipher, the expression that we generated is also an R − 1 round expression for an R

round cipher. Nevertheless, this expression can be used to extract parts of the subkey

from the last round. To that extent, first we need to decrypt the last round of the

24

cipher. Since the last round of the cipher does not contain a permutation layer, all we

need to do to decrypt the last round is to reverse the process of encryption. The first

step in decryption is to XOR the ciphertext bits with the corresponding key bits of

the partial round key. This intermediate value is then passed backwards through the

S-Box (or pass it through the reverse S-Box).

For the actual linear cryptanalysis, this same process of decryption is performed

for a large number of plaintext/ciphertext pairs and each value of the possible subkey

bit is given a count. Then, whenever the linear expression that we came up with holds

true for the input to the last round of the cipher (which is the result from decryption

of the last round) and corresponding bits of the known plaintext, the count for the

corresponding subkey bit is incremented. Now, the subkey bit which has a count that

differs the maximum from half the number of plaintext/ciphertext pairs is going to be

the correct value for the subkey. This is true because that indicates that the linear

expression held true with a probability that was of the greatest difference from 1
2 .

3.8 Implementation

I have implemented a linear cryptanalysis attack on the Substitution Permu­

tation Network cipher using 10000 plaintext/ciphertext pairs. A result of one of the

executions is shown in Table 3.3. The table shows that the subkey bit pair of 15-1

holds true with a probability bias that is the highest (meaning it differs the maximum

from 1
2 .) Additionally, the actual subkey pair for this exection was: [1111, 0001] which

is [15,1]. Therefore, the results demonstrate the claim. Following this process, every

execution of the attack gives me the correct result for the partial subkey bits, which

means that the Substitution-Permutation Network can be broken very efficiently upto

4 rounds. The link to the implementation can be found in my github repository at:

https://github.com/acharyab15/spn_linear_cryptanalysis.git

25

https://github.com/acharyab15/spn_linear_cryptanalysis.git

Table 3.3: Subkey pairs and their corresponding probability bias

Pair Probability Bias
15 - 1 0.034300
14 - 1 0.032600
15 - 0 0.027500
15 - 15 0.025000
2 - 12 0.022900
3 - 12 0.019400
15 - 14 0.019200

3.9 Discussion

This chapter discusses a successful implementation of linear cryptanalysis on a 4­

round SPN. The success rate of this implementation is 100% because of the fact that the

cipher is a 4-round SPN with 16-bit inputs. The rate of success decreases as the number

of rounds and the size of the input decreases because the approximations start becoming

weaker. However, understanding my implementation of linear cryptanalysis helps in

developing the background required for an improved understanding of cryptanalysis

techniques.

Unlike most works of research, I have provided an open source Python frame­

work that automates various steps of linear cryptanalysis and makes it easily accessible

to readers. The framework automatically generates linear expressions from approxi­

mations that can be used for linear cryptanalysis. Linear approximations can also be

randomly generated, however, the current implementation needs some work before it

can generate good linear approximations for cryptanalysis. The structure of the frame­

work is very customizable so that with some slight changes to the framework, improved

cryptanalysis can be performed on increased rounds of the cipher. With some work, it

can also be extended to other kinds of cryptanalysis like differential cryptanalysis on

the cipher.

26

Chapter 4

CONCLUSION

This thesis deals with linear cryptanalysis of Substitution-Permutation Net­

works. It is a first step towards developing an open source framework for an automated

and customizable linear cryptanalysis of SPNs.

4.1 Contributions

The contributions of my work presented in this thesis can be summarized in two

major points:

1. A thorough examination of the existing literature to strengthen the general under­

standing of lightweight cryptography, especially block ciphers. Through careful

assessment of two substitution permutation block ciphers, I have elucidated the

reader to the different components of a block cipher and the various processes

that are undertaken in encrypting and decrypting messages using a substitution-

permutation block cipher.

2. An open source framework for implementing linear cryptanalysis of substitution-

permutation networks in python has also been provided as a contribution. This

framework, which takes the reader from generating linear approximations to

extracting the key bits from the cipher, is important in studying the process

of linear cryptanalysis. The implementation also generates linear approxima­

tions using a random path generation method. Parts of the framework have

27

also been automated and work has been done to make this framework customiz­

able so that it can be used with other ciphers and be improved for a more ex­

tensive cryptanalysis. The implementation of the framework can be found in:

https://github.com/acharyab15/spn_linear_cryptanalysis.git

4.2 Future Work

The work presented in this research can give directions to different kinds of

future research:

1. The task of generating linear approximations is a difficult one which needs a great

deal of understanding. The current implementation generates linear approxima­

tions using a random path generator. However, that is not likely to result in

approximations that lead to expressions with high probability bias. So work still

needs to be done in finding a way to approximate paths that results into the best

linear expression.

2. The existing literature talks about	 a ”big enough probability bias” for linear

cryptanalysis to work efficiently. However, it is not clear how big is big enough.

Research can be done to calculate how much bias is needed for certain rounds

for linear cryptanalysis to work efficiently.

3. The current work only looks at Substitution-Permutation network ciphers. The

discussion and implementation provided can be built upon to look at other block

ciphers, and also be extended to stream ciphers with some work.

4. Linear cryptanalysis is the only cryptanalysis technique studied in this paper.

During the course of my research, I came across the processes of performing of

differential cryptanalysis too. The knowledge of linear cryptanalysis from this

paper can definitely be extended to study differential cryptanalysis in greater

detail.

28

https://github.com/acharyab15/spn_linear_cryptanalysis.git

Bibliography

[1] Rob Van Kranenburg, Erin Anzelmo, Alessandro Bassi, Dan Caprio, Sean Dodson,

and Matt Ratto. The internet of things. A critique of ambient technology and the

all-seeing network of RFID, Network Notebooks, 2, 2011.

[2] Dave Evans.	 The internet of things: How the next evolution of the internet is

changing everything. CISCO white paper, 1, 2011.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito.	 The internet of things: A

survey. Computer networks, 54(15):2787–2805, 2010.

[4] S. Mittal.	 A survey of techniques for improving energy efficiency in embedded

computing systems. International Journal of Computer Aided Engineering and

Technology, 6(4):440–459, 2014.

[5] Michael Barr and Anthony Basa.	 Programming Embedded Systems: with C and

GNU Development Tools. O’Reilly Media Inc., Connecticut, USA, 2006.

[6] Thomas Wollinger, Jorge Guajardo, and Christof Paar.	 Cryptography in embed­

ded systems: An overview. Proc. Embedded World 2003, pages 735–744, 2003.

[7] Masanobu Katagi and Shiho Moriai. Lightweight cryptography for the internet of

things. Sony Corporation, pages 7–10, 2008.

[8] Christophe De Canniere, Alex Biryukov, and Bart Preneel.	 An introduction to

block cipher cryptanalysis. Proceedings of the IEEE, 94(2):346–356, 2006.

[9] Ayushi. A symmetric key cryptographic algorithm. International Journal of Com­

puter Applications, 1(15), 2010.

29

[10] Bart Preneel and Hongjun Wu. Cryptanalysis and design of stream ciphers. 2008.

[11] Min Chen, Shigang Chen, and Qingjun Xiao. Pandaka: A lightweight cipher for

RFID systems. In INFOCOM, 2014 Proceedings IEEE, pages 172–180. IEEE,

2014.

[12] Hannes Kruppa and Syed Umair Ahmed Shahy. Differential and linear cryptanal­

ysis in evaluating aes candidate algorithms. 1998.

[13] Andrey	 Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.

PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware and

Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,

September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer

Science, pages 450–466. Springer, 2007. doi: 10.1007/978-3-540-74735-2 31.

[14] Baudoin Collard and F-X Standaert.	 A statistical saturation attack against the

block cipher present. In Topics in Cryptology–CT-RSA 2009, pages 195–210.

Springer, 2009.

[15] Elad Pinhas Barkan. Cryptanalysis of ciphers and protocols. Ph.D. Thesis, 2006.

[16] Alex Biryukov and Christophe De Cannière. Linear cryptanalysis for block ciphers.

In Encyclopedia of Cryptography and Security, pages 722–725. Springer, 2011.

[17] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok

Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, et al. Hight: a

new block cipher suitable for low-resource device. In Cryptographic Hardware and

Embedded Systems-CHES 2006, pages 46–59. Springer, 2006.

[18] Meiqin Wang.	 Differential cryptanalysis of reduced-round present. In Progress in

Cryptology–AFRICACRYPT 2008, pages 40–49. Springer, 2008.

30

[19] Kenji Ohkuma. Weak keys of reduced-round present for linear cryptanalysis. In

Selected Areas in Cryptography, pages 249–265. Springer, 2009.

[20] Howard M Heys. A tutorial on linear and differential cryptanalysis.	 Cryptologia,

26(3):189–221, 2002.

31

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 The Internet of Things
	1.2 Motivation for Research
	1.3 Possible solution
	1.4 Contributions of Thesis
	1.5 Outline of Thesis

	2 Background
	2.1 Embedded system
	2.2 Cryptography
	2.3 Lightweight cryptography
	2.3.1 Public Key Cryptography
	2.3.2 Private Key Algorithms
	2.3.3 Block Ciphers
	2.3.3.1 Substitution-Permutation Cipher
	2.3.3.2 PRESENT

	2.4 Cryptanalysis
	2.4.1 Linear Cryptanalysis
	2.4.2 Finding the best linear expression
	2.4.3 Piling-up Lemma

	3 LiCS : Linear Cryptanalysis of Substitution Permutation Network
	3.1 Motivation
	3.2 Related Work
	3.3 Limitations of Current Work
	3.4 Goals
	3.5 SPN Cipher
	3.6 Overview
	3.6.1 Generating a Linear Approximation Table
	3.6.2 Generating Linear Approximations
	3.6.3 Generating a Linear Expression
	3.6.4 Extracting Key Bits

	3.7 Linear Cryptanalysis of an SPN
	3.8 Implementation
	3.9 Discussion

	4 Conclusion
	4.1 Contributions
	4.2 Future Work

