Gxamination Slutermediate ONath.
I

$$
O F=c=a e ; 0 x=a
$$

$P F=r=a-e f(1)$; By freviour demone.

$$
U=O D=O F+\sqrt{F} \theta \Rightarrow c e+r \cos \theta
$$

subt. (1) $r=a-a e^{2}-r e \cos \theta$

$$
\begin{aligned}
& r(1+e \cos \theta)-a\left(1-e^{2}\right) \\
& r=\frac{a\left(1-e^{2}\right)}{1+l \cos \theta} \text { and. }
\end{aligned}
$$

$$
y^{2}-b^{2}=a x^{\frac{1}{2}}
$$

$$
\begin{gathered}
v=\pi \int x^{2} \theta \\
\frac{\pi}{a^{4}} \int(
\end{gathered}
$$

$4=\pi b$

$$
\eta=0-b^{2}=a x^{2}
$$

$$
u t=2_{1}^{2} x
$$

$$
x=\frac{67}{62}
$$

$$
\begin{aligned}
& y^{3}=c x \\
& y=e^{\frac{1}{3}} x^{\frac{1}{3}} \\
& v=\pi n^{2} x \quad z^{2}=e^{2 / 3} x^{2} / 3 \\
& v=\pi e^{2 / 3} \cdot x^{2 / 6 N} \\
& =\pi e / 2 \frac{3}{5} x \frac{5}{3}=\frac{3}{5} \pi^{2} / 2 x^{\frac{2}{3}} x \\
& =3 \pi \pi^{2} x \\
& \begin{array}{l}
\frac{x^{2}}{a^{2}}+ \\
\int x^{2} d y
\end{array} \\
& v=\pi \frac{a^{2}}{i^{2}} \int\left(b^{2}-n^{2}\right) \theta \\
& \begin{aligned}
=\pi \frac{a^{2}}{b^{2}}\left[b^{2} \eta-\frac{y^{3}}{3}\right) & =\pi \frac{a^{2}}{b^{2}}\left[b^{3}-\frac{b^{3}}{3}\right) \\
y^{2}-b^{2}=a x^{2} & =\pi \frac{a^{2}}{b^{2}} \frac{2}{b} b^{3}=\frac{2}{3} \pi a^{2} b
\end{aligned} \\
& \begin{aligned}
=\pi \frac{a^{2}}{b^{2}}\left[b^{2} y-\frac{y^{3}}{3}\right) & =\pi \frac{a^{2}}{b^{2}}\left[b^{3}-\frac{b^{3}}{3}\right) \\
y^{2}-b^{2}=a x^{2} & =\pi \frac{a^{2}}{b^{2}} \frac{2}{b} b^{3}=\frac{2}{3} \pi a^{2} b
\end{aligned} \\
& 2 y \frac{m}{4 x}=\frac{1}{2 a x^{-2}} \\
& 23 \frac{8 y}{8 x}=\frac{a}{2 \sqrt{x}} \quad \frac{9 y}{8 x}=\frac{a}{4 \eta \sqrt{x}} \\
& v=\pi \int_{x^{2}}^{x^{2}}+\frac{b^{2}}{b^{2}} \quad \frac{x^{2}}{a^{2}}=\frac{b^{2}-4^{2}}{v^{2}} \\
& v=\pi \int^{2} D y \quad \frac{x^{2}}{a^{2}}=\frac{b^{2}-4^{2}}{v^{2}}
\end{aligned}
$$

