$$
\begin{aligned}
& \text { III. } \int \frac{d y}{1-x^{3}}=\int \frac{d y}{1-x}+\int \frac{d y}{x^{2}+x+1} \\
& (1-x)\left(x^{2}+x+1\right) \\
& 1=\frac{A}{1-x}+\frac{B x+C}{x^{2}+x+1} \\
& 1=A x^{2}+A x+A+B x+C-B x^{2}-C
\end{aligned}
$$

thing afirst class.
now arrange in discendingfowers

$$
\begin{aligned}
& 1=x^{2}(A-B)+x(A+B-C)+A+C \\
& A-B=0 \quad A=\frac{1}{3} \\
& A+B-C=0 \quad B=\frac{1}{3} \\
& A+C=1 \quad C=\frac{2}{3} \\
& \int \frac{d y}{1-x^{3}}=\frac{1}{3} \int \frac{d y}{1-x}+\frac{1}{3} \int \frac{(x+2) d y}{x^{2}+x+1} \\
&=-\frac{1}{3} \int \frac{d y}{x-x}+\frac{1}{3} \int \frac{x d y}{x^{2}+x+1}+2 \int \frac{d x}{x^{2}+x+1} \\
&=-\frac{1}{3} \log (x-1)+\frac{1}{3} \int \frac{x d y}{x^{2}+x+1}+2 \int \frac{d y}{x^{2}+x+1}
\end{aligned}
$$

(10) $\frac{1}{3} \int \frac{x d x}{x^{2}+x+1}=? \quad 2 \int \frac{d y}{x^{2}+x+1}=?$

Theme Remains the $4 \sqrt[0]{ } \frac{1}{2} a^{2} \int_{0}^{\frac{\pi}{2}} \frac{d \varphi}{1+\sin ^{2} \varphi}$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \frac{\partial \varphi}{1+\sin ^{2} \varphi}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{1+\frac{\sin ^{2} \varphi}{\sin ^{2} \varphi}}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} \varphi \varphi^{2} \varphi}{\sec ^{2} \varphi+\tan ^{2} \varphi}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} \varphi \phi}{1+2 \tan ^{2} \varphi}}{=\frac{1}{\sqrt{2}} \int_{0}^{4 \sqrt{2} \sin ^{2} \varphi \varphi}} 11+2 \sin ^{2} \varphi
\end{aligned} \frac{1}{\sqrt{2}} \tan ^{-1} \sqrt{2} \sin \varphi=\frac{1}{\sqrt{2}} \frac{\pi}{2} .
$$

And $8 \sqrt{2} a^{2} \int_{0}^{\frac{\pi}{2}} \frac{d \varphi}{1+\sin ^{2} \varphi}=4 \pi a^{2}$

$$
\begin{aligned}
& \therefore \text { Theta area }=4 \pi a^{2}-5 \sqrt{2} a^{2} \frac{\pi}{2} \\
& \text { Once }=\pi a^{2}\left(4-\frac{5 \sqrt{2}}{2}\right)
\end{aligned}
$$

