Mrr thuss as. talsin you k bepmevent of it mamaje of thur dangtee Besoic thoore towat at chapel in warkngto toer Envorsile, guly shinso at 99 m . and i- attin thees sivior widding at home from $9 \frac{1}{4}$ \& 11 the same erming.

In- thns a o relson
 at the chaper of Washmegins ther enmessicfinly blit1580 at 9 P.M. and $t \rightarrow$ athui then silmer wedding at hoome frome 9玄 if 11 the same emuing
en $x=x \cos \alpha-y \sin \alpha \cdot y=x \sin \alpha+y \cos \alpha$

$$
\begin{aligned}
& \alpha=40^{0} \cos \alpha=\sin \alpha=\frac{1}{\sqrt{2}} \quad x^{2}=\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^{2} y^{2}=\left(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}\right)^{2} \\
& \left(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}\right)^{2}+\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)\left(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}\right)+\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^{2}-\frac{16}{3}=0 \\
& \frac{x^{2}}{2}+\frac{2 x y}{2}+\frac{y^{3}}{2}+\frac{x^{2}}{2}-\frac{y^{2}}{2}+\frac{x^{2}}{2}-\frac{2 x y}{2}+\frac{y^{2}}{2}-\frac{16}{3}=0
\end{aligned}
$$

$\frac{3 x^{2}}{2}+\frac{y^{2}}{2}-\frac{16}{3}=0$ or $9 x^{2}+3 y^{2}=32$
theonstruen, put $y=0$ ($9 x^{2}=32 \quad x^{2}=\frac{32}{9} \neq x= \pm \frac{4}{3} \sqrt{2}$

$$
\begin{aligned}
& x=0 \\
& y= \pm 3 \text { near } y .
\end{aligned}
$$

