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ABSTRACT

Whether we acknowledge it as a poset or not, posets arise in many natural
contexts, and many also seem to warrant linear extensions (or rankings) of the poset.
In some sense, the linear discrepancy of a linear extension L of a poset P indicates the
unfairness of L. We describe triple-optimal posets, a class of posets where there exists
at least one linear extension which has linear discrepancy three times the minimum
linear discrepancy l. This is the worst case scenario; there is no way to have a worse
linear discrepancy than triple the optimal linear discrepancy. Two players, a Builder
and an Assigner, play an on-line game to construct a linear extension. The Builder
gives the Assigner points from P that the Assigner subsequently irrevocably places in
a linear extension LA using an algorithm. The Builder’s goal is to maximize the linear
discrepancy of LA while the Assigner battles to minimize the linear discrepancy of
LA. Restrictions can be placed on the Builder, such as up-growing where the Builder
cannot give points less than those points already given. In the context of up-growing,
we play this on-line game using triple-optimal posets and develop an algorithm that
caps the linear discrepancy of LA at 2l on triple-optimal posets with linear discrepancy
l.
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CHAPTER 1. INTRODUCTION

1.1. Background

In a set, we can create or describe relationships between the elements, or points.
One set is the natural numbers, and as we learned in elementary school, 3 is greater
than 2 and 4 is greater than 3. Also, 4 is greater than 2. What we did not learn
in elementary school is that our numbers are simply elements of an infinite totally
ordered set, where every element is comparable to each of the other elements in the
set. (While we do not have all of the notation to understand the below definition of
comparable quite yet, do not fret; you will shortly understand.)

Definition 1.1. Two distinct points in a set P are comparable if either x < y in P
or y < x in P .

Totally ordered sets are pretty straight-forward, however, and a far more in-
teresting, complex topic is a set that is not totally ordered. What does it mean to
not be totally ordered? Two elements can now be incomparable. Before defining
incomparability with mathematical terms, we will build an example to make sure we
understand the mechanics behind this concept.

Let’s enter the world of an Emergency Room waiting area. Just like a normal
ER, people are coming in with various medical afflictions to (hopefully) be treated by
our amazing doctors. Jess and Elle are sitting in our luxurious waiting room. Both
are right-handed and have broken their right arms in the same location on the same
bone. Jess and Elle are clearly different people; however, there is no inherent reason
Elle should be treated before Jess or vice versa (other than the doctor only tending
to one patient at a time). Also, we should note that neither Elle nor Jess would be
terribly distraught if the other were to be called back earlier than themselves. Thus,
we deem Elle and Jess to be incomparable to each other in our Emergency Room.

Definition 1.2. Two distinct points in a set P are incomparable if the two points
are not comparable in P . We write x ‖ y in P if x and y are incomparable.

Similar to our elementary school numbers, we can still have patients comparable
to our friends Elle and Jess. This includes Lydia, a patient with a heart attack, and
Riley, a patient with a stubbed toe. Our friends writhing in pain from a broken arm,
while incomparable to each other, are not as high priority as our new friend Lydia,
but are higher priority than our fumbling patient, Riley.

1.2. Further Background (With More Math Talk)

Now these fun and exciting sets do have a name. Since these sets are not totally
ordered, we call them partially ordered sets, or posets.

1



Definition 1.3. A partially ordered set or poset, P = (X,P ) is:

a ground set X whose elements are referred to as points and

a binary relation P (also called a partial order) on X that is:

reflexive− (x, x) ∈ P , for all x ∈ X

antisymmetric− if (x, y) ∈ P and (y, x) ∈ P, then x = y

transitive− if (x, y) ∈ P and (y, z) ∈ P, then (x, z) ∈ P

One alternative to writing (x, y) ∈ P , is the notation x ≤ y in P , and if we know
that x and y are distinct points we can write x < y in P . Sometimes we will drop
the “in P” when the poset to which we are referring is understood or clear. Now,
when looking at the definitions of comparability and incomparability, we should fully
understand the notation as well as the concepts.

Definition 1.4. Given a poset A, a poset B is called a subposet of A iff the ground
set of B is a subset of the ground set of A and has the same binary relations for that
subset. We can also write B ⊆ A.

Example 1.5. One poset is the “divides poset” Pn. Given a ground set of integers
{1, 2, 3, . . . , n}, we say that a ≤ b iff a divides b. Otherwise, a ‖ b. So for P6 composed
of the ground set {1, 2, 3, 4, 5, 6}, 2 < 4 and 2, 3 < 6, but 2 ‖ 5. Hence, for P6 we
have:

the ground set X = {1, 2, 3, 4, 5, 6}
the binary relation P = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2),

(2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}

All of those numbers and parentheses are a little difficult to distill quickly. “So,
is there an easier way?!” you ask excitedly. Well of course! Figure 1 shows the order
diagrams of a few posets. The first poset is a chain, where every point is comparable
to every other point, also known as a total order. The next poset is an antichain,
where every point is incomparable to every other point. The third diagram is a 2 + 2
poset. The family of this kind has two chains, one of size m and other of size n, both
are incomparable to the other and written m + n. Finally, IV is P6 as described in
Example 1.5.

An order diagram (sometimes called a diagram or Hasse diagram) displays the
elements as points with lines signifying a comparability. In other words, if there is
a line connecting two points, then the element higher up in the diagram is greater
than the lower one in the poset. If there is no line connecting two points, then they
are incomparable. Since drawing lines for all the comparabilities can make for a very
messy diagram, we do not draw the lines implied by transitivity. In Example 1.5 we
know that 1, 2, 3 ≤ 6. When we draw the diagram for P6 in III of Figure 1 we do not

2
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Figure 1. Order Diagram

explicitly draw a line from 1 to 6 because that line is implied by the lines from 1 to
2 and from 2 to 6 (or from 1 to 3 and from 3 to 6).

1.3. What do I do with a poset?

Now imagine that our intercom calling out patients’ names were to call out
all the incomparable points at one time. If you imagined anything other than an
inaudible mess, really think about more than five names being called at the exact
same time. Thus, we need to put our patients (the ground set) in some order for
the nurse to call out in a logical and practical sequence that treats higher priority
patients first (an order that does not reverse any comparabilities). In mathematical
terminology, we organize our poset into a linear extension L.

Definition 1.6. For a poset P , a linear extension L of P is a list (total order) of the
elements in an order such that if x < y in P , then x will not be in a higher position
than y in the linear extension L. The concept of in a higher position will be made
precise after Example 1.8 by defining height.

Definition 1.7. In a poset P = (X,P ), a comparability between two points x and
y, where x < y in P , is reversed in a total order T on X if x is placed in a higher
position than y in T . Thus, T would not be a linear extension.

Example 1.8. In Figure 2, we see the diagram of P6 repeated from Figure 1 as well
as a few a linear extensions of P6. This list is not complete; we leave at least one for
the reader. Notice that 1,2,5,4,6,3 is not a linear extension since 3 < 6 in P6, but 6
is above 3 in this total order.

We do want to mention that counting (not to mention generating) all linear
extensions of a poset is computationally overwhelming. Imagine a poset with 100
points and trying to figure out all of the possibilities.

Definition 1.9. The height of a point x in a linear extension of a poset P , denoted
hL(x), is one more than the number of points between x and the lowest point in the
linear extension. It can also be defined as the number of points in L that are below
x in L, hL(x) = |{y ∈ P : y < x in L}|. The height of the bottom point z0 is zero:
hL(z0) = 0.

3
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Figure 2. Linear extensions of the diagram in Figure 1

You might be thinking to yourself, “But how do we put incomparable elements
in an order? Won’t that cause better or worse linear extensions? There are probably
some instances of forcing an unfairness, right?” You’re right, and you definitely want
read the entire thesis! If you weren’t asking that, we forgive you, but you will still
want to read all of this thesis, you just will not be as excited about everything.

To address the first question, since incomparable points do not need to be in
any given order, we can put them in whatever order works. Fundamentally, calling
back Elle before Jess is just as acceptable as diagnosing Jess before Elle. However,
Lydia absolutely must be seen before both Elle and Jess. Similarly, in Figure 2 the
farthest left linear extension can put 3 below 4, and the next linear extension can put
4 below 3. This does not violate any rules and is acceptable.

To address the second question, what the layperson can think of as the unfairness
of an order, mathematicians call the linear discrepancy of a linear extension L of a
poset P , also written ld(L,P). We can then have an optimal linear discrepancy ld(P),
which is (quite obviously) the smallest linear discrepancy across all possible linear
extensions. To define these terms more precisely, we have the following definitions:

Definition 1.10. The linear discrepancy ld(L,P) of a linear extension L of a poset
P is the maximum difference between the heights of any two incomparable points in
L.

Definition 1.11. The optimal linear discrepancy ld(P) of the poset P (or just linear
discrepancy of a poset) is the smallest linear discrepancy across all linear extensions.
That is

ld(P) := min{ld(L,P) : L is a linear extension of P}.

The concept of linear discrepancy was introduced in 2001 by Tanenbaum et al.
in [5]. Their paper revolves around four examples: residency selection by two future
doctors exiting medical school, the ER problem we touched on earlier in this thesis,
project alternatives for a management presentation and salary computation.

To address the third question, we reference research first explored by Kierstead
in [3] on coloring graphs in an on-line fashion where vertices of graphs were given
one at a time and assigned a color based on an algorithm. Our application of on-line
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differs from the variety explored in [3] in that we will be examining linear extensions
of posets instead of graphs and colors.

Our interests begin when we play a game with our friend Alex. We will give Alex
points from a poset P one at a time and tell Alex all of the relations the point has
with the previously given points. She will follow an Algorithm to irrevocably order
the new points in some linear extension. Because we are Bullies, we are trying to
force the largest unfairness (linear discrepancy) possible. (I know, it’s kind of mean;
that’s life.) However, Alex is not a pushover, so she is going to attempt to limit the
linear discrepancy using some Algorithm. Additionally, we, the Bullies, cannot make
two points x and y appear to be incomparable when in fact later we give a point z
such that x < z < y; in other words, transitive relations must be given.

Research surrounding on-line games attempts to create an algorithm such that
for a family of posets the linear discrepancy of the linear extension created by the
on-line game will be limited to a certain upper bound f(l), where f is a function
and l is the optimal linear discrepancy. This is Alex’s goal in our brief description.
At the same time the Bully (also known as Builder) is trying to force a lower bound
g(l) regardless of the algorithm, where g is a function and l is the optimal linear
discrepancy. We, as mathematicians, want g(l) = f(l).

Most work in the field of on-line problems for posets has focused on the width
and chain partitions of specific classes of posets. We will focus on linear discrepancy
instead of width and chain partitioning. Keller, Streib and Trotter first studied on-line
linear discrepancy in [2]. The results from that paper conclude that using a certain
on-line algorithm, any poset with linear discrepancy l has an upper bound of 3l − 1.
Additionally, for every positive integer l, there is a poset with linear discrepancy l on
which a Builder can force for any algorithm a lower bound of 3l − 1.

This thesis will study up-growing on-line linear discrepancy. Up-growing re-
stricts the Builder order to only giving points that are greater than or incomparable
to points already in the on-line linear extension. The motivation to study up-growing
stems from known examples achieving the lower bound 3l − 1 all relying on Builder
orders that are not up-growing. Thus, those lower bounds exploit the ability to force
points below previously given points due to comparabilities. Felsner et al. studied
on-line chain partitions on semi-orders restricted to up-growing in [1]. Semi-orders
are a special class of interesting posets, that we will keep outside of the scope of this
thesis.

A curious coincidence is that every linear extension, from bottom to top, is
a sequence in which the Builder can give points to the Assigner in an up-growing
restricted setting. Assuming we have been ordering our linear extensions such that
lesser elements in the poset go lower in the linear extension, if the Builder gives the
points from bottom to top, no point less than the point in the poset being given will
remain in the linear extension.

We begin with describing triple-optimal posets and the different subposets of
a triple-optimal poset. Necessary conditions for a poset to be in the triple-optimal
family are also discussed. Through a few iterations and some problem solving, we

5



develop an algorithm to limit the linear discrepancy of an on-line linear extension to
2l in an up-growing setting. We then prove that this algorithm will have an upper
bound of 2l and a Bully can force a lower bound of 2l.

6



CHAPTER 2. TRIPLE-OPTIMAL POSETS

Now that we are experts in the field of partially ordered sets, we can confidently
move forward. Kloks, Kratsch and Müller in [4] found that for any poset with optimal
linear discrepancy l the worst possible linear discrepancy across any of the linear
extensions of that poset is necessarily less than or equal to 3l. This means we could
never find a poset with a linear extension with quadruple the linear discrepancy of
the poset. Let’s explore this topic further by describing a triple-optimal poset.

2.1. Description of triple-optimal posets

Posets come in all varieties and can be broken into different families or general
patterns. Two of the first ones that you learn are chains, total orders that look like
one long stick (or even possibly a chain) as shown in I in Figure 1, and antichains,
posets with no comparabilities between any of the points as shown in II in Figure 1.
In terms of creating linear extensions out of these posets, chains and antichains are
quite mundane, and they do not leave that much to research. There is a class of
posets that exhibit a particularly interesting behavior, and we call the class of them
triple-optimal posets. Every poset with optimal linear discrepancy l in our family of
triple-optimal posets has at least one linear extension, which we call the worst linear
extension, with linear discrepancy 3l.

Definition 2.1. A triple-optimal poset P is a poset for which there exists at least
one linear extension L such that ld(P , L) = 3 ld(P).

In Figure 3 we see the diagrams of two posets with the triple-optimal property.
An optimal and a worst linear extension are given next to each of them. While the
linear discrepancy is a result of the difference between multiple pairs of points in the
left diagram, we take particular note of the pair a and j. In LO j and a are three
apart, also j and a are 9 apart in LW . Similarly in the right diagram, c and a have
the same property. Looking at LO, b and i are also 3 apart. It may be helpful to note
or mark each of the incomparabilities in the four linear extensions.

In this section and beyond, we will be looking at two linear extensions: one
linear extension of a triple-optimal poset with optimal linear discrepancy l, which we
will call LO, and one linear extension of the same poset with linear discrepancy 3l,
which we will call LW , since it is a worst linear extension of this poset with respect
to linear discrepancy.

We will only look at l-critical triple-optimal posets. For ease of reading, through-
out this thesis where we write “triple-optimal” poset we actually mean “l-critical
triple-optimal” poset.

Definition 2.2. An l-critical triple-optimal poset is a triple-optimal poset such that
there are no points that can be removed and keep an optimal linear discrepancy l and
worst linear discrepancy 3l.

For some triple-optimal poset Q, if we can remove a point(s) from Q and LW

still has linear discrepancy 3l, then Q is not a l-critical triple-optimal poset. It is also

7
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Figure 3. Triple-optimal poset with an optimal linear extension and triple linear
extension

worth noting that a critical triple-optimal poset P does not contain any point z such
that z > g for all g ∈ P or z < g for all g ∈ P . This happens when P is a subposet
of some greater poset R that has the same linear discrepancy as P .

We are careful not to define l-criticality as simply removing points such that
we still get a triple-optimal poset. Based on the left diagram in Figure 4, we may
think that conception is true. If we remove the red point in the left diagram, we see
the remaining poset is still triple-optimal with l = 3. Thus, the left poset is not a
3-critical triple-optimal poset. On the flip side, removing the three red points in the
right diagram in Figure 4 reveals a triple-optimal poset where l = 3. Does this mean
the diagram including the three red points is not a 4-critical triple-optimal poset? No,
if we were to remove a single point, the remaining poset would not be triple-optimal
when it was before we removed the point. Thus, the poset on the right is a 4-critical
triple-optimal poset. We can also note that the right diagram where l = 4 has 13
points, which allows for a linear extension with linear discrepancy 3l, but 12 points
would not allow that.

Now that we have the necessary foundation to understand a triple-optimal poset,
we will dive into more detail on the comparabilities and incomparabilities in a triple-
optimal poset P . Let LO be an optimal linear extension and LW be a worst linear
extension. By criticality, we can assume in LW , the discrepancy is realized by the
top and bottom points because the maximum discrepancy only occurs once in LW .
Thus, we label the top point x and the bottom point y. When we look at LW , there
are (3l − 1) points between x and y, since we know this linear extension has linear
discrepancy 3l. These intermediate points are members of one of the three sets:

A = {a : a < x}

B = {b : b ‖ x and b ‖ y}

C = {c : c > y}

8



Figure 4. 3-critical vs. 4-critical triple optimal poset

You may be wondering, “Is A ∩ C nonempty or can we modify our definitions
of A and C to clarify they are disjoint?”

Lemma 2.3. The set A ∩ C is empty.

Proof. Suppose there is a q ∈ A ∩ C. This would mean y < q < x, which means
y < x, which violates our assumption that x ‖ y. Thus, A and C are disjoint!

So now we clarify our definitions to:

A = {a : a < x and a ‖ y}
B = {b : b ‖ x and b ‖ y}
C = {c : c > y and c ‖ x}

Now that we have sketched out LW , what does LO look like? Well, from LW we
know there are 3l+1 points divided into x, y, A, B and C. Since x is incomparable to
y and all the points in B and C, |B ∪C| ≤ 2l− 1. To see why, suppose |B ∪C| ≥ 2l.
Then, in LO regardless of the order in which the points are put, the difference in
height between x and the top or bottom point from (B ∪ C) ∪ {y} would be greater
than l, contradicting ld(P) = l. Similarly, |A∪B| ≤ 2l− 1 because y is incomparable
to x and all points in A and B.

We claim l ≤ |A| ≤ 2l − 1 and l ≤ |C| ≤ 2l − 1. We know A, B and C are
disjoint and contain 3l − 1 points. Since |B ∪ C| ≤ 2l − 1, it is necessary for |A| ≥ l.
If we interchange A and C in the preceding argument, we get |C| ≥ l. To see the
upper bound, suppose B is empty. This would mean

2l − 1 ≥ |A ∪B| ≥ |A ∪ ∅| ≥ |A|.

We can use a similar argument for the upper bound of C. Thus, we get:

l ≤ |A| ≤ 2l − 1 and l ≤ |C| ≤ 2l − 1.

9



When B is non-empty, the lower bound for the sizes of A and C is unchanged,
but the upper bound for |A| and |C| decreases by the size of B. For example, let C
have l points and B be empty. This means A has 2l − 1 points. Now increase |B|
to one while |C| remains at l. Consequently |A| decreases to 2l − 2. Continuing this
until |B| = l− 1, A will have l points. In every scenario the lower bound for |A| and
|C| remains at l, but the upper bound decreases as the size of B increases.

To recap a little, we have a subset A whose elements are all less than x and
incomparable to y and another subset C whose elements are all greater than y and
incomparable to x, where |C| ≥ l and |A| ≥ l. In Figure 5, we color the points in
Figure 3 to more clearly see this distinction.
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Figure 5. Posets with elements colored as elements of A as purple, B as green, and
C as red.

We also want to know the relation between the elements of A and the elements
of C. It would be very simple and straightforward if we had c > a for all a ∈ A and
c ∈ C. However, life is not simple and there can be considerable variation. Thus, we
now want to define two more sets:

Ac = {a ∈ A : there exists a c ∈ C such that a ‖ c}

Ca = {c ∈ C : there exists an a ∈ A such that a ‖ c}

On the left diagram in Figure 5, Ca = ∅ = Ac. This leads us to note that when
B has l − 1 points Ca and Ac are empty. Whereas, in the right diagram, Ca = {i}
and Ac = {b}.

2.2. A discussion of a non-theorem on determining a triple-optimal poset

Without knowing any of the linear extensions, when checking a poset to see if
it is triple-optimal, a good place to start is counting the points. Suppose we count k
points, we want to make sure that there is an l such that 3l + 1 = k. If this equation
is not satisfied, then this poset may not be an l-critical triple-optimal poset, and we
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Figure 6. Posets that appear to be triple-optimal, but are not

may want to see if we can remove a point(s) to create an l-critical poset. For advice
on which points are good candidates to remove, we look to the definition of l-critical.

If 3l + 1 = k is satisfied or we have removed points to satisfy the equation, we
want to find the sets A, B and C as well as the points x and y. If we can successfully
break the poset into the sets, the complexity of determining possible linear extensions
skyrockets. The number of possible combinations of comparabilities is too large to
mention all of them here. Our best bet is to attempt to create LO and see if all the
properties hold.

In Figure 6, the posets may appear to be 3-critical triple-optimal: “A” and “C”
have l = 3 points and “B” has l − 1 = 2 points; however, the linear discrepancy of
both posets is 5, which is clearly not l. In the left poset, we see that the points h, c,
j and e are incomparable to another point at distance 5 away from itself. There is
also no way to rearrange the linear extension to lower the distance between every pair
of points 5 apart from each other because lowering one would increase another. The
diagram on the right has linear discrepancy 5 between i and d, j and e and h and
c. Attempting to improve one would either increase the distance between another
pair of points or leave another pair unaffected. Thus, even though both of these
diagrams appear to be triple-optimal at first glance, neither are triple-optimal due to
the comparabilities and incomparabilities within the poset.
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CHAPTER 3. GREEDY-SELFISH ALGORITHM ON
TRIPLE OPTIMAL POSETS

At the end of Section 1.3 we mentioned the concept of an on-line game between
ourselves (the Bully or Builder) and Alex (an Algorithm). In Section 2.1 we examined
the class of posets where the optimal linear discrepancy is l and the worst linear ex-
tension has linear discrepancy 3l. We will now explore and develop an algorithm that
aims to cap the linear discrepancy of the linear extension created by the Algorithm
and the Builder in the up-growing on-line game of any triple-optimal poset P at 2l.

We want to remember that we refer to x as the top point in the worst linear
extension LW of a poset P , and y as the bottom point in LW . Also, height is defined
as the number of points in L that are below w in L, hL(w) = |{z ∈ P : z < w in L}|.
It is also important to remember hLO

(x)−hLO
(y) = l. Additionally, we are operating

in an up-growing setting, where the order in which the Builder can give points to
the Algorithm is restricted in that the order must be a linear extension of the poset.
Thus, each new point cannot be less than any previously-presented point.

3.1. Quick Review of Algorithms

We will first define a few terms that are essential to understanding an on-line
algorithm.

Definition 3.1. A legal position in a linear extension L for a point x in the context of
an on-line setting is any location in L into which x may be inserted without reversing
any comparabilities. Other positions are called illegal.

Definition 3.2. A qualifying position for a point in the context of an on-line setting
is any legal position in a linear extension that complies with a given algorithm.

Also, we establish the following notation for the rest of the chapter:

P is some triple-optimal poset

LA is the linear extension created by the Algorithm and Builder

Lt
A is the linear extension created after the tth point is given

while playing the on-line game

LO is a linear extension with the optimal linear discrepancy

LW is a linear extension with the worst linear discrepancy

There is a large variety of algorithms that go along a range of complexity. Some
of the simplest algorithms are putting the new point in the highest legal position or
alternately the lowest legal position. Due to the complexity of the posets, we want to
start with a more complex algorithm. Thus, we begin by using the Greedy Algorithm.

3.2. Greedy Algorithm

12



In the greedy algorithm G, a qualifying position for the tth point zt is the highest
position that minimizes the linear discrepancy of Lt

A, ld(P , Lt
A).

Thus, the goal of this condition is to keep ld(P , Lt
A) = ld(P , Lt−1

A ). We may
think that if this goal cannot be met, then ld(P , Lt

A) = 1 + ld(P , Lt−1
A ); however this

is false when you consider 1 + 10 where the 10 chain comes first in the builder order.
Thus, ld(P , Lt

A) is as small as possible subject to the algorithm’s previous decisions
that formed Lt

A.

a b c d

e

e
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b
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d

e

a

d

c

b

a

b

c

d

a

d

c

b

order LA
4

L
A

5

order LA
4

L
A

5

Figure 7. Diagram, builder order and LA’s for Example 3.3

Example 3.3. Figure 7 shows a diagram for a poset Q with ground set {a, b, c, d, e}.
Two orders are given for the Builder to give the Algorithm. The linear extension L4

A

is given for both orders, fill in the box with L5
A and calculate the linear discrepancies

of the two LA’s. The correct answer is in the footnote1.

3.3. Greedy-Selfish Algorithm

When we look at Example 3.4 below, we see how the greedy algorithm is not a
sufficient algorithm for triple-optimal posets if we wish to keep ld(LA) ≤ 2l.

Example 3.4. Using the greedy algorithm on the triple-optimal poset R shown in
Figure 8 subject to the Builder’s order given next to the diagram, we get a lin-
ear discrepancy of 9 between the points e and i. However, ld(R) = 4, and thus
ld(R, LA) > 2 ld(R). The correct LA is in the footnote2.

We must now give a new definition to improve our Algorithm.

Definition 3.5. The point discrepancy of a point z in a linear extension L of a poset
P is the maximum distance between z and a point w such that w ‖ z. We write
pd(z,P , L).

We will name our altered algorithm the greedy-selfish algorithm GS. The qual-
ifying position using GS for the tth point zt is the highest position that minimizes
pd(zt,P , Lt

A) after minimizing the linear discrepancy of Lt
A, ld(P , Lt

A). A more ex-
plicit version of GS is below.

1Left: d, c, b, a, e and ld(P) = 3; Right: b, c, d, a, e and ld(P) = 4.
2From bottom to top: y, a, b, e, c, d, f, g, j, x, k, h, i

13



x
i
h
k
j
g
f
d
c
e
b
a
y

order
i

h

c

j

g

f

e

d

b

a

k

x

y

L
A

Figure 8. Diagram, builder order and LA’s for Example 3.4

1. Determine the legal positions for zt.

2. Exclude the legal positions that, assuming zt were put in that position, would
result in a non-minimal linear discrepancy for Lt

A.

3. For each of the remaining positions, exclude the positions that, assuming zt
were put in that position, would result in a non-minimal point discrepancy for
zt in Lt

A.

4. The qualifying position for zt is the highest of the remaining positions.

In Example 3.6, we will see how this condition fixes the problem in Figure 8.

Example 3.6. Using GS on the diagram and Builder order in Figure 8 we get the
following linear extension of linear discrepancy 8:

y, a, b, c, d, f, x, g, e, h, i, j, k

3.4. Greedy-Selfish-Aware Algorithm

Our work on the algorithm to keep the up-growing on-line linear discrepancy
less than 2l is foiled when the Builder uses a certain poset in a certain order, this
builder order is explored in Example 3.7.

Example 3.7. We look to the diagram of the triple-optimal poset with the maximum
quantity of incomparabilities PW (Skeptical? Try adding an incomparability.) shown
in Figure 10. Using GS on PW and the order shown to the right of the diagram, we
get a LA with linear discrepancy 9 between f and h, which is greater than 2l. Fill in
LA using the order on the left in the figure. The correct on-line linear extension is in
the footnote3.

3From bottom to top: y, a, b, f, e, c, g, d, x, h, j, k, i
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Figure 9. Diagram, builder order and LA’s for Example 3.7.

Therefore, we alter the algorithm to make the greedy-selfish-aware algorithm
GSA. The aware portion of the title captures the sense that the algorithm is aware
of the possibility that the builder order may use the placement of a new point in order
to take advantage of the point discrepancy of another point. Since the algorithm is
aware this event might occur, the algorithm avoids it.

We define z0 ∈ P , where hLt
A

(z0) = 0. (We will later show that z0 is fixed for all
t). Fix e? ‖ z0. Now, let d? be such that, in Lt

A, d? is the highest point incomparable
to e?. We also define m(e?) to be the number of points greater than e? in P but below
d? in LA, and k(e?) to be the number of points incomparable to e? in P and below e?

in LA. That is,

k(e?) = |{v : v ‖ e? in P and hLA
(v) < hLA

(e?)}|

m(e?) = |{u : u > e? in P and hLA
(u) < hLA

(d?)}|.
In addition to the rules from GS, a qualifying position using GSA for the tth

point zt is the highest position that keeps m(e?) ≤ k(e?) for every applicable e? while
also minimizing pd(zt,P , Lt

A) and ld(P , Lt
A). If a point e ∈ P is comparable to z0

then this e will not be an e?. In other words the only candidates for e? are points
incomparable to z0. For ease of understanding, the more explicit steps for determining
the qualifying position of the tth point zt using GSA are:

1. Determine the legal positions for zt.

2. Exclude any position such that placing zt in that position would make m(e?) >
k(e?) for at least one e?.

3. Exclude the legal positions that, assuming zt were put in that position, would
result in a non-minimal linear discrepancy for Lt

A.

4. For each of the remaining positions, exclude the positions that, assuming zt
were put in that position, would result in a non-minimal point discrepancy for
zt in Lt

A.
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5. The qualifying position for zt is the highest of the remaining positions.

It is also worth noting that our poset in Figure 10, where l = 4 can be generalized
for all values of l. The sizes of A and C would be l, and the size of B would be l− 1.
The pattern of comparabilities would also be continued to follow the pattern in the
figure. Additionally, we can vary the size of B and consequently the sizes of A and
C.

Example 3.8. Using GSA on the diagram and Builder order in Figure 10 we get
the following linear extension of linear discrepancy 8:

y, a, b, c, g, d, x, e, f, h, j, k, i

The intricacies of the algorithm and the poset warrant a breakdown of the steps
to get this up-growing on-line extension as LGSA. We begin by repeating the figure
below paired with the Builder order, LGS and LGSA.
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y

order L
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x

y

abcd

kjih

gfe

i
k
j
h
x
d
g
c
e
f
b
a
y

L
GSA

i
k
j
h
f
e
x
d
g
c
b
a
y

Figure 10. Diagram, builder order, LGS and LGSA for Example 3.8.

The first five points {y, d, a, c, b} are an antichain. Thus, we simply perform GS
on them to get y, a, b, c, d.

The introduction of g forces us to consider the values of m(e?) and k(e?) for
e? = a, b, c. We get the values in Figure 11. Coincidentally, d = d?.

m(a) k(a) m(b) k(b) m(c) k(c)

g placed above d = d? 0 1 0 2 0 3

g placed below d = d? 1 1 1 2 1 3

Figure 11. Values for m(e?) and k(e?) when placing g in LGSA.
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Since g can be placed either above or below d, we follow the GS steps of the
algorithm to place g below d to yield y, a, b, c, g, d.

Next, the point f also affects the values of m(e?) and k(e?) for e? = a, b, c and
d = d?. We get the below values in Figure 12.

m(a) k(a) m(b) k(b) m(c) k(c)

f placed above d = d? 1 1 1 2 1 3

f placed below d = d? 2 1 2 2 2 3

Figure 12. Values for m(e?) and k(e?) when placing f in LGSA.

Since the value for m(a) when f is placed below d is greater than k(a), we must
put f above d. When considering the point e going below or above d results in the
same values of m(e?) and k(e?) as f does in Figure 12. Thus, we place e between d
and f in LGSA to get y, a, b, c, g, d, e, f .

The point i goes either above or below f due to the comparability to e. This
means the relevant candidates for e? are c and d. Our on-line linear extension has
two points incomparable to c and d below c and d. Hence, i can go either above or
below f based on the aware criteria. Thus, we perform the greedy and selfish steps
to put i above f to get y, a, b, c, g, d, e, f, i.

Introducing j affects the values for m(e) and m(f), but not the points {a, b, c, d}
nor the point g because j ‖ g and k has not been given yet. The value for k(f) and
k(e) are both 5, which gives m(e?) lots of room. Since m(f) and m(e) stays below
2 in either legal position of j, we decide that j follows the rules of the greedy and
selfish steps to go below i to yield y, a, b, c, g, d, e, f, j, i.

The values for m(e?) and k(e?) where e? = g, f, e when placing the point k are
shown in Figure 13. This means that k can be placed either above or below i. The
greedy and selfish steps dictate that k go below i. Additionally, h does not effect the
values of m(e?) and k(e?). Thus, we get the linear extension y, a, b, c, g, d, e, f, h, j, k, i.

m(g) k(g) m(f) k(f) m(e) k(e)

k placed above i = d? 0 1 0 5 0 5

k placed below i = d? 1 1 1 5 1 5

k placed 2 below i = d? 2 1 2 5 2 5

Figure 13. Values for m and k when placing k in LGSA.

Finally, when we place the point x we only consider the greedy and selfish steps,
since the placement of x cannot introduce any k(e?) value. Thus, we complete the
linear extension to get

y, a, b, c, g, d, x, e, f, h, j, k, i.

17



CHAPTER 4. MAXIMUM LINEAR DISCREPANCY ON
TRIPLE OPTIMALS

4.1. Review of Some Vital Definitions

We assume that there is some underlying triple-optimal poset P with optimal
linear discrepancy l and ground set X. A reminder of the notation for a few important
linear extensions:

LA is the linear extension created by the Algorithm and Builder

Lt
A is the linear extension created after the tth point is given

while playing the on-line game

LO is a linear extension with the optimal linear discrepancy

LW is a linear extension with the worst linear discrepancy

We will also define six sets below that rely on the two points x and y, which are
the points that lead to the linear discrepancy l in LO and 3l in LW . We know this pair
x and y exhibits this property based on the minimum sizes of A and C (as defined
below) and the required locations of x and y in LO to satisfy a linear discrepancy
of l. Since x is incomparable to at least l points, x cannot be placed farther than l
away from the top point. Similarly, y cannot be placed farther than l away from the
bottom point due to the size of C. Thus, altogether, x and y will be l away from each
other in LO.

A = {a : a < x and a ‖ y}
B = {b : b ‖ x and b ‖ y}
C = {c : c > y and c ‖ x}
D = {d : d is above x in LO}
E = {e : e is between x and y in LO}
F = {f : f is below y in LO}

We also note that D ⊆ C, E ⊆ A ∪ (B ∪ C), and F ⊆ A.

4.2. A Lemma and Corollary First

Lemma 4.1. The point y in a triple-optimal poset P will be forced to the bottom of
LA by the Builder restricted to up-growing.

Proof. Suppose that the sets A, B and C are chains in themselves. (Recall that chain
is defined in Section 1.2 and the poset is similar to the poset on the left in Figure 3.)
Since y is incomparable to 2l points in A ∪ B ∪ {x}, placing y in a non-bottom
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position would result in a linear discrepancy less than 2l. Thus, our goal of reaching
2l is defeated. Additionally, putting y above some a will not cause the difference in
height between a and some c to get 2l apart.

We also note that due to the algorithm qualifying the highest position and only
allowing Builder to use up-growing orders, no point will be placed below the bottom
point.

Lemma 4.2. For a triple-optimal poset P with optimal linear discrepancy l, regardless
of the up-growing order in which the Builder gives points to the Algorithm using GSA,
all c ∈ C = {c : c > y and c ‖ x} will always be above a ∈ A = {a : a < x and a ‖ y}
and b ∈ B = {b : b ‖ x and b ‖ y} in the linear extension created by playing the
on-line game LA.

Proof. Suppose a c ∈ C is given before a b ∈ B. When the Builder gives one of the
remaining elements of B to the Algorithm, GSA assigns that b below the existing c
in LA because hLA

(y) = 0 and b ‖ y. The same logic applies when a c is given after a
b, keeping the c above the b.

Since, the placement of elements of B below elements of C does not alter the
inequality m(e?) < k(e?), GSA does not derail this lemma. Thus, the greedy aspect
of GSA will be the only part that affects this part of the poset.

Corollary 4.3. The Builder gains no advantage by giving any element of B before
an element of C.

4.3. The Big Theorem

Theorem 4.4. Let P be an l-critical triple-optimal poset. A Builder, when restricted
to up-growing, cannot force an on-line linear extension with linear discrepancy greater
than 2l on P.

Proof. We will prove this with two parts. We first show that the incomparabilities
and comparabilities of a given point are restricted as a result of the triple-optimal
property. Then, we show the cleverness of the algorithm will also not force any two
points farther than 2l apart based on results from part 1 and the said cleverness of
the algorithm.

Part 1:
Let z0 be the point such that hLA

(z0) = 0. Fix e? ∈ E. Let i be the number of
f ∈ F such that e? > f and let j be the number of d ∈ D be such that e? ‖ d. In
notation we write,

i = |{v : v ‖ z0 in P and v < e? in P}|

j = |{u : u > z0 in P and u ‖ e? in P}|.
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Let d? be the d in D such that, d? is the highest point in Lt
A incomparable to e?.

We claim that j ≤ i. Since e? is greater than i elements of F , e? is incomparable
to l− i elements of F because of the positioning of e? and y in LO. Likewise, since e?

is incomparable to j elements of D, e? is less than l − j elements of D.
Now, suppose j > i. This would mean that we would consider the options for

constructing LO pictured in Figure 14.
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Figure 14. Possible LO’s

Clearly, Scenarios I, II and III in Figure 14 create non-optimal linear extensions.
The difference between the highest and lowest points incomparable to e? in these
scenarios is greater than 2l. In any legal position for e?, the distance between e? and
one of these points will be greater than l. Scenario IV also has a linear discrepancy
greater than l. Counting the points between the top point in Grouping 2, dj, and
the bottom point in Grouping 4, fi+1, we are put in a terrible position. Here is the
counting of points:
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Grouping 2 has j points

Grouping 3 has l − 1 points

Grouping 4 has l − i points

x is 1 point

y is 1 point

This simplifies to 2l + j − i + 1, but since j > i this total count is greater than
2l + 1 which means e? causes a linear discrepancy greater than l in LO.

Part 2:
Keeping e? and d? as they were in Part 1, we will now define:

w = |{wp : wp ‖ e? in P and hLA
(wp) < hLA

(e?)}|

v = |{vq : vq > e? in P and hLA
(vq) < hLA

(d?)}|.

We claim that i + w ≥ j + v.
Since i ≥ j, we know that i+w ≥ j+w. Remember that by GSA k(e?) ≥ m(e?).

We note that w = k(e?) and v = m(e?), meaning we know that w ≥ v. Thus,
i + w ≥ j + v.

Thus, when we count the points between e? and d? in LA, we get:

j + v : the number of points in D below and including d?

1 : x

l − 2 : the number of points in E except e?

l − (i + w) : the number of relevant points in F

The number of points in these four sets is thus

2l + (j + v)− (i + w)− 1.

Since i + w ≥ j + v,

2l + (j + v)− (i + w)− 1 ≤ 2l − 1.

This means the difference between hLA
(e?) and hLA

(d?) is at most 2l− 1, which
will be the linear discrepancy of LA should this be the pair of points with the greatest
distance.

The difference between hLA
(x) and hLA

(y) will be less than 2l because x will
be put, in the worst case scenario, right above the highest element of E due to the
selfish and greedy portions of GSA.
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4.4. Conclusion

The concepts we cover in this thesis have a wide range of applications: missile
defense funding (forming fair linear extensions), ER callback schedule (on-line linear
extension creation), salary computation (forming fair linear extensions) and many
more. We look at the game restricted to up-growing, such that a better bound can
be found for an algorithm. The algorithm we developed successfully limits the upper
bound of the on-line linear discrepancy to double the optimal linear discrepancy as
opposed to one less than triple the optimal linear discrepancy as seen in the not
up-growing case. We accomplish this by incorporating the point discrepancy of each
new point as well as trackable characteristic of the poset (keeping m(e?) ≤ k(e?)). A
natural progression from this thesis would be extending or adapting GSA to a larger
class of posets, ideally to establish an upper bound of 2l for all up-growing posets of
linear discrepancy l.
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