
1

The λ−property and Isometries
of the Higher Order Schreier Spaces

A Thesis
Submitted to the Faculty

of
Washington and Lee University

By
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abstract

For each n ∈ N, let Sn be the Schreier set of order n and XSn be
the corresponding Schreier space of order n. In their 1989 paper
The λ−property in Schreier space S and the Lorentz space d(a, 1), Th.
Shura and D. Trautman proved that the Schreier space of order 1
has the λ−property. This thesis extends the theorem by proving the
λ−property for the Schreier spaces of any order and the uniform
λ−property (stronger than the λ−property) for the p−convexification
of these spaces. Furthermore, using what we know about extreme
points of the unit balls, we are able to characterize all surjective lin-
ear isometries of these spaces.
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1
I N T R O D U C T I O N

In 1930, Schreier constructed the Schreier space XS1 in [12] as a coun-
terexample to a question of Banach and Saks. The standard basis
of XS1 has the property that it is weakly null, but there is no subse-
quence that Cēsaro sums to 0. Since the norm of the Tsirelson space is
closedly related to the norm of the Schreier space - the first example
of a Banach space in which neither an lp space nor a c0 space can
be embedded, the Schreier space has been studied extensively in [7].
In particular, the space is hereditarily−c0, meaning that every closed
infinite dimensional subspace has a sequence of vectors equivalent to
the unit vector basis of c0. Consequently, `1 does not embed in XS1 .
As the definition of XS1 depends on S1, a collection of finite subsets
of N, we will also consider XF for other families of finite subsets
of N. Specifically, for each n ∈ N, there is a collection Sn of finite
subsets of N with greater complexity. The objective of this thesis is
to investigate several geometric properties of the Schreier space, its
higher order spaces, and their p-convexification.

In [3], R. Aron and R. Lohman introduced geometric properties
for Banach spaces, called the λ−property and uniform λ−property.
Since then, the λ−property has been extensively studied by many au-
thors over the past 25 years. In 1989, Th. Shura and D. Trautman
proved, in [14], that the Schreier space has the λ−property and the
set of extreme points is countably infinite. In [6], K. Beanland, N.
Duncan, M. Holt, and J. Quigley proved several results for combina-
torial Banach spaces and, in particular, showed that the set of extreme
points the unit ball of XF is at most countable for every regular fam-
ily F . This thesis builds on these works and proves the λ−property
for the Schreier space of any order and the uniform λ−property for
the p−convexification of these spaces.

Next, the thesis characterizes isometries of Schreier spaces. Given a
Banach space X, we denote by Isom(X) the group formed by all sur-
jective linear isometries of X. The characterization of the isometries
plays a central role in the field of geometry of Banach spaces and can
be found already in the famous Banach’s treatise of 1932 [5], in which
he gives the general form of isometries of classical spaces, such as c,
c0, C(K), `p and Lp, 1 ≤ p < ∞. Characterizations for other spaces
can be found in [9]. In this thesis, we use results concerning extreme
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points of Schreier spaces to exhibit the general form of the elements
of Isom(XSn), with n ∈N.

The thesis is structured as follows. Chapter 2 introduces the reader
to general concepts of Banach spaces, the λ−property and surjective
linear isometries. Chapters 3 and 4 in Part II introduce the Schreier
space, prove its λ−property, and characterize all of its isometries. All
of these results are generalized to the higher order spaces in Chapters
6 and 7. Though the results in Part II are implied by the results in
Part III, we decide to devote Part II solely to the Schreier space for
two reasons. First, our proof of the λ−property for the Schreier space
clarifies several points implicitly made in the proof of Th. Shura and
D. Trautman. Second, understanding our proof of the Schreier space
case makes it much easier to understand the proof in the general case.
The last part includes an interesting result from the way we define the
Schreier sets; that is, we can find Fibonacci sequences of any order by
counting a family of generalized Schreier sets in a certain way.



Part I

P R E L I M I N A R I E S



2
P R E L I M I N A R I E S

2.1 banach spaces

We begin with the definition of a Banach space. We focus our atten-
tion on Banach spaces of real scalars, though our definitions holds for
complex scalars.

Definition 1. Suppose X is a real vector space. A norm ‖ · ‖ is a real-valued
function satisfying the following three conditions:

1. ‖x‖ > 0 for all x ∈ X, and ‖x‖ = 0 if and only if x =~0;

2. ‖λx‖ = |λ|‖x‖ for all x ∈ X, λ ∈ R;

3. ‖x + y‖ 6 ‖x‖+ ‖y‖ for all x, y ∈ X.

The pair (X, ‖ · ‖), that is, the linear space X equipped with the norm ‖ · ‖,
is called a normed linear space.
A normed linear space (X, ‖ · ‖) is complete provided all Cauchy sequences
in X have limits in X.

Definition 2. The normed linear space X is a Banach space provided X is
complete with respect to its norm.

Let R∞ denote the vector space consisting of all sequences of real
numbers. All Banach spaces we consider will be subspaces of R∞.
Each vector of these spaces is an infinite sequence of real numbers.

Definition 3. Given an incomplete normed linear subspace X of R∞, there
exists a unique normed linear space X̂, also a subspace of R∞, such that X
is a subspace of X̂, X̂ is complete with respect to X′s norm, and X is dense
in X̂. The space X̂ is a Banach space and is called the completion of X.

Let X be a Banach space. The unit ball of X, denoted B(X), is {x ∈
X : ||x|| ≤ 1}, and the unit sphere of X, denoted S(X), is {x ∈ X :
||x|| = 1}.

Definition 4. A vector x ∈ B(X) is an extreme point if x = λy+(1−λ)z,
where 0 < λ < 1 and y, z ∈ B(X) implies x = y = z. Equivalently,
x = 1

2 (y + z), where y, z ∈ B(X) implies x = y = z.

Let E(X) be the set of all extreme points in the unit ball of X. Note
||x|| = 1 for all x ∈ E(X).
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2.2 isometries 9

Definition 5. Let x = (x(1), x(2), x(3), . . .) be a vector in a Banach space
X. The support of x is denoted suppx = {i : xi 6= 0}, and max suppx is
the maximum element in suppx (if it exists).

Now we provide a couple examples of Banach spaces. The two
most basic Banach spaces are the `p and the c0.

Definition 6. For 1 6 p < ∞, (lp, ‖ · ‖p) is a Banach space, where

lp =

{
(ai)

∞
i=1 :

( ∞

∑
i=1
|ai|p

) 1
p

< ∞
}

and ‖(ai)‖p = (∑∞
i=1 |ai|p)

1
p .

Definition 7. As another example, (c0, ‖ · ‖0) is a Banach space, where

c0 =

{
(ai)

∞
i=1 : lim

i→∞
ai = 0

}
and ‖(ai)‖0 = supi∈N |ai|.

The proof that `p and c0 are Banach spaces can be found in [5]. We
need the next two definitions for the ease of notation later.

Definition 8. The space c00 is the vector space of all infinite sequences of
real numbers whose support is finite.

Definition 9. For x ∈ c00, let x(i) be the ith coordinate of x. The standard
unit vectors (ei)

∞
i=1 of c00 are defined by ei(i) = 1 and ei(j) = 0 for all

j 6= i.

2.2 isometries

Definition 10. Given a Banach space X, an isometry of X is an onto, linear
mapping U : X → X such that for all x ∈ X, ||Ux|| = ||x||; that is, U is
norm-preserving.

Definition 10 guarantees that an isometry is a bijective mapping. To
see why, suppose an isometry U maps two vectors x and y to a
common vector z. Then ||x − y|| = ||U(x − y)|| = ||Ux − Uy|| =
||z− z|| = 0, which implies x = y. Therefore, U is injective. As U is
defined to be onto, U is bijective.

The next proposition is self-evident.

Proposition 11. If U : X → X is an isometry, then U−1 : X → X is an
isometry.

Proposition 12. Isometries map extreme points to extreme points.

Proof. Let X be a Banach space, x ∈ E(X) and U be an isometry. Write
Ux = 1

2 y + 1
2 z for y, z ∈ B(X). We have x = 1

2U−1y + 1
2U−1z. Since

U−1 is an isometry, U−1y, U−1z ∈ B(X). Because x is an extreme
point, U−1y = U−1z = x. This proves that y = z and so, Ux ∈
E(X).
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2.3 the λ−property

Definition 13. A Banach space X is said to have the λ−property if for all
x in B(X), there exists 0 < λ ≤ 1 such that x = λe + (1− λ)y for some
e ∈ E(X), y ∈ B(X). When a vector x can be written in terms of λ, e, y, we
denote (e, y, λ) ∼ x.

Note that for a non-zero x ∈ B(X) we have

x =
1
2

x
‖x‖ +

1
2
(2‖x‖ − 1)

x
‖x‖ .

Consequently, in order to verify that X has the λ−property it suffices
to show that for each x ∈ S(X) there is (e, y, λ) ∈ E(X)× B(X)× (0, 1]
with x ∼ (e, y, λ).

If X has the λ−property, for a vector x, we may find different triples
(e, y, λ) such that (e, y, λ) ∼ x. This leads us to define the following
function: Given x ∈ B(X),

λ(x) = sup{λ : (e, y, λ) ∼ x for some e, y}.

Definition 14. If there exists λ0 > 0 such that for all x ∈ B(X), λ(x) ≥
λ0, we say that X has the uniform λ−property.

It is trivial to show that the unit ball of the space c0 has no extreme
points. Therefore, c0 does not have the λ−property. We consider `1.

Proposition 15.
E(`1) = {±ei|i ∈N}.

Proof. Let x ∈ E(`1). If there exists 0 < |x(j)| < 1, then there must
exist 0 < |x(k)| < 1 for some k 6= j because ||x|| = 1. Form

x1 = (ε · sign(x(j)) + x(j))ej + (−ε · sign(x(k)) + x(k))ek + ∑
i 6=j,k

x(i)ei,

where 0 < ε < 1−min{1− |x(j)|, 1− |x(k)|}. Form x2 = 2x − x1;
equivalently, x = 1

2 (x1 + x2). Due to the way we pick ε, ||x1|| =
||x2|| = 1 and x1 6= x2, which contradicts that x ∈ E(`1). Hence, for
all x ∈ E(`1), there is no j such that 0 < |x(j)| < 1. Because ||x|| = 1,
x = ±ei for some i ∈N.

It suffices to show that for all i ∈ N, ei ∈ E(`1). Suppose that ei =
1
2 (ei,1 + ei,2) with ei,1, ei,2 ∈ B(`1). Without loss of generality, assume
that ei,1(i) = ei(i) + ε = 1 + ε and ei,2(i) = ei(i)− ε = 1− ε for some
ε ≥ 0. Because ei,1 ∈ B(`1), ε = 0. Hence, ei,1(i) = ei,2(i) = 1, which
implies that ei,1 = ei,2 = ei. Therefore, ei is an extreme point.

The next proposition results directly from Theorem 1.11 in [3].

Proposition 16. The `1 space has the λ−property but not the uniform
λ−property.
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Proof. Given x ∈ S(`1), we show that x can be written as λx1 + (1−
λ)x2 with λ > 0, x1 ∈ E(`1), x2 ∈ B(`1). Pick k ∈ N such that
|x(k)| > 0. If |x(k)| = 1, x ∈ E(`1) and we are done. If |x(k)| 6= 1, we
write:

x = ∑
i

x(i)ei = ∑
i
|x(i)| · sign(x(i))ei

= |x(k)| · sign(x(k))ek + ∑
i 6=k
|x(i)| · sign(x(i))ei

= |x(k)| · sign(x(k))ek+

(1− |x(k)|)
(

∑
i 6=k

|x(i)|
1− |x(k)| · sign(x(i))ei

)
.

Because∣∣∣∣∣∣∣∣∑
i 6=k

|x(i)|
1− |x(k)| · sign(x(i))ei

∣∣∣∣∣∣∣∣ ≤ ∑
i 6=k

∣∣∣∣∣∣∣∣ |x(i)|1− |x(k)| · sign(x(i))ei

∣∣∣∣∣∣∣∣
= ∑

i 6=k

|x(i)|
1− |x(k)| = 1,

we have written x as λx1 + (1− λ)x2 with λ > 0, x1 ∈ E(`1), x2 ∈
B(`1).

Next, we prove that `1 does not have the uniform λ−property.
We use proof by contradiction. Suppose that `1 has the uniform
λ−property; that is, there exists a λ0 > 0 such that for all x ∈ B(`1),
λ(x) ≥ λ0. Because B(`1) 6= E(`1), 0 < λ0 < 1. Let k = b3/λ0c and
form x ∈ B(`1) such that for all 1 ≤ i ≤ k, x(i) = λ0/3, and for i > k,
x(i) = 0. Denote L = {λ : (e, y, λ) ∼ x}.

1. Case 1: there exists λ′ ∈ L such that λ′ ≥ λ0. Then we can write
x = λ′x1 + (1− λ′)x2 with x1 ∈ E(`1), x2 ∈ B(`1), λ′ ≥ λ0. So,
x2 = x−λ′x1

1−λ′ . Due to the way we build x and λ′ ≥ λ0, it is easy to
see that x2 has exactly one coordinate different from and greater
than the corresponding coordinate in x, and so ||x− λ′x1|| > 1.
Therefore, ||x2|| > 1, which contradicts that x2 ∈ B(`1).

2. Case 2: there is no λ′ ∈ L such that λ′ ≥ λ0. Because sup L = λ0,
there exists a sequence (λi)

∞
i=1 ⊆ L such that λi < λ0 and

limi→∞ λi = λ0. Pick λn such that λ0 − λn < λ0/10 or, equiva-
lently, λn > 9

10 λ0. As above, it is easy to see that ||x− λnx1|| > 1
because x2 has exactly one coordinate different from and greater
than the corresponding coordinate in x. Therefore, ||x2|| > 1,
which contradicts that x2 ∈ B(`1).

This completes our proof that `1 has the λ−property but does not
have the uniform λ−property.

If 1 < p < ∞ and x, y ∈ S(`p) we have that ‖x + y‖ < 2 when
x 6= y. Therefore E(`p) = S(`p) and the following holds.
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Proposition 17. For 1 < p < ∞, `p has the uniform λ−property with
λ0 = 1

2 .
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T H E S C H R E I E R S PA C E X S 1 A N D I T S λ−P R O P E RT Y

Definition 18. A set F ⊆N is a Schreier set if |F| ≤ min F.

For example, {2}, {2, 5}, {3, 4, 7} are Schreier sets, but {2, 3, 4} is
not. Denote S1 = {F : |F| ≤ min F}.

Definition 19. A set F is called non-maximal if |F| < min F.

The Banach space XS1 is defined as the completion of c00 with re-
spect to the following norm:

‖x‖S1 = sup
F∈S1

∑
i∈F
|x(i)|.

Though the Schreier space has been studied extensively in [10], [14]
and [7], there is still much unknown. The next several chapters prove
its λ−property [14], find its isometries (new result), and partially
characterize the extreme points of its unit ball.

In this chapter, we present the proof of the λ−property for the
Schreier space. This result is first proved by Shura and Trautman
in [14]. Though we use the same argument, we present the proof
here for two reasons. First, the proof in [14] did not explain several
points fully, and second, understanding this proof makes it easier to
understand our proof of the uniform λ−property for the higher order
spaces.

We call F ∈ S1 a 1-set for x ∈ S(XS1) if ∑i∈F |x(i)| = 1 and |x(i)| >
0 for all i ∈ F. Let S x

1 denote the set of all 1−sets of x. Let Ax
1 =

{F ∈ S1 : ∑i∈F |x(i)| = 1}. Clearly, S x
1 ⊆ Ax

1 and x ∈ S(XS1) has only
maximal 1-sets if and only if S x

1 = Ax
1 . We will need the following

classical result of Carathéodory.

Proposition 20. Let X be an n−dimensional normed space. Every x ∈
B(X) is the convex combination of at most n + 1 extreme points of B(X).

The following lemma is proved as Lemma 2.4 and Lemma 2.5 in
[6].

Lemma 21. Given x ∈ S(XS1),

1. The set S x
1 is finite.

14



the schreier space x∫1 and its λ−property 15

2. There exists εx > 0 such that for all F ∈ S1\Ax
1 ,

∑
i∈F
|x(i)| < 1− εx.

We call εx the ε−gap of x.

Note that the vector

x =

(
1,

1
2

,
1
2

,
1
4

, . . . ,
1
4︸ ︷︷ ︸

4

,
1
8

, . . . ,
1
8︸ ︷︷ ︸

8

, . . .
)

seems to contradict item 1 above. However, x /∈ XS1 because the
sequence (||x−∑i≤N x(i)||)∞

N=1 is not a Cauchy sequence.
The following lemma plays a key role in our argument. We denote

F<N = F ∩ [1, N].

Lemma 22. Let x ∈ S(XS1).

1. There exist x1, x2 ∈ S(XS1) with x1 ∈ c00 and x = 1
2 (x1 + x2).

2. If x ∈ c00, there exist x1, x2 ∈ S(XS1) ∩ c00 so that both x1 and x2

have non-maximal 1-sets and x = 1
2 (x1 + x2).

3. If x has a 1-set F, and x = ∑k λkxk, where for all k, xk ∈ S(XS1),
λk > 0, and ∑k λk = 1, then F is a 1-set for each xk.

Proof. We prove item 1. If x ∈ c00, then we set x1 = x2 = x and we are
done. If x /∈ c00; that is, x is infinitely supported, we pick N ∈N such
that N > max{max F : F ∈ S x

1 } and ||∑i>N x(i)ei|| < εx/2. We form
two vectors x1 and x2 as follows: x1 = ∑N

i=1 x(i)ei and x2 = 2x − x1.
Clearly, x = 1

2 (x1 + x2) and ||x1|| ≤ ||x|| = 1. It suffices to show that
||x2|| ≤ 1. Let F ∈ S1 such that x2(i) 6= 0 for all i ∈ F. If max F ≤ N,
∑i∈F |x2(i)| ≤ ||x|| = 1. If min F > N, ∑i∈F |x2(i)| ≤ 2 · ||∑i>N x(i)ei||
< 2 · εx/2 = εx. The only case left is when max F > N and min F ≤ N.
For this case, we write

∑
i∈F
|x2(i)| = ∑

i∈F,i≤N
|x2(i)|+ ∑

i∈F,i>N
|x2(i)|

< (1− εx) + 2 · εx/2 = 1.

So, ||x2|| ≤ 1. Because 1 = ||x|| = || 12 (x1 + x2)|| ≤ 1
2 ||x1||+ 1

2 ||x2|| ≤
1
2 +

1
2 = 1, ||x1|| = ||x2|| = 1.

Next, we prove item 2. If x has a non-maximal 1-set, we are done
by setting x1 = x2 = x. Suppose that all 1-sets of x are maximal. Let
N = max suppx + 1. Pick M > N such that N−2

M < εx. We form x1

and x2 as follows:
x1(i) = x(i) for all i ≤ M

x1(i) = 1
M for M + 1 ≤ i ≤ 2M

x1(i) = 0 for i ≥ 2M + 1,
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and 
x2(i) = x(i) for all i ≤ M

x2(i) = − 1
M for M + 1 ≤ i ≤ 2M

x2(i) = 0 for i ≥ 2M + 1.

We see that x1, x2 have the non-maximal 1-set {M+ 1, M+ 2, . . . , 2M},
and x = 1

2 (x1 + x2). It suffices to prove that ||x1|| ≤ 1. Let F ∈ S1.
If max F ≤ M, ∑i∈F |x1(i)| ≤ ||x|| = 1. If min F ≥ N, ∑i∈F |x(i)| ≤
M · 1

M = 1. The only case left is max F > M and min F < N. We write

∑
i∈F
|x1(i)| = ∑

i∈F,i<N
|x1(i)|+ ∑

i∈F,i≥N
|x1(i)|

< (1− εx) +
N − 2

M
< 1− εx + εx = 1.

The reason ∑i∈F,i<N |x1(i)| < 1 − εx is that x does not have a non-
maximal 1-set and so, F<N /∈ Ax

1 . We have show that ||x1|| ≤ 1;
similarly, ||x2|| ≤ 1, and because x = 1

2 (x1 + x2), ||x1|| = ||x2|| = 1.
This completes our proof of item 2.

Finally, we prove item 3. Let F ∈ S1 be a 1-set of x. We have

1 = ∑
i∈F
|x(i)| = ∑

i∈F
|∑

k
λkxk(i)| ≤ ∑

k
λk ∑

i∈F
|xk(i)|

≤ ∑
k

λk · 1 = 1.

Therefore, ∑i∈F |xk(i)| = 1 for all k or F is a 1-set for all xk. This
completes our proof of item 3.

Let XS1,n be the n−dimensional Schreier space; that is, for all x ∈
XS1,n, x(i) = 0 for all i ≥ n + 1.

Lemma 23. Let x ∈ E(XS1,n). If x has a non-maximal 1-set, then x ∈
E(XS1).

Proof. Let x ∈ E(XS1,n) and x has a non-maximal 1-set F. Suppose
that x = 1

2 (x1 + x2), where x1, x2 ∈ B(XS1). By Lemma 22 item 3, x1

and x2 has the same non-maximal 1-set as x. Therefore, x1, x2 ∈ XS1,n.
Because x ∈ E(XS1,n), x1 = x2 = x and so, x ∈ E(XS1).

Theorem 24. The Schreier space XS1 has the λ−property.

Proof. We tie all the results we have shown to prove the λ−property
for XS1 . Let x ∈ S(XS1). By Lemma 22 item 1, we can write x =
1
2 (x1 + x2), where x1, x2 ∈ S(XS1), x1 ∈ c00. By Lemma 22 item 2, we
write x1 = 1

2 (x1,1 + x1,2), where x1,1, x1,2 ∈ S(XS1), and x1,1, x1,2 have
a non-maximal 1-set. Because x1,1 ∈ c00, we know that x1,1 ∈ B(XS1,n)

for some n. According to Proposition 20,

x1,1 =
m

∑
i=1

λiyi,
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where for all 1 ≤ i ≤ m, yi ∈ E(XS1,n), λi > 0, and ∑m
i=1 λi = 1.

By Lemma 22 item 3, for all 1 ≤ i ≤ m, yi has the same non-
maximal 1-set as x1,1. Lemma 23 guarantees that yi ∈ E(XS1) for all
1 ≤ i ≤ m. We have written

x =
1
4

x1,1 +
1
4

x1,2 +
1
2

x2 =
1
4

m

∑
i=1

λiyi +
1
4

x1,2 +
1
2

x2

=
λ1

4
y1 +

1
4

m

∑
i=2

λiyi +
1
4

x1,2 +
1
2

x2

=
λ1

4
y1 +

4− λ1

4

( m

∑
i=2

λi

4− λ1
yi +

1
4− λ1

x1,2 +
2

4− λ1
x2

)
.

Because ∣∣∣∣∣∣∣∣ m

∑
i=2

λi

4− λ1
yi +

1
4− λ1

x1,2 +
2

4− λ1
x2

∣∣∣∣∣∣∣∣
≤

m

∑
i=2

λi

4− λ1
||yi||+

1
4− λ1

||x1,2||+
2

4− λ1
||x2||

=
m

∑
i=2

λi

4− λ1
+

1
4− λ1

+
2

4− λ1
= 1,

we have x = λ1
4 y1 +

4−λ1
4 z, where z ∈ B(XS1). Because y1 ∈ E(XS1),

we have shown that XS1 has the λ−property.

We do not know if the Schreier space has the uniform λ−property
or not, and this is still an open problem. The traditional approach to
prove (or disprove) the uniform λ−property involves the characteri-
zation of all extreme points of the unit ball of the space. However,
as we show later, it is quite difficult to characterize extreme points of
B(XS1) fully.
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I S O M E T R I E S O F T H E S C H R E I E R S PA C E

This chapter characterizes all isometries of the Schreier space. Though
we generalize our proof to find all isometries of XSn later, the proof
for XS1 gives a better sense of the argument we use. The following is
the main theorem of this chapter.

Theorem 25. A mapping U : XS1 → XS1 is an isometry if and only if for
all i ∈N, Uei = ±ei.

For the rest of this chapter, we consider an isometry U : XS1 → XS1 .

Lemma 26. Either Ue1 = e1 or Ue1 = −e1.

Proof. Let Ue1 = x1. If max suppx1 = 1, we are done. Suppose
that there exists k ≥ 2 such that x1(k) 6= 0. Because x1 ∈ B(XS1),
there exists n ∈ N with 2|x1(n)| < |x1(k)|. Consider εnen, where

εn =

{
1− x1(n) if x1(n) ≥ 0

−1− x1(n) if x1(n) < 0
. Let Uz = εnen. We have:

||e1 + z|| = ||U(e1 + z)|| = ||Ue1 + Uz|| = ||x1 + εnen||
≥ |x1(k)|+ |x1(n) + εn| = |x1(k)|+ 1 > 1.

Let F ∈ S1 such that ∑i∈F |(e1 + z)(i)| > 1. If 1 /∈ F, ∑i∈F |(e1 +

z)(i)| ≤ ||z|| ≤ 1, which is a contradiction. So, 1 ∈ F and so, F = {1},
which implies that |1 + z(1)| > 1. We also have:

||e1 − z|| = ||U(e1 − z)|| = ||Ue1 −Uz|| = ||x1 − εnen||
≥ |x1(k)|+ |x1(n)− εn| ≥ |x1(k)|+ |εn| − |x1(n)|
≥ |x1(k)|+ (1− |x1(n)|)− |x1(n)|
= 1 + (|x1(k)| − 2|x1(n)|) > 1.

Similarly, we can argue that |1− z(1)| > 1. Because |z(1)| ≤ 1, we
cannot have |1− z(1)| > 1 and |1+ z(1)| > 1 at the same time. Hence,
max suppx1 = 1. This completes our proof.

Lemma 27. For all i ∈N, Uei ∈ c00.

Proof. The case when i = 1 follows from Lemma 26. Let i ∈N≥2. Due
to Proposition 12, because e1 + ei ∈ E(XS1), U(e1 + ei) = ±e1 + Uei ∈
E(XS1). By Lemma 30 item 1 (next chapter), E(XS1) ⊆ c00 and so,
Uei ∈ c00.

18
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Denote K = {±ei|i ∈N}. Let Ue2 = x2 ∈ c00 and max suppx2 = k.

Lemma 28. For all i ≥ k + 1, Uei = ±ei.

Proof. Because e1 + x2 ∈ E(XS1), x2 has a non-maximal 1-set due to
Lemma 30 item 1. Let Uyk+1 = ek+1, then

||e2 + yk+1|| = ||x2 + ek+1|| = 2.

This implies that there exists some m ≥ 2 such that yk+1(m) = ±1.
Because ||yk+1|| = 1, yk+1 ∈ K. This result does not apply only to
ek+1. Hence, we know that for all i ≥ (k + 1), there exists a j such that
either Uej = ei or U(−ej) = ei. As a result, for all N ∈ N, there exist
i and j such that i, j > N and either Uei = ej or Uei = −ej.

Pick e` with ` ≥ k + 1 and let Uen = e` or Uen = −e` for some n.
Suppose that ` > n. By the above observation, we can find ` < `1 <

`2 < . . . < `n with ` < k1 < k2 < . . . < kn such that Ueki = e`i or
Ueki = −e`i . By definition, we have

||en +
n

∑
1

eki || = ||e` +
n

∑
1

Ueki || = ||e` +
n

∑
1

ε ie`i ||,

where ε i ∈ {±1}. However, the leftmost is n while the rightmost is
n + 1, which is a contradiction. If ` < n, using a similar argument,
we arrive at the same contradiction. This shows us that for all i ≥
k + 1, Uei = ei or Uei = −ei.

Lemma 29. Either Ue2 = e2 or Ue2 = −e2.

Proof. Recall that Ue2 = x2 and max suppx2 = k > 2. By isometry,
we have:

||e2 +
2k−1

∑
i=k+1

ei|| = ||U(e2 +
2k−1

∑
i=k+1

ei)|| = ||x2 +
2k−1

∑
i=k+1

Uei||.

However, the leftmost is k − 1, while due to Lemma 28, the right-
most is at least |x2(k)|+ (k − 1) > (k − 1), which is a contradiction.
Therefore, max suppx2 = 2.

Proof of Theorem 25. The forward direction of Theorem 25 follows im-
mediately from Lemma 26, Lemma 28, and Lemma 29. The backward
direction is clearly true.
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E X T R E M E P O I N T S O F B ( X S 1 )

This chapter presents what we know about the extreme points of the
unit ball of the Schreier space. In [14], the authors claim (without a
proof) that if x ∈ E(XS1), then suppx is finite and has an even car-
dinality. We prove a stronger result and present many new extreme
points that have not been seen before.

Lemma 30. Let x ∈ E(XS1). Then

1. the vector x has a non-maximal 1-set,

2. for all i ∈N, there exists F ∈ Ax
1 such that i ∈ F,

3. the first coordinate x(1) = ±1.

Proof. We first prove item 1. Suppose that x does not have a non-
maximal 1-set, meaning that S x

1 = Ax
1 . By Lemma 21, S x

1 is finite.
Pick N > max{max F : F ∈ S1}. Form x1 such that x1(i) = x(i) for
all i 6= N, and x1(N) = x(i) + εx. Form x2 such that x2(i) = x(i) for
all i 6= N, and x2(N) = x(i)− εx. Clearly, x = 1

2 (x1 + x2). Let F ∈ S1.
If N /∈ F, ∑i∈F |x1(i)| ≤ ||x|| = 1. If N ∈ F (hence, F /∈ Ax

1), we have

∑
i∈F
|x1(i)| = ∑

i∈F,i 6=N
|x1(i)|+ |x1(N)| ≤ ( ∑

i∈F,i 6=N
|x(i)|+ |x(N)|) + εx

< (1− εx) + εx = 1.

Therefore, x1 ∈ B(XS1) and similarly, we can show that x2 ∈ B(XS1).
Because x1 6= x2, x 6∈ E(XS1), a contradiction. So, x must have a
non-maximal 1-set.

Next, we prove item 2. Suppose that there exists some N ∈ N

such that for all F ∈ Ax
1 , N /∈ F. Hence, for all F ∈ S1 and N ∈ F,

∑i∈F |x(i)| < 1− εx. Form x1 such that x1(i) = x(i) for all i 6= N, and
x1(N) = x(i) + εx. Form x2 such that x2(i) = x(i) for all i 6= N, and
x2(N) = x(i) − εx. Clearly, x = 1

2 (x1 + x2). Let F ∈ S1. If N /∈ F,
∑i∈F |x1(i)| ≤ ||x|| = 1. If N ∈ F, we have

∑
i∈F
|x1(i)| = ∑

i∈F,i 6=N
|x1(i)|+ |x1(N)| ≤ ∑

i∈F,i 6=N
|x(i)|+ |x(N)|+ εx

< 1− εx + εx = 1.

20
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Therefore, x1 ∈ B(XS1) and similarly, we can show that x2 ∈ B(XS1).
Because x1 6= x2, x 6∈ E(XS1), a contradiction. So, for all i ∈ N, there
exists F ∈ Ax

1 such that i ∈ F.
The proof of item 3 is trivial, so we omit it.

Definition 31. Let x ∈ E(XS1). Based on x, we can build y such that
y(i) 6= 0 for all 1 ≤ i ≤ max suppy by pushing all coordinates of x to the
left until there is no zero lying between non-zero coordinates. We call y the
compact form of x, denoted compact-x.

Lemma 32. Let x ∈ E(XS1). Then its compact form y ∈ E(XS1).

Proof. Let F be the non-maximal 1-set of x. Denote max(suppx\F) =
m. Let 1 < ` < m be chosen. We will show that x(`) 6= 0. Assume
that x(`) = 0. By Lemma 30 item 2, ` must be in some 1-set F′.

We know that F ∪ {m} ⊆ F′ because if not, for k ∈ F ∪ {m} and
k /∈ F′, we can form F′′ = F′ ∪ {k}\{`}. Clearly, F′′ ∈ S1 and
∑i∈F′′ |x(i)| > 1, a contradiction. However, if F ∪ {m} ⊆ F′,

∑
i∈F′
|x(i)| ≥ ∑

i∈F∪{m}
|x(i)| = |x(m)|+ ∑

i∈F
|x(i)| = |x(m)|+ 1 > 1,

which is a contradiction. Therefore, x(`) 6= 0.
Denote F = {k1, k2, . . . , k|F|}, where k1 < k2 < . . . < k|F|. We build

y as follows:
y(i) = x(i) for all i ≤ m,

y(m + 1) = x(k1), y(m + 2) = x(k2), . . . , y(m + |F|) = x(k|F|),

y(m + |F|+ i) = 0 for all i ≥ 1.

It is easy to see that y ∈ E(XS1). Indeed, a proof by contradiction
assumes that y /∈ E(XS1) and leads to x /∈ E(XS1), a contradiction.
This completes our proof.

Lemma 33. Let x ∈ E(XS1) and F be the non-maximal 1-set of x. Then
|suppx| = 2|F|.

Proof. Let y = compact-x with G being the non-maximal 1-set of
y. Clearly, suppy = suppx. Let m = max(suppy\G) and let G =

{m + 1, m + 2, . . . , m + k} for some k ∈ N. If k < m, {m} ∪ G ∈ S1,
and ∑i∈{m}∪G |y(i)| = ∑i∈G |y(i)|+ |y(m)| = 1 + |y(m)| > 1. If k > m,
then G is not a non-maximal 1-set. Therefore, k = m, and this com-
pletes our proof.

Corollary 34. If x ∈ E(XS1), then x has an even number of nonzero coor-
dinates. In other words, |suppx| is even.

Corollary 34 is claimed by Shura and Trautman in [14], but the
authors did not give a proof.
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Next, we move on to give examples of extreme points in B(XS1).
The following proposition says that if a vector x is not an extreme
point we can find two distinct norm-one vectors that are as close as
we wish so that x is the midpoint of the two vectors.

Theorem 35. All vectors x created by the following process are extreme
points in the unit ball of the Schreier space.

1. Let n be the cardinality of the non-maximal 1-set of x. Set x(n +

1) = x(n + 2) = . . . = x(2n) = 1/n. Choose k ∈ [2, n] and set
x(k) = (n + 1− k)/n,

2. For all k + 1 ≤ i ≤ n, x(i) = 1/n,

3. For all 2 ≤ i ≤ k− 1, x(i) forms a sum of 1 with the i− 1 maximum
values in {x(j) : j ≥ i + 1}.

Example 1. Several extreme points constructed by the method are:

1.
(
1, 1

2 , 1
3 , 1

2 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 0, 0, . . .
)
,

2.
(
1, 2

5 , 3
5 , 1

5 , 1
5 , 1

5 , 1
5 , 1

5 , 1
5 , 1

5 , 0, 0, . . .
)
.

Are there any other forms of extreme points in the unit ball of the
Schreier space? The above construction may suggest that the coor-
dinates in the non-maximal 1-set are equal. However, we found a
counterexample. The following is an extreme point:

x =

(
1,

2
3

,
1
3

,
1
6

,
1
6

,
1

12
,

1
3

,
1
3

,
1
12

,
1

12
,

1
12

,
1

12
, 0, . . .

)
.

As we have seen, E(XS1) is difficult to characterize. In particular, the
coordinates of a vector x are not necessarily increasing or decreasing
(Example 1 item 1), and the coordinates corresponding to the non-
maximal 1-set are not necessarily equal.
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λ−P R O P E RT Y

We now present a generalization of the Schreier space. Given two
sets E, F, we write E < F if max E < min F, and we write n < E
if n < min E. We define the Schreier families as follows. Letting
S0 = {F : |F| ≤ 1} and supposing that Sn (n ∈ N ∪ {0}) has been
defined, we define

Sn+1 = {
n⋃

i=1

Ei : n ≤ E1 < E2 < ... < En are in Sn}.

Given Sn and F ∈ Sn, F is called non-maximal if given m > max F,
F ∪ {m} ∈ Sn. As in the case of the Schreier space, non-maximal
sets are crucial in our later arguments. A set is maximal if it is not
non-maximal. Let SMAX

n denote the set of all maximal sets in Sn. For
each Sn, we define the Banach space Xp

Sn
as the completion of c00 with

respect to the following norm: for p ∈ [1, ∞),

‖x‖Sn,p = sup
F∈Sn

(∑
i∈F
|x(i)|p)

1
p .

Note that the Schreier space is X1
S1

. Because we generalize the Schreier
space in two dimensions, which are higher order Schreier sets and
p−convexification, our notation gets more complicated. We call F ∈
Sn a 1-set for x ∈ S(Xp

Sn
) if (∑i∈F |x(i)|p)

1
p = 1 and x(i) 6= 0 for any

i ∈ F. Let S x
n,p be the set of all 1-sets of x. Let Ax

n,p = {F ∈ F :
∑i∈F |x(i)|p = 1}. Note that x has only maximal 1-sets if and only if
Ax

n,p = S x
n,p.

Lemma 36. Let n ∈N, p ∈ [1, ∞) and x ∈ S(Xp
Sn
). The following hold:

1. The set Sx
n,p is finite.

2. There is an εx > 0 (which we call the ε-gap for x) so that each F ∈
Sn\Ax

n,p, ∑i∈F |x(i)|p < 1− εx.

3. E(XSn) ⊂ c00

24
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Proof. For a vector x = ∑i x(i)ei define xp = ∑i |x(i)|pei. Observe that
if ||∑i x(i)ei||Xp

Sn
= 1 then ||∑i |x(i)|pei||XSn

= 1. Using [6], Lemma
2.5, we can find εxp > 0 so that

∑
i∈F
|x(i)|p < 1− εxp

for all F ∈ Sn\Axp

n,1. Note that Axp

n,1 = Ax
n,p and S xp

n,1 = S x
n,p. This

completes our proof of item 1 and item 2.
Suppose that x ∈ S(Xp

Sn
) \ c00. Let k with x(k) 6= 0 be larger than

the maximum of every F ∈ S x
n,p. Note it is not possible for F ∪ {k} ∈

Sn for any F ∈ S x
n,p. That is, S x

n,p consists of only maximal sets.
Therefore, if we consider F ∈ Sn that contains k then F 6∈ S x

n,p and so

∑
i∈F
|x(i)|p < 1− εx.

We can therefore perturb x(k) by a value less than εx to produce
y, z ∈ S(Xp

Sn
) with x = 1/2(y + z). This is the desired result.

The following result follows the significantly stronger statement [2],
Proposition 12.9.

Proposition 37. Fix n ∈ N and p ∈ [1, ∞). For each ε > 0 and N ∈ N,
there exists F ∈ SMAX

n with N ≤ min F and a sequence non-negative of
scalars (ai)i∈F with ∑i∈F ap

i = 1 so that for each G ∈ Sn−1, ∑i∈G ap
i < ε.

Lemma 38. Fix n ∈N and p ∈ [1, ∞). Consider Sn and x ∈ S(Xp
Sn
).

1. There exist x1, x2 ∈ S(Xp
Sn
) with x1 ∈ c00 and x = 1

2 (x1 + x2).

2. Let x ∈ c00, there exist x1, x2 ∈ S(Xp
Sn
) ∩ c00 so that both x1 and x2

have non-maximal 1-sets and x = 1
2 (x1 + x2).

3. If x ∈ c00, there exist x1, x2 ∈ S(Xp
Sn
) ∩ c00 so that x = 1

2 (x1 + x2)

and for each i ≤ max suppx1 there is an F ∈ Ax
n,p with i ∈ F.

Proof. We first prove item 1. Let x ∈ S(Xp
Sn
). If x ∈ c00, then we are

done by letting x1 = x2 = x. If x /∈ c00, then Ax
n,p = S x

n,p. Using
Lemma 36 we can find εx > 0. Fix N ∈ N so that ||∑i>N x(i)ei|| <
εx/2 and N > max{max F : F ∈ S x

n,p}. Let x1 = ∑N
i=1 x(i)ei and x2 =

2x− x1. Clearly, ||x1|| ≤ ||x|| = 1. It suffices to prove that ||x2|| ≤ 1.
Let F ∈ Sn. If max F ≤ N, then (∑i∈F |x2(i)|p)1/p ≤ ||x|| = 1. If
min F > N, then (∑i∈F |x2(i)|p)1/p ≤ 2 · ||∑i>N x(i)ei|| < 2 · εx/2 = εx.
Finally, if min F < N and max F > N (and so, F /∈ Ax

n,p), then we have
the following:

(∑
i∈F
|x2(i)|p)1/p = ( ∑

i∈F,i≤N
|x(i)|p + 2 ∑

i∈F,i>N
|x(i)|p)1/p

< (1− εx + εx)
1/p = 1.
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Hence, x1, x2 ∈ B(Xp
Sn
), and since x = 1

2 (x1 + x2) and ||x|| = 1, we
must have x1, x2 ∈ S(Xp

Sn
). This finishes the proof of item 1.

Let’s prove item 2. We may assume that x ∈ c00 has only maximal
1-sets and let N = max suppx. Using Proposition 37, we can find
A ∈ SMAX

n with min A > N and non-negative convex scalars (ai)i∈A
so that for all G ∈ Sn−1,

∑
i∈G

ap
i <

εx

2N
.

Let i0 = max A and F0 = A\{i0} and bp
i = ap

i /(1− ap
i0
) for i ∈ F0. We

can safely assume that ai0 <
1
2 . Clearly, (bi)i∈F0 are convex scalars, F0

is non-maximal and if G ∈ Sn−1,

∑
i∈G

bp
i <

1
1− ap

i0

εx

2N
<

εx

N
.

Let x1 = x + ∑i∈F0
biei and x2 = x−∑i∈F0

biei. Since x1 and x2 both
have F0 as a non-maxinal 1-sets we are done once we can show that
||x1|| = ||x2|| = 1. Let F ∈ Sn. If max F ≤ N, ||x1|| ≤ ||x|| = 1. If
min F > N, ||x1|| ≤ ||∑i∈F0

biei|| = 1. If max F > N and min F ≤ N
(and so, F /∈ Ax

n,p),

∑
i∈F
|x1(i)|p < ∑

i∈F,i≤N
|x1(i)|p + ∑

i∈F,i>N
|x1(i)|p

< 1− εx + N · εx

N
= 1.

The estimate ∑i∈F,i>N |x1(i)|p < N · εx
N is because min F ≤ N and

so, F can contain at most N maximal sets in Sn−1. This shows that
||x1|| ≤ 1. The same proof yields ||x2|| ≤ 1, as desired. Again, since
x = 1

2 (x1 + x2) and ||x|| = 1, we must have x1, x2 ∈ S(Xp
Sn
).

Finally, we prove item 3 of the lemma. Let x ∈ c00 and consider the
following procedure: Let i1 ∈ [1, max supp x] be minimum so that for
all F ∈ Sn, with i1 ∈ F, ∑i∈F |x(i)| < 1. If no such i1 exists we are
done (let x = x1 = x2). Since there are only finitely many F ∈ Sn

containing i1 with max F 6 max supp x we can find F1 ∈ Sn with

(∑
i∈F1

|x(i)|p)1/p = sup{(∑
i∈F
|x(i)|p)1/p : F ∈ Sn, i1 ∈ F}.

Find δi1 > 0 so that

|x(i1) + sign(x(i1))δi1 |
p + ∑

i∈F1,i 6=i1

|x(i)|p = 1.

Let x1,1 = x + sign(x(i1))δi1 ei1 and x2,1 = x − sign(x(i1))δi1 ei1 . We
shall prove that ‖x1,1‖ 6 1. As such we must show for each F ∈ Sn,
∑i∈F |x1,1(i)| 6 1. The case that F ∈ Sn and does not contain i1 follows
from the fact that ‖x‖ 6 1 and so we assume i1 ∈ F. In this case, we
use the definition of F1 to observe that
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∑
i∈F
|x1,1(i)|p = |x(i1) + sign(x(i1))δi1 |

p + ∑
i∈F,i 6=i1

|x(i)|p

6 |x(i1) + sign(x(i1))δi1 |
p + ∑

i∈F1,i 6=i1

|x(i)|p = 1.

Therefore ‖x1,1‖ 6 1. Since |x2,1(i1)| 6 |x1,1(i1)| we have ‖x2,1‖ 6 1
and by the same reasons of the previous items, we conclude that
‖x1,1‖ = ‖x2,1‖ = 1 and also, trivially, that x = 1

2 (x1,1 + x2,1). In
order to produce a vector satisfying the claim we inductively ap-
ply the above procedure as follows: Find the minimum i2 > i1 in
[1, max supp x] and so that for all F ∈ Sn, with i2 ∈ F, ∑i∈F |x(i)| < 1.
If no such i2 exists we are done. Since there are only finitely many
F ∈ Sn containing i2 with max F 6 max supp x we can find F2 ∈ Sn

with

(∑
i∈F2

|x1,1(i)|p)1/p = sup{(∑
i∈F
|x1,1(i)|p)1/p : F ∈ Sn, i2 ∈ F}.

Find δi2 > 0 so that

|x1,1(i2) + sign(x1,1(i2))δi1 |
p + ∑

i∈F2,i 6=i1

|x1,1(i)|p = 1.

Let x1,2 = x1,1 + sign(x(i2))δi2 ei2 and x2,2 = x1,2 − sign(x(i2))δi2 ei2 .
Arguing as before we have that ‖x1,2‖ 6 1, ‖x2,2‖ 6 1 and x = 1

2 (x1,2 +

x2,2). This procedure can be iterated the finitely many times it takes
to exhaust supp x in order to produce x1,n and x2,n with ‖x1,n‖ =

1, ‖x2,n‖ = 1 and x = 1
2 (x1,n + x2,n) so that x1,n has the property that

for each i 6 max suppx1,n there is an F ∈ Ax1,n
n,p with i ∈ F. This yields

the desired decomposition.

We make one easy remark before proceeding. The remark is a
generalized version of Lemma 22 item 3.

Remark 39. Let x ∈ S(XSn) and x = ∑i∈F λixi for xi ∈ S(XSn) and
convex scalars (λi)i∈F. Then Ax

n,p ⊂ A
xi
n,p for each i ∈ F. This fol-

lows from triangle inequality, the fact that the scalars are convex, and
‖xi‖ 6 1 for each i ∈ F.

The next proposition is a characterization of extreme points for
B(Xp

Sn
) and p ∈ (1, ∞). Such a characterization seems necessary in

order to show a space has the uniform λ-property.

Proposition 40. Let Sn, p ∈ (1, ∞) and x ∈ S(Xp
Sn
). Then x ∈ E(Xp

Sn
) if

and only if x ∈ c00 , Ax
n,p has a non-maximal set and for all i 6 max supp x

there is an F ∈ Ax
n,p with i ∈ F. Moreover if p = 1 then the forward

implication holds.
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Proof. We first prove the reverse implication. Suppose x ∈ c00 and
satisfies the assumptions. Let x = 1/2(z + y) and F ∈ Ax

n,p. Then

∑i∈F |x(i)|p = 1. Since every element of the sphere of `
|F|
p is an ex-

treme point, we know in order for ∑i∈F |y(i)|p = ∑i∈F |z(i)|p = 1
we must have x(i) = y(i) = z(i) for all i ∈ F. Our assumption
is that all i 6 max supp x is contained in a set F ∈ Ax

n,p. There-
fore x(i) = y(i) = z(i) for all such i 6 max supp x. Now let i >

max supp x. Find a non-maximal F ∈ Ax
n,p, then F ∪ {i} ∈ Ax

n,p and
consequently, x(i) = y(i) = z(i) by the same reasoning as above.
Therefore, z = y = x, which implies that x ∈ E(Xp

Sn
).

We now prove the forward implication as well as the ‘moreover’
statement. Let x ∈ S(Xp

Sn
) for p ∈ [1, ∞). First, Lemma 36 states

that E(Xp
Sn
) is a subset of c00. We can assume that either every set in

Ax
n,p is maximal or there is an i 6 max supp x not contained in any

F ∈ Ax. In the former case we have Ax
n,p = S x

n,p and since S x
n,p is finite

there is a k > max{max F : F ∈ S x
n,p}. We can perturb x(k) by any

value δ > 0 with δ < εx and create new vectors y = x− δx(k)ek and
z = x + δx(k)ek that are in S(Xp

F ) and satisfy x = 1/2(y + z). In the
later case, we can find the coordinate k 6 max supp x and similarly
show that x is not an extreme point.

Theorem 41. Let n ∈N

1. For p ∈ (1, ∞), the space Xp
Sn

has the uniform λ−property.

2. The space XSn has the λ−property.

Proof. First, we prove item 1. Let x ∈ S(Xp
Sn
) for p ∈ (1, ∞). Using

Lemma 38 item 1, we can find x1 ∈ c00 and x1, x2 ∈ S(Xp
Sα
) and

so that x = 1/2(x1 + x2). Now apply Lemma 38 item 2, to find
x1,1 and x1,2 in c00 ∩ S(Xp

Sn
) each with a non-maximal 1−set so that

x1 = 1/2(x1,1 + x1,2). Finally, we apply Lemma 36 item 3 to find x1,1,1

and x1,1,2 in c00 ∩ S(Xp
Sn
) with x1,1 = 1/2(x1,1,1 + x1,1,2) so that x1,1,1

has both a non-maximal 1-set and for each i 6 max supp x1,1,1 there
is an F ∈ Ax1,1,1

n,p with i ∈ F. Proposition 40 implies that x1,1,1 ∈ E(Xp
Sn
).

Therefore X has the uniform λ−property as

x =
1
8

x1,1,1 +
1
8

x1,1,2 +
1
4

x1,2 +
1
2

x2.

We now prove item 2. The beginning of the proof is the same, how-
ever, we are not able to conclude that x1,1,1 is an extreme point. We do
know, however, that x1,1,1 is finitely supported with a non-maximal
1-set. Therefore there is an n ∈ N so that x1,1,1 ∈ span{e1, · · · , en}.
By Carathéodory’s Theorem, every point of the unitary ball of an
n−dimensional normed space is the convex combination of at most
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n + 1 many extreme points of the ball. Hence, there are a d 6 n + 1
and extreme points (yi)

d
i=1 of B(span{e1, · · · , en}) so that

x1,1,1 =
d

∑
i=1

λiyi

with ∑d
i=1 λi = 1 and λi > 0. By Remark 39, Ax1,1,1

n,p ⊆ A
yi
n,p and so, each

yi has the same non-maximal 1-set F as x1,1,1. It follows that each yi
is an extreme point of XSn as well. Indeed, if yi = 1/2(z + w) for
z, w ∈ B(XSn), then z(k) = w(k) = 0 for all k > n. Suppose not; that
is, there exists z(k0) 6= 0, then ||z|| ≥ ∑i∈F∪{k0} |z(i)| > 1. Since yi is in
extreme point of B(span{e1, · · · , en}) and z, w ∈ B(span{e1, · · · , en}),
z = w = yi. This implies that yi is in E(XSn) and so XSn has the
λ−property.
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I S O M E T R I E S O F H I G H E R O R D E R S C H R E I E R
S PA C E S

In this section, we will use our previous results concerning extreme
points of Schreier space to exhibit the general form of the elements of
Isom(XSn), with n ∈N. We state the main result.

Theorem 42. Let n ∈ N and U ∈ Isom(XSn). Then Uei = ±ei for each
i ∈N

All the work in the section is related to the proof of the Theorem
42. Let us fix n ∈ N, the isometry U and the following notation
throughout this section: Let Uei = xi and Uyi = ei.

Remark 43. We mention two facts about a maximal set in SMAX
n (n ≥

1).

1. A set E ∈ SMAX
n if and only if for each m, k with m + k =

n there is a unique sequence (Ei)
d
i=1 so that E = ∪d

i=1Ei with
(min Ei)

d
i=1 ∈ SMAX

m , E1 < E2 < . . . Ed are in SMAX
k .

2. Let n ∈ N with m + k = n. If a set G ∈ SMAX
n is written as

∪d
i=0Gi, where G0 < G1 < . . . < Gd ∈ SMAX

m , then (min Gi)
d
i=0 ∈

SMAX
k .

Remark 44. Suppose that G ∈ SMAX
n and F ⊂N with min G < min F,

F a spread of G with |F| = |G|. Then if j > min G, {j} ∪ F ∈ Sn.

Proof. By Remark 43 item 1, we write G = ∪d
i=1Gi so that G1 < · · · <

Gd in SMAX
n−1 , (min Gi)

d
i=1 ∈ SMAX

1 , and d = min G1. Since |F| = |G|
and F is a spread of G there is a corresponding decomposition F =

∪d
i=1Fi where Fi is a spread of Gi. Let j > min G. Then

{{j}, F1, . . . , Fd}

is a collection of d + 1-many Sn−1 sets and the overall minimum is
greater than or equal to d + 1. Therefore {j} ∪ F ∈ Sn, as desired.

We require the following technical lemma.

Lemma 45. The following hold:

1. We have Ue1 = ±e1.

30
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2. Let j ∈ N with j > 2. Then, xj ∈ c00, xj(1) = 0, and xj has a
non-maximal one set.

3. Let m ∈ N and j > max{max supp xi : 1 6 i 6 m}. Then
min supp yj > m.

Proof. We prove item 1. If max suppx1 = 1, we are done. Suppose
there exists k ≥ 2 such that x1(k) 6= 0. Because x1 ∈ B(XSn), there
exists n ∈ N with 2|x1(n)| < |x1(k)|. Consider tnen, where tn ={

1− x1(n) if x1(n) ≥ 0

−1− x1(n) if x1(n) < 0
. Let Uz = tnen. By definition of isometry,

we have:

||e1 ± z|| = ||x1 ± tnen|| ≥ |x1(k)|+ |x1(n)± tn|
≥ |x1(k)|+ |tn| − |x1(n)| ≥ |x1(k)|+ (1− |x1(n)|)− |x1(n)|
= 1 + (|x1(k)| − 2|x1(n)|) > 1.

Hence, if F+ ∈ Sn with ∑i∈F+ |(e1 + z)(i)| > 1, then 1 ∈ F+. If
F− ∈ Sn with ∑i∈F− |(e1 − z)(i)| > 1, then 1 ∈ F−. Therefore, F+ =

F− = {1} and so,

|1 + z(1)| = |1− z(1)| > 1.

Because −1 ≤ z(1) ≤ 1, we have a contradiction. So, max suppx1 = 1
or Ue1 = ±e1.

We proceed to prove item 2. It is easy to show that ±e1 + ej ∈
E(XSn) for all j ≥ 2. By Proposition 12, U(±e1 + ej) ∈ E(XSn), and
by Proposition 40, U(±e1 + ej) has a non-maximal 1-set. So, ±e1 + xj
has a non-maximal 1-set. This shows that xj ∈ c00 and xj has a non-
maximal 1-set. If xj(1) 6= 0, then either |e1 + xj(1)| > 1 or |e1 −
xj(1)| > 1, a contradiction. So, xj(1) = 0.

Finally, we prove item 3 by induction. Base case: for m = 1, we
have max{max suppxi : 1 ≤ i ≤ 1} = max suppe1 = 1. Pick j > 1.
We want to show that min suppyj > 1. We have:

||e1 ± yj|| = ||U(e1 ± yj)|| = ||Ue1 ±Uyj|| = || ± e1 ± ej|| = 1.

This only happens if |1 + yj(1)| ≤ 1 and |1− yj(1)| ≤ 1, which in
turn implies that yj(1) = 0. So, min suppyj > 1. Suppose that the
statement holds true for m ≤ k for some k ≥ 1. We want to show
that the statement holds for m = k + 1. Pick j > max{max suppxi :
1 ≤ i ≤ k + 1}. Because j > max{max suppxi : 1 ≤ i ≤ k}, by our
inductive hypothesis, min suppyj > k. Hence, it suffices to prove that
yj(k + 1) = 0. By item 2, xk+1 has a non-maximal 1-set F. Therefore,
F ∪ {j} ∈ Sn and so, 2 = ||xk+1 ± ej||. Therefore, ||ek+1 ± yj|| =
2. Let F+ ∈ Sn with ∑i∈F+ |(ek+1 + yj)(i)| = 2 and F− ∈ Sn with
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∑i∈F− |(ek+1 − yj)(i)| = 2. Since the norm of both of these vectors is
2, we know that k + 1 ∈ F+ ∩ F−. Therefore,

2 ≥ |1 + yj(k + 1)|+ ∑
i∈F+\{k+1}

|yj(i)|

2 ≥ |1− yj(k + 1)|+ ∑
i∈F−\{k+1}

|yj(i)|.

If yj(k + 1) 6= 0, then either |1 + yj(k + 1)| < 1 or |1− yj(k + 1)| < 1.
So, either ∑i∈F+ |yj(i)| or ∑i∈F− |yj(i)| > 1, which contradicts the fact
that ||yj|| = 1. Therefore, min suppyj > k + 1, as desired.

For x, y ∈ c00 we write x < y if max supp x < min supp y and
k < x if k 6 min supp x. If F ⊂ N we will say that (zi)i∈F is a block
sequence if for i < j in F zi < zj.

Corollary 46. For each m ∈ N there is an d ∈ N and m < yd and k ∈ N

with yd < yk.

Proof. Fix m ∈ N. Using Lemma 45 item 3 we can find d sufficiently
large so that m < yd. Applying Lemma 45 item 3 for max suppyd we
can find k with yd < yk.

Proof of Theorem 42. Fix k ∈ N. We will prove that xk = ±ek. The
proof proceeds by induction. Base case: for k = 1, we have x1 = ±e1

due to Lemma 45 item 1. Now fix a k ≥ 2 and assume that the
claim holds for all i < k. Let k0 = max{k, max suppxk}. By repeated
applications of Corollary 46, we can find a set F1 ⊂N so that k0 < F1,
|F1| = k0, and a block sequence (yi)i∈F1 with max F1 < ∑i∈F1

yi =: z1.
Let k1 = max suppz1. Find F2 ⊂N so that |F2| = k1, k1 < F2, and a

block sequence (yi)i∈F2 with max F2 < ∑i∈F2
yi =: z2.

Continuing in this way we can construct an increasing sequence
(ki)

∞
i=0 so that for each i

zi+1 = ∑
j∈Fi+1

yj > max Fi+1

with |Fi+1| = ki and a block sequence (yj)j∈Fi+1 .

There is a unique d(n − 1) ∈ N ∪ {0} so that (ki)
d(n−1)
i=0 ∈ SMAX

n−1
(clearly, d(0) = 0 and d(1) = k0 − 1). Consider the following two
remarks.

Remark 47. Let j > k0 and F := ∪d(n−1)+1
i=1 Fi. We claim that

{j} ∪ F ∈ Sn. (1)

Our tool is Remark 44. Let Gi = {ki, . . . , 2ki − 1} for i ∈ N ∪ {0}.
Then G0 < G1 < · · · < Gd(n−1) are in SMAX

1 and G := ∪d(n−1)
i=0 Gi ∈

SMAX
n by the definition of d(n− 1).
Note that |Fi| = |Gi−1| = ki−1 (i.e. |F| = |G|), F is a spread of

G, and min G = k0 < min F. Therefore we can apply Remark 44 to
conclude that (1) holds.
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Remark 48. Suppose G ∈ SMAX
n has the property that there are sets

G0 < · · · < Gm are in SMAX
1 such that min Gi 6 ki with G = ∪m

i=0Gi.

Then m 6 d(n− 1). Indeed suppose m > d(n− 1). Since (ki)
d(n−1)
i=0 ∈

SMAX
n−1 we know that (ki)

m
i=0 6∈ Sn−1. Since min Gi 6 ki we can con-

clude that (min Gi)
m
i=0 6∈ Sn−1. Therefore using Remark 43 item 2 we

conclude that G 6∈ SMAX
n .

Note that by definition

U(ek +
d(n−1)+1

∑
i=1

∑
j∈Fi

yj) = xk +
d(n−1)+1

∑
i=1

∑
j∈Fi

ej.

We will show that if max supp xk > k + 1 then we have the contradic-
tion:

1. ‖xk +
d(n−1)+1

∑
i=1

∑
j∈Fi

ej‖ >
d(n−1)+1

∑
i=1

|Fi|

2. ‖ek +
d(n−1)+1

∑
i=1

∑
j∈Fi

yj‖ 6
d(n−1)+1

∑
i=1

|Fi|

First we will prove item (1).
Let j ∈ supp xk with j > k + 1. Using Remark 47,

F = {j} ∪
d(n−1)+1⋃

i=1

Fi ∈ Sn.

We may therefore conclude that

‖xk +
d+1

∑
i=1

∑
j∈Fi

ej‖ > |xk(j)|+
d(n−1)+1

∑
i=1

|Fi|.

This prove the first item.
We will now prove the second item. Fix a G ∈ SMAX

n (we may
assume without loss of generality that G is maximal). Then G =

∪m
i=0Gi where G0 < · · · < Gm are in SMAX

1 and (min Gi)
m
i=0 ∈ SMAX

n−1 .
First note that if either k0 6∈ G or G ∩ supp yj = ∅ for some

j ∈ ∪d(n−1)+1
i=1 Fi the desired upper bound follows from counting the

vectors whose intersection is non-empty. Note that in total there
are 1 + ∑d(n−1)+1

i=1 |Fi| many vectors and so missing any single vector
(which, notably, have norm 1) yields the desired upper bound.

Therefore we may assume that

k0 ∈ G and G ∩ supp yj 6= ∅ for all j ∈
d(n−1)+1⋃

i=1

Fi. (2)

Therefore k0 ∈ G and, in particular, min G0 6 k0. Since G0 ∈ SMAX
1 ,

k0 < F1 and |F1| = k0, G0 ∩ supp ymax F1 = ∅. Consequently, min G1 6
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max supp ymax F1 = k1. Continuing in this manner we see that min Gi 6
ki and Gi ∩ supp ymax Fi+1 = ∅ for each 0 6 i 6 m. Therefore by Re-
mark 48 we may conclude that m 6 d(n− 1). However,

Gm ∩ supp ymax Fm+1 = ∅

and m 6 d(n− 1) contradicts (2) and yields the desired upper bound.
Therefore we can conclude, as desired, that max supp xk 6 k. By

induction, we know that Uej = ε jej for each j < k. If k = 2 we have
from Lemma 45 item 1 that xk(1) = 0 and thus xk = ±ek. Suppose
k > 3 and let j < k. If j = 1, xk(j) = 0 by Lemma 45 item 2. Suppose
then that 1 < j < k. Then

2 = ‖ej ± ek‖ = ‖ε jej ± xk‖

Arguing as in the proof of Lemma 45 item 3, we know that if ∑i∈F+

|(ε jej + xk)(i)| = 2 for F+ ∈ Sn then j ∈ F+ and if ∑i∈F− |(ε jej −
xk)(i)| = 2 for F− ∈ Sn then j ∈ F−. Therefore

2 = |ε j + xk(j)|+ ∑
i∈F+,i 6=j

|xk(i)|,

2 = |ε j − xk(j)|+ ∑
i∈F−,i 6=j

|xk(i)|.

Consequently, if xk(j) 6= 0 we can see that either ∑{i∈F+,i 6=j} |xk(i)| or
∑{i∈F+,i 6=j} |xk(i)| is strictly greater than 1. This contradicts the fact
that ‖xk‖ 6 1.

Whence supp xk = {k}. Since xk is a norm one vector xk = ±ek
which is the desired result.
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L I N E A R R E C U R R E N C E R E L AT I O N F R O M T H E
G E N E R A L I Z E D S C H R E I E R S E T S

Fibonacci numbers have been discovered to hide under many differ-
ent forms in mathematics. An online post [13] on a website devoted to
the Banach space theory proves that the Fibonacci sequence appears
if we count the Schreier sets under a certain condition. In particular,
define M1,n = {S ∈ S1 : max S = n}. Then |M1,1| = 1, |M1,2| = 1 and
|M1,n+2| = |M1,n+1|+ |M1,n| for all n ≥ 1. We first show two proofs
of the below theorem.

Theorem 49. The sequence (|M1,n|)∞
n=1 is the Fibonacci sequence.

The first proof ([13]) is very elegant. It uses two one-to-one mappings
to argue about an equality of cardinalities of sets. The second proof is
more computational and can be easily extended to prove the general
case. We generalize Theorem 49 as follows: define Sm = {S ⊆ N :
bmin S/mc ≥ |S|}, Mm,n = {S ∈ Sm : max S = n}, and prove the
following theorem.

Theorem 50. Given m ∈N, consider the sequence (|Mm,n|)∞
n=1. We have:

1. For n ≤ m− 1, |Mm,n| = 0,

2. For m ≤ n ≤ m + 1, |Mm,n| = 1,

3. For n ≥ m + 2, |Mm,n| = |Mm,n−1|+ |Mm,n−1−m|.

We call (|Mm,n|)∞
n=1 the generalized Fibonacci sequence of order m.

8.1 two proofs of theorem 49

Given a set A of natural numbers, define A± 1 = {a|a± 1 ∈ A}.

First proof of Theorem 49 from [13].
Because |Mn| = |Mn+1| = 1. It suffices to prove that |Mn|+ |Mn+1| =
|Mn+2| for all n ≥ 1.

Given a Schreier set S, define Rn(S) = S ∪ {n}\ {max S} and
Tn(S) = (S + 1) ∪ {n}. In words, Rn replaces the maximum of S
with n; Tn increases each element of S by 1 and add element n to the
set.

36
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Let X ∈ Mn+1 be chosen. We have Rn+2(X) ∈ Mn+2 because
max Rn+2(X) = n + 2 and Rn+2(X) ∈ S1. We can write Rn+2 :
Mn+1 → Mn+2 and see that Rn+2 is one-to-one, and given a set
V ∈ Mn+2 with n + 1 /∈ V, we can find a set U in Mn+1 such that
Rn+2(U) = V. Particularly, U = V ∪ {n + 1}\{n + 2}. Therefore,
|Mn+1| = |Rn+2(Mn+1)| = |{S ∈ Mn+2 : (n + 1) /∈ S}|.

Let X ∈ Mn be chosen. We have Tn+2(X) ∈ Mn+2 since max Tn+2(X)

= n + 2 and min Tn+2(X) = min X + 1, making Tn+2(X) ∈ S1 though
|Tn+2(X)| = |X| + 1. We can write Tn+2 : Mn → Mn+2 and see
that Tn+2 is one-to-one. Given a set V ∈ Mn+2 with n + 1 ∈ V,
we can find a set U in Mn such that Tn+2(U) = V. Particularly,
U = V\{n + 2} − 1. Therefore, |Mn| = |Tn+2(X)| = |{S ∈ Mn+2 :
(n + 1) ∈ S}|.

Therefore,

|Mn|+ |Mn+1| = |{S ∈ Mn+2 : (n + 1) /∈ S}|
+ |{S ∈ Mn+2 : (n + 1) ∈ S}| = |Mn+2|. (3)

Due to Equation 3, we complete the proof.

Second proof of Theorem 49.
Given n ∈N, we split:

M1,n = {S ∈ S1 : min S = 1, max S = n} +
{S ∈ S1 : min S = 2, max S = n} +
{S ∈ S1 : min S = 3, max S = n} +
. . . + {S ∈ S1 : min S = n = max S = n}

= ∪n
k=1 {S ∈ S1 : min S = k, max S = n}.

We define (m
n) = 0 if n > m or m < 0 and write:

|{S ∈ S1 : min S = k, max S = n}| =
{

∑k−2
j=0 (

n−k−1
j ) if k < n

1 if k = n
,

where j is the possible number of elements added to a Schreier set
with minimum k and maximum n. Therefore, we have:

M1,n =
n−1

∑
k=1

k−2

∑
j=0

(
n− k− 1

j

)
+ 1 =

n−1

∑
k=2

k−2

∑
j=0

(
n− (k + 1)

j

)
+ 1.

It can be verified that M1,1 = M1,2 = 1, and so, it suffices to prove
that M1,n + M1,n+1 = M1,n+2 for all n ≥ 1. We have:

M1,n+2 −M1,n+1 =
n+1

∑
k=1

k−2

∑
j=0

(
n− k + 1

j

)
−

n

∑
k=1

k−2

∑
j=0

(
n− k

j

)

=
n

∑
k=1

k−2

∑
j=0

((
n− k + 1

j

)
−
(

n− k
j

))
+ 1

=
n

∑
k=1

k−2

∑
j=0

(
n− k
j− 1

)
+ 1 =

n

∑
k=3

k−2

∑
j=0

(
n− k
j− 1

)
+ 1.
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To prove that M1,n+2 −M1,n+1 = M1,n, we want to show that:

n

∑
k=3

k−2

∑
j=0

(
n− k
j− 1

)
=

n−1

∑
k=2

k−2

∑
j=0

(
n− (k + 1)

j

)
. (4)

Pick t ∈ N0 such that t + 2 ≤ n − 1. Equation 4 is true if we can
show:

(3+t)−2

∑
j=0

(
n− (3 + t)

j− 1

)
=

(2+t)−2

∑
j=0

(
n− ((2 + t) + 1)

j

)
.

Equivalently,

t+1

∑
j=0

(
n− t− 3

j− 1

)
=

t

∑
j=0

(
n− t− 3

j

)
,

which is true. This completes our proof.

8.2 proof of theorem 50

The proof of Theorem 50 is simply a generalization of the second
proof of Theorem 49. Therefore, we present only the key components
of the proof. Similar to the case where m = 1 above,

|Mm,n| =
n−1

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 1

j

)
+

{
1 if bn/mc ≥ 1

0 if bn/mc < 1
.

We want to show that for n ≥ m + 2, |Mm,n| = |Mm,n−1|+ |Mm,n−m−1|
by proving the following lemma.

Lemma 51. Fix m ≥ 1, for n ≥ m + 2, we have:

n−1

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 1

j

)
=

n−2

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 2

j

)

+
n−m−2

∑
i=1

bk/mc−2

∑
j=0

(
n−m− k− 2

j

)
+ g(n),

where g(n) =

{
0 if b(n−m− 1)/mc ≥ 1

1 if b(n−m− 1)/mc < 1
.

Proof. We have:

n−1

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 1

j

)
−

n−2

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 2

j

)

=
n−2

∑
k=1

bk/mc−2

∑
j=0

[(
n− k− 1

j

)
−
(

n− k− 2
j

)]
+
b(n−1)/mc−2

∑
j=0

(
0
j

)

=
n−2

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 2

j− 1

)
+
b(n−1)/mc−2

∑
j=0

(
0
j

)
.
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Because ∑b(n−1)/mc−2
j=0 (0

j) = g(n), it suffices to prove that

n−2

∑
k=1

bk/mc−2

∑
j=0

(
n− k− 2

j− 1

)
=

n−m−2

∑
k=1

bk/mc−2

∑
j=0

(
n−m− k− 2

j

)
.

Equivalently,

n−2

∑
k=3m

bk/mc−2

∑
j=0

(
n− k− 2

j− 1

)
=

n−m−2

∑
i=2m

bk/mc−2

∑
j=0

(
n−m− k− 2

j

)
. (5)

Fix t ∈ N0 such that 3m + t ≤ n− 2. Equality 5 is proved if we can
show that

b(3m+t)/mc−2

∑
j=0

(
n− (3m + t)− 2

j− 1

)
=
b(2m+t)/mc−2

∑
j=0

(
n−m− (2m + t)− 2

j

)
.

Equivalently,

bt/mc+1

∑
j=0

(
n− 3m− t− 2

j− 1

)
=
bt/mc

∑
j=0

(
n− 3m− t− 2

j

)
,

which is true. We have completed the proof.

Corollary 52. Given m ∈ N, for n ≥ m + 2, |Mm,n| = |Mm,n−1| +
|Mm,n−m−1|.

Given m ∈N, we consider the sequence (|Mm,n|)∞
n=1.

1. For 1 ≤ n ≤ m− 1, |Mm,n| = |{S ∈ Sm|max S = n ≤ m− 1}|.
Because for all S ∈ Sm, min S ≥ m, |Mm,n| = 0,

2. For n = m, |Mm,m| = |{S ∈ Sm|max S = m}|. Hence, if X ∈
Mm,m, min X = max X = m or X = {m}. So, |Mm,m| = 1,

3. For n = m + 1, Mm,m+1 = |{S ∈ Sm|max S = m + 1}|. Hence,
if X ∈ Mm,m+1, min X ∈ {m, m + 1} and max X = m + 1. If
min X = m, then |X| = 1 and so, X cannot contain m + 1, a
contradiction. So, X = {m + 1}, and |Mm,m+1| = 1.

We see that the first m− 1 numbers of the sequence (|Mm,n|)∞
n=1 are

zero, while the next two are 1. Also, for all n ≥ m + 2, |Mm,n| =
|Mm,n−1|+ |Mm,n−m−1| by Lemma 51. We have shown that (|Mm,n|)∞

n=1
is a higher-order Fibonacci sequence.



B I B L I O G R A P H Y

[1] Albiac, Fernando and Kalton, Nigel. Topics in Banach space theory.
Graduate Texts in Mathematics, 233. Springer, New York, 2006.

[2] Argyros, Spiros and Tolias, Andreas. Methods in the theory of
hereditarily indecomposable Banach spaces. Mem. Amer. Math. Soc.,
170(806):vi+114, 204.

[3] Aron, Richard and Lohman, Robert. A geometric function deter-
mined by extreme points of the unit ball of a normed space. Pacific J.
Math., 127(2):209231, 1987.

[4] Banach, Stefan. Theorie des operations lineaires. Chelsea Publishing
Co., New York, 1955.

[5] Banach, Stefan. Théeoriedesop érationslin éaires. Editions Jacques
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