
PROCEDURAL GENERATION OF METROIDVANIA STYLE LEVELS

by

Trevor Stalnaker

2020

c© 2020 Trevor Stalnaker
All Rights Reserved

TABLE OF CONTENTS

LIST OF TABLES . vi
LIST OF FIGURES . vii
ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

1.1 Motivation . 2

2 BACKGROUND . 3

2.1 Metroidvanias . 3
2.2 Gating Taxonomy . 3
2.3 Graphs . 4
2.4 Pygame . 5
2.5 Physics Engines . 5
2.6 In-House Graphics Package . 5
2.7 Other Used Files . 6
2.8 Related Works . 6

3 APPROACH . 10

3.1 Overview . 10
3.2 Model . 11

3.2.1 Modeling the Map . 11
3.2.2 Modeling the Key Orderings 12

3.3 Implementation . 12

3.3.1 Representing Keys and Gates 12

iii

3.3.2 Preprocessing . 13

3.3.2.1 Generating an Ordering for the Keys 13
3.3.2.2 Creating Directional Mappings for Gate Types . . . 14

3.3.3 Generating the Underlying Map 16

3.3.3.1 Creating the Lattice 16
3.3.3.2 Verifying that the Map Configuration is Winnable . . 20
3.3.3.3 Placing the Keys . 21

3.3.4 Rendering the Map into a Playable Form 23

3.3.4.1 Keys . 25
3.3.4.2 Gates . 26
3.3.4.3 Barriers, Walls, and Platforms 27
3.3.4.4 The Player . 29
3.3.4.5 Creating the Physical Representation of the Map . . 33

3.3.5 Mini Map . 39
3.3.6 Drawing, Updating, and Event Handling 40
3.3.7 Other Visualizations . 41
3.3.8 Summary of Implementation 42

3.4 Saving and Loading Maps and Templates 43

3.4.1 Pickling and Loading . 43
3.4.2 The User Interface . 44
3.4.3 Supporting Past Versions . 45

3.5 Playing the Generated Level . 45

3.5.1 Controls . 45
3.5.2 Collecting Keys and Passing Through Gates 46

3.6 Plotting the Underlying Graphing of Maps 47

4 ANALYSIS . 48

4.1 The Ability to Win Generated Levels 48
4.2 Enforcing Gate Ordering . 48
4.3 Playability of Generated Maps . 49
4.4 Level Generation Times . 49

iv

4.5 Example Map Generations . 52

5 CONCLUSION . 58

6 FUTURE WORK . 59

6.1 Improved Generation of Maps . 59

6.1.1 More Intelligent Generation 59
6.1.2 Improved Dropout Rates . 60

6.2 Adding Other Gating Types . 60
6.3 Increase Non-Linearity of Key Collection 61
6.4 Improve the Mini Map . 61
6.5 Improve the Graphics of the Game 62
6.6 Increase Variability . 62
6.7 Human Level Designer Access . 63
6.8 User Interface for Designers . 63
6.9 User Studies . 63

BIBLIOGRAPHY . 65

v

LIST OF TABLES

3.1 Formulae Determining Location of Nodes in the Lattice 19

4.1 Generation Data by Level Size and Key Count 51

vi

LIST OF FIGURES

2.1 Representation of the Gating Taxonomy 4

3.1 Flowchart of Algorithm . 11

3.2 Example Key Orderings . 14

3.3 Example User Input to Gate Ordering 15

3.4 Abstraction of a Map Lattice . 17

3.5 Possible Positions for Node i in the Grid 18

3.6 Finding the Current Explorable Region 22

3.7 Zone for Proper Key Placement . 24

3.8 An Example of an Unwinnable Pit in the Map 24

3.9 Anatomy of Gate Types . 30

3.10 Example of Corner Generated without Overlap 31

3.11 Anatomy of a Platform . 31

3.12 Player’s Finite State Machine . 32

3.13 Horizontal Movement Physics . 34

3.14 Vertical Movement Physics . 35

3.15 Plotting Interior Walls on the Map 37

3.16 Plotting Interior Walls on the Map 38

3.17 The Save Interface . 45

vii

4.1 Undirected 4x4 Level Demo View and Underlying Graph 52

4.2 Undirected 4x4 Level Demo View and Underlying Graph 53

4.3 Undirected 6x6 Level Demo View and Underlying Graph 53

4.4 Early Rendering of a 4x6 Game Map and Associated Level Demo
View . 54

4.5 Directed 6x6 Level Demo . 55

4.6 Rendered Game View and Underlying Graph 56

4.7 Generated Game View, Level View, and Underlying Graph (5x5) . 56

4.8 Generated Game View, Level View, and Underlying Graph (8x8) . 57

4.9 Generated Game View, Level View, and Underlying Graph (8x12) . 57

viii

ABSTRACT

Video game maps can become dull with repeated play-throughs and hand-

crafting a variety of maps can be a tedious and time consuming process. This is

especially true for games of the Metroidvania genre, games which focus on exploration.

If there was a way to adequately automate the creation of levels, then in theory, the

games would have enhanced replay value. Previous researchers have used artificial in-

telligence and genetic programming techniques to engineer new mappings. But, is it

possible to procedurally generate levels using graph theory and without using training

examples or simply placing pre-built assets? In this paper we propose a system to

model Metroidvania maps as directional graph structures. The system uses an algo-

rithm that crafts graphs meeting all of the constraints necessary for level generation.

These generated graphs are verified as winnable with the keys assigned to appropriate

nodes. Once the graph has been created and validated it is rendered into a 2-D level

using pygame. During the rendering process, the game demo constructs the walls and

platforms essential to the game. We were able to procedurally generate Metroidvania

levels of varying sizes and gating techniques using this sequence of steps.

ix

Chapter 1

INTRODUCTION

Metroidvanias, named after the classic franchises Metroid and Castlevania, have

been a staple of gaming since the late eighties and early nineties [6]. A game in the

Metroidvania genre typically provides the player with a non-linear gaming experience.

Access to parts of the world are “gated,” meaning that access to these areas is not

immediately available. Various different gating technologies are collected by the player

throughout the course of their play, each allowing them to access and explore more

and more new regions of the map. The order in which these gating technologies can

be collected by the player is called the gating order or the gate ordering. As a game

designer, creating worlds such as these can be a tedious and time consuming process.

If the process could be automated, then the number of levels these games contain could

be near infinite. A game could provide players with new levels on each play through,

preventing the game from becoming stale. Gutierrez-Rodriguez et al. make use of ar-

tificial intelligence and genetic algorithms to create novel levels [1, 9], however their

work has not been verified through user studies. In this paper, we discuss how we used

principles of procedural generation to create new maps. Procedural generation is not

a new innovation in the field of gaming. Hendrikx et al. describe the various facets

that procedurally designed content can fall into, including textures, sounds, vegeta-

tion, maps, environments, puzzles, stories, and leaderboards [3]. None of the previous

research has applied these techniques to the creation of gated-style maps required of

Metroidvania games. So, while the ideas and principles of procedural generation are

nothing new, applying them to create Metroidvania levels is a novel approach.

1

Contributions made in this thesis:

1. created a gating type taxonomy for Metroidvanias based upon Castlevania: Sym-
phony of the Night,

2. devised a system to represent Metroidvania gating orders as directed acyclic
graphs,

3. designed and implemented an algorithm for procedurally generating Metroidvania
levels as directed planar graphs,

4. created two systems to render the underlying level graph into a playable game
representation,

5. evaluated the effectiveness of and the time it takes to procedurally generate
Metroidvania-style levels,

6. provided a github repository with the code base necessary for designers to gen-
erate their own Metroidvania-style levels.

1.1 Motivation

The creation of levels and maps for video games can be a time consuming

and arduous process. This is especially true for games in the Metroidvania genre.

These games are known for their large maps and exploration based game play. As

map sizes increase, it can also be increasingly difficult to verify that there are no

ways for the player to cheat the gating order. Therefore, if a machine were able to

procedurally generate maps, it could dramatically decrease the time and effort needed

to create and design such a game. Even if the generated maps were edited and improved

by a human designer, it is easier to improve on something functional, than to start

completely from scratch. For this reason, we developed a program that is capable

of Metroidvania-style level generation. As discussed in Section 3.3, the designer has

access to many parameters which they can use to tailor the map design to their specific

needs. Additionally, a map checker was also created as part of the generation process,

which could easily be repurposed to verify that purely human designed maps meet the

exploration criteria set by the designer.

2

Chapter 2

BACKGROUND

2.1 Metroidvanias

Metroidvanias are a genre of video game with a focus on exploration. The genre

is named after the two flagships of the genre: Metroid and Castlevania [6]. Typically

these games incorporate a platforming element and various different gating techniques.

Gating, as a term in Metroidvania, includes but is not limited to literal gates and

keys. Sometimes a “gate” can be a ledge too high to reach and the key a grappling

hook. In order to progress through the map, the player must collect a series of keys

or movement technologies, each of which will allow for further exploration. The player

continues to explore and navigate through the maze-like world until they reach the final

goal (usually a boss enemy). Gutierrez Rodriguez et al. aptly summarize Metroidvanias

as games that:

“Feature a large interconnected map through which the player can move,
having to obtain objects, weapons or abilities to unlock the different locked
areas. The map is composed of different areas, each of which is in turn
composed of different rooms (including secret rooms). Rooms are where
the different enemies, objects, new abilities, are placed [9].”

2.2 Gating Taxonomy

The popular Metroidvania Castlevania: Symphony of the Night was chosen for

analysis based on its standing as one of the two video games that founded the genre [4].

From this analysis we devised a gating taxonomy. This hierarchy groups gates into cat-

egories, thus making conceptualizing them for procedural generation easier. Categories

include movement tech, doors, enemies, transport, transformations, and puzzles. While

3

other categories undoubtedly exist, these seem to make up the vast majority. Addition-

ally, some gating techniques could reasonably fall under multiple categories, making

some sort of a hybrid gate. Double jump with a keyed gate or a puzzle using enemies

would be good examples of this. For simplicity, these combinations are not included in

the taxonomy. See Figure 2.1 for the full taxonomy diagram. In this project, we focus

on the movement, doors, and transformation categories, however the other categories

could also be implemented given adequate time and planning.

Figure 2.1: Representation of the Gating Taxonomy

2.3 Graphs

Graphs are data structures made up of nodes and edges. Each node can repre-

sent a data point and each edge a connection between points. Nodes can be numbered

or named and edges can have weights. Graphs also come in a variety of forms. In

undirected graphs, the edges have no direction. This means that if there is a connec-

tion between node A and node B, then there is also a connection between B and A. In

a directed graph, this isn’t necessarily the case. Each edge in a directed graph has a

direction as well as a weight. Thus A could lead to B, but B might not lead back to A.

4

Planar graphs are also key to the implementation of this project. A planar graph is a

graph that can be visualized in a 2-dimensional plane without any of its edges crossing.

Finally, directed acyclic graphs (DAGS), are directed graphs that contain no cycles.

In a DAG, sources are nodes that have no incoming edges and sinks nodes that have

no outgoing edges. This means they are analogous to the root node and leaf nodes of

a tree respectively. To model the graphs in this project, we make use of the networkx

Python package [2].

2.4 Pygame

Pygame is a Python package used primarily for video game development. The

interactive game demos of this project are built using pygame. In a nutshell, pygame

allows a programmer to draw a game to the screen, handle game events, and update

the game accordingly [8].

2.5 Physics Engines

Physics engines establish the rules for how objects in a virtual world behave.

Forces such as gravity, friction, and velocity are all simulated by the physics engine.

The physics for this project are defined within the avatar class. Normally a physics

engine would be more generalized, allowing for all objects to be affected by the forces

defined. However, since the player is the only object in the demo that needs to be

affected by gravity and the like, the physics engine is built into that class. More

information on how this is accomplished can be found in Section 3.3.4.4.

2.6 In-House Graphics Package

The user interfaces for saving and loading maps were built using a previously

created graphics package. Justin Pusztay, my partner at the time, and I created this

graphics package while working on our game Squirrel Simulator [10]. This package

builds upon pygame’s functionality, allowing game designers to more easily create UI

elements. Buttons, scroll boxes, text fields, and more are defined in the package. Minor

5

modifications were required to some of the files for this project, further improving their

functionality.

2.7 Other Used Files

In addition to the graphics package, a number of other files used in this project

originated from Squirrel Simulator [10]. The first of these is Drawable. This class

provides a framework that streamlines the process of interacting with pygame objects.

It provides methods for drawing sprites, handling events, updating sprites, and much

much more. Another example is the FSM class, which is used to model finite statement

machines.

2.8 Related Works

Other scholars have also worked towards automating the generation of levels in

the Metroidvania genre. Typically, these other projects aim to automate the creation of

more than just the underlying map structure of a level. That is to say that components

such as weapons, tools, or even the story could be generated as well. It is generally

accepted that video games with few or static level designs can become monotonous on

future play-throughs [1]. Additionally, creating more levels to solve this issue proves

challenging for a development team. Creating more content can be time consuming,

tedious, and expensive [1]. Using procedural generation to produce this new content

typically lessens the issue of monotony and is appreciated by players [9]. Overall, the

design phase makes or breaks a game [9].

Gutierrez-Rodriguez et al. worked to automate the video game design process

using deep evolutionary training [1]. This project was a continuation of their past work

and sought to create an AI-assisted design tool for developers capable of designing full

games. This tool was specifically designed to aid in the creation of Metroidvania

levels [1]. They used evolutionary algorithms to generate the in-game content and

neural networks to simulate a designer’s thought processes. In the end, they were

6

able to generate ’acceptable’ results [1]. However, there is no mention of user studies

comparing the generated levels with those of human design.

In another project, Gutierrez-Rodriguez et al, once again furthered their work

in the field of video game design automation. In this study, they sought to create a

tool capable of producing a complete game, with the exception of art and sound [9].

This would involve an autonomous designer creating mechanics, game rules, game

elements, Non Player Character behaviors, and levels [9]. A very ambitious project.

The authors discuss some of the difficulties involved in procedural generation. For

example, there could be infinitely many designs for the player sprite, but which of

those designs best encompasses the character of the main protagonist [9]? Human

artists are readily able to craft characters based off of their traits and abilities. Evil

characters could be shrouded in black, while heroic characters wear pristine white for

example. They then explain how this issue can be expanded to the fuller game design.

What sort of experience should the game bring to the player? How do the mechanics,

rules, etc effect or bring about that experience [9]? To tackle these issues, they used

a combination of neural networks and evolutionary algorithms [9]. The evolutionary

algorithms simulated the different ideas that a development team might create during

brainstorming [9]. They determined that their resulting proof of concept was capable

of creating quality levels, but was also able to provide promising hints to designers [9].

Sentient Sketchbook is a project geared towards map design. The created tool

is capable of determining a map’s play-ability and balance and of providing suggestions

for alternative mappings [5]. This tool was used to generate levels for strategy games,

like Starcraft, rather than Metroidvanias [5]. Most strategy games consist of a board-

like grid of tiles, which the player and NPCs can navigate. Sentient Sketchbook can be

used to design low-resolution abstractions of these tiled game maps [5]. Designers are

also able to interact with Sentient Sketchbook through a graphical user interface [5].

The tool was tested on industry experts, and proved to provide useful suggestions and

feedback to the designers [5].

Players expect more and more out of the games that they play. As Hendrikx et

7

al. put it, “the most popular commercial games get larger, prettier, more atmospheric,

and more detailed with each generation” [3]. Procedurally generating content can be

used more broadly to help meet these demands. There are six types of game content

that can be procedurally generated [3]. These include game bits, game space, game

systems, game scenarios, game design, and derived content [3]. Game bits make up

the fundamental units of a game. Textures, sound, vegetation, buildings, and behavior

are examples of game bits. The game space is comprised of indoor and outdoor maps.

The game systems include the environment, roads, and entity behaviors. Puzzles,

stories, and levels make up game design. And finally, derived content consists of news

and leaderboards [3]. Needless to say, there are different methods and techniques for

generating content from the various categories. These include artificial intelligence,

genetic programming, and algorithmic approaches.

There are four distinct approaches to game space generation. These include

designer-created, random, player-created, and procedural spaces [7]. Very few games

however make use of procedural space generation [7]. The main obstacle in procedurally

generating spaces for game play isn’t making the content itself but making the content

interactive. Games like MojoWorld generate fractal based planets with great detail,

but the worlds are devoid of active NPCs and interactive objects [7]. Nitsche et al.

decided to bridge the gap with their Charbitat prototype. Charbitat is capable of gen-

erating worlds based on the playing styles of its users. That is that the player shapes

and changes the game world as they play [7]. The crux of procedurally generating

worlds is that the game space might not make sense. The only limits on the proce-

durally generated worlds are provided in their rule sets. For example, in Minecraft’s

newest April Fool’s update, they allowed the player to travel to a near infinite number

of procedurally generated dimensions. Some of these were well-formed and interest-

ing, while in others the ground was made entirely of flowerpots. The problem with

infinity is that you get everything. This is the main reason some would contend that

human-designed worlds are superior. But it has been shown time and time again that

procedural generation can be used, often times in conjunction with human designers,

8

to enhance or augment game play.

9

Chapter 3

APPROACH

3.1 Overview

Generating fully playable, winnable Metroidvania-style levels is the ultimate

goal of this project. Generally a level can be considered as one of many areas or

maps that comprise a larger, complete game. Metroidvanias are often games that

are made up of one or just a handful of levels. Accordingly, the games generated by

this process, consist of a single level. Figure 3.1 provides a visualization of the level

creation algorithm. At the start of the process, the designer provides a gating order,

a horizontal mapping, a vertical mapping, the number of columns n, the number of

rows m, the player’s start position, the end goal position, and a weighted neutral.

All of these inputs are described in more detail in Section 3.3. A DAG is created

from the designer’s provided ordering input, and a topological ordering of the DAG is

generated (Section 3.3.2.1). This manufactures a linear gating order from the designers

specifications, which the generated level will have to obey. The mapping inputs are

standardized, a process that simply adds convenience for the designer. See Section

3.3.2.2. All of the inputs are then used to produce a graph representing a potential

level, as described in Section 3.3.3.1. This graph is verified for winnability, according

to the criteria of Metroidvanias and the gating order (Section 3.3.3.2). If the graph

does not represent a winnable configuration, then another potential graph is produced

using the same inputs. Otherwise, the keys from the linear gate ordering are assigned

positions in the graph, with respect to that ordering. This process is described more

fully in 3.3.3.3. The final graph representation, the specified room dimensions, and a

player object are all used to render the underlying graph into a finalized playable level.

10

This process is explained in Section 3.3.4. The end result is a playable, winnable game

that meets all of the criteria specified by the designer at the start of the algorithm.

Figure 3.1: Flowchart of Algorithm

3.2 Model

Before unique level mappings can be procedurally generated, we need to have

representations that model the map and key orderings.

3.2.1 Modeling the Map

A level map can be represented as a directed graph of nodes and edges. Each

node represents a room within the map and each edge represents a gated connection.

The weights or labels across these edges signify the particular gating technique required

to cross that connection. More specifically, wherever an edge between two nodes exists,

there is also one in the opposite direction. These two edges, connecting the same two

nodes, most often have the same label or weight, but are not required to have such

a pattern. The edge in one direction can be completely different from the one in

the opposite direction. The graph model is also planar; there exists a 2-Dimensional

representation of the graph structure in which no edges overlap. To create a physically

possible map, planarization of the graph is required. Each node in the graph can be

connected to no more than 4 nodes and to no less than 1 node, ensuring that every

11

node is reachable. The 4 node maximum constraint mirrors the structure of a room

in a typical Metrodivania using 2D graphics. There is an up, down, left, and right.

The resulting graph model resembles a lattice of nodes and edges. Figure 3.4 shows an

example of a Map Lattice that could be used. The process through which this structure

is constructed is described in Section 3.3.3.1 below.

3.2.2 Modeling the Key Orderings

The ordering in which keys can be found is also represented as a graph, more

aptly a directed acyclic graph (DAG). The single source of this DAG, the node with

no incoming edges, is the first gating technique that the player will have access to. In

most cases, this first gating technique is the neutral connection, but the designer can

change this as they please. The children of a node represent gating techniques that are

reachable once the parent node has been attained. For example, if single jump were a

parent node, then double jump could be one of its children nodes. This creates a rigid

system that enforces the progression of the gating techniques. This prevents situations

where you collect single jump after you already had access to double jump. The sinks

of the DAG, the nodes with no out going edges, represent all of the potential ending

gating techniques. The process through which this model is created and how a gate

ordering is generated from it are described more fully in Section 3.3.2.1.

3.3 Implementation

This section will cover in detail the implementation and design responsible for

the generation of our Metroidvania style levels.

3.3.1 Representing Keys and Gates

When providing information to the level map generator, keys and gates are

synonymous. There is no need to make a distinction between the two at this point,

since it follows logically that the red key opens the red gate and the double jump key

allows the player to double jump. These gating techniques, as they will be referred to

12

from this point forward, are represented by strings. For more information on how this

gating technique information is input into the generator, see Section 3.3.2.1.

3.3.2 Preprocessing

A short pre-processing step allows designers to provide inputs before levels are

successfully generated. That is that the designer provides information on the desired

gate ordering.

3.3.2.1 Generating an Ordering for the Keys

As was described in Section 3.2.2, the designer can provide a DAG structure to

convey all of the viable orderings for their map. Such a DAG could be skinny with

only one valid ordering, or it could be bushy, with many many valid orderings. See

Figure 3.2 for examples of potential orderings. The typical user or designer cannot be

expected to create a DAG such as these to input into the generator, so instead they

provide the generator with a dictionary, where keys represent a gating technique and

values represent all the new keys that are viable after said key has been found. See

Figure 3.3 for an example of just such an input and an example of its output generation.

If a particular gating technique can only lead to one other technique, then the designer

can simply provide that technique as a string for the value associated with that key. If

there is more than one viable next gating technique reachable, the designer can assign

a list of such strings to the value.

To find the actual linear order of the keys for the particular level, the get-

GateOrder function in the grapher module is called. This function in turn calls the

helper function createGraph, to create a networkx representation of the gating DAG.

createGraph is provided with the dictionary created by the designer, called ordering.

createGraph iterates through the keys of ordering and adds each gating technique as

a node in the graph. Specifically, it adds an edge between the key (parent gating

technique) and the value (child gating technique). If the value at a key is a list, then

each of the elements in that list is added as described previously. Once this graph is

13

(a) Simple Linear Ordering

(b) Simple Branched Ordering

(c) More Complex Branched Ordering

Figure 3.2: Example Key Orderings

constructed, it is returned and control returns back to getGateOrder. With the gating

techniques graph now available, getGateOrder finds the one source of the DAG, i.e.

the first key that a player should come across (typically the one they start out with by

default). Next, while the length of the constructed ordering is less than the number of

nodes in the returned gating techniques graph, each node currently in the constructed

ordering is looped through and all of its children are saved as potential next keys.

One of these potential next keys is selected at random and appended to the end of

the constructed ordering. This process continues until all keys have been added. This

system provides for variation in the orderings for maps, while obeying the constraints

outlined by the designer.

3.3.2.2 Creating Directional Mappings for Gate Types

Along with being able to control the gate ordering, the user can also specify

which gates can appear on platforms and which can occur on walls. They can do

this by specifying rules for bi-directional gates. The designer can provide a horizontal

14

Figure 3.3: Example User Input to Gate Ordering

mapping and a vertical mapping. Both of these are lists, which contain strings, which

once again represent the various gating techniques. All gates that can be present in

walls should be within the horizontal mapping, all of those that can be present in

platforms on the vertical mapping. Some gates are yet more complicated. Take for

example double jump. The player should be required to have double jump in order

to pass up through a double jump gate. But what if they fall off from the top of

the platform? The player shouldn’t be required to have double jump in order to fall.

Such a constraint would seem contrived and inhibit game play. By providing a tuple

of two strings, instead of just a single string, we can convey to the generator a setup

that allows for different gatings in different directions. ‘(“double jump”,“neutral”)’ for

example would mean that you need to have the double jump movement tech in order to

proceed upwards through the gate, but only need the neutral tech to pass downwards.

Although designed for this specific case, the functionality is generalized such that any

combination of bi-directional gatings is possible (in some cases additional steps may

need to be taken in order for the gates to be properly rendered and playable, see Section

3.3.4.3). As you can probably imagine, having some elements of the list as strings and

others as tuples could present issues down the line. Luckily the getDirectionalMapping

function in the grapher module cleans up the list such that all items are tuples. That is

15

that each string in the list is converted to a tuple where both elements contained within

it are that string. This serves mostly as a convenience function allowing designers to

specify ‘[“red”]’ instead of ‘[(“red”,“red”)].’ Also, gating techniques can occur in more

than one tuple. Take this for example, ‘[(“red”,“red”),(“red”,“blue”)].’ With this

setup, in one configuration a player could pass through the red gate with the red key

in both directions. In the other configuration, the player could pass through the gate

with the red key, but would need the blue key to return to where they came from. This

allows for further variation in the design of maps.

3.3.3 Generating the Underlying Map

Once the pre-processing has been completed and the designer has specified the

gating criteria, the underlying structure of the map can be generated.

3.3.3.1 Creating the Lattice

Once the gating order and the directional mappings have been set, the actual

graph representing the map level can be created. Parts of this graph are created through

random generation, but the underlying structure is created in the form of a lattice. This

intelligently designed lattice ensures that the graph is planarizable, no node has more

than four connections, and that those connections are its ‘proper’ neighbors. What is

considered a proper neighbor can be seen in Figure 3.4. To construct the lattice, we use

a list to simulate a stack, appropriately called nodeStack. nodeStack contains the nodes

which are yet to be processed. Contrary to popular computer science convention, the

first node of the graph is labeled with the number 1, thus 1 is the first thing pushed on

the stack. As long as the nodeStack is not empty the following continues to happen.

The nodeStack is popped and the popped node is saved to a variable i. Using the

logic found in Table 3.1 to find the relative location of i within the overall structure

of the lattice, the various connections of i are determined. Examples of the different

configurations can be found in Figure 3.5. If a potential connection is between i and a

node that hasn’t been processed yet and it isn’t randomly dropped out, it is assigned

16

a gating technique and is added to the growing graph. The newly connected node is

also pushed onto the nodeStack, so that it too can be processed.

Figure 3.4: Abstraction of a Map Lattice

The detConnection function is responsible for the logic behind which connections

are added and of what gate variety. The connection being considered is between the

node i and another node. If this other node has already been processed, meaning that

all of its connections have already been determined, then there is no need to re-evaluate

the connection. Therefore no additional connection is added. If the other node has

not yet been processed, then the available gates are pulled from the mapping. Next,

the connection is randomly assigned one of these available gating techniques. This

assignment is not truly random, since the designer can also provide a weighted neutral

as a parameter. This weighted neutral affects how many of the nodes are connected

via neutral edges. This allows for the map world to be more open and less restrictive.

There is no need for all rooms, or nearly all rooms, to be connected by locked doors

17

(a) Top Left Corner (b) Top Edge
(c) Top Right Corner

(d) Left Edge (e) Middle (f) Right Edge

(g) Bottom Left Corner (h) Bottom Edge
(i) Bottom Right Corner

Figure 3.5: Possible Positions for Node i in the Grid

18

Position in the Grid Criteria for Being in that Position
Top Left Corner i == 1

Top Edge 2 <= i <= (n-1)
Top Right Corner i == n

Left Edge
i % n == 1 and

i != 1 and
i != (m-1)n + 1

Middle
i % n != 0 and
i % n != 1 and

n <i <(m-1)n + 1

Right Edge
i % n ==0 and

i != n and
i != mn

Bottom Left Corner i == (m-1)n + 1
Bottom Edge (m-1)n + 2 <= i <= (m-1)n + (n-1)

Bottom Right Edge i == mn
Where i is the position in the grid of the node under consideration,

m is the number of rows, and n is the number of columns.

Table 3.1: Formulae Determining Location of Nodes in the Lattice

or double jump platforms. The name weightedNeutral is a bit deceiving however. In

reality this value really represents how many of the connections will be of the first

gating technique. Typically this first technique is the neutral connection. The random

assignment is overridden if either i or the other node is the endNode. For this special

case, the connection is set to the final gating technique. This ensures that the end

node is not reachable until after the last key has been collected.

Once the type of the connection has been determined, detConnection determines

if the connection should exist at all. Not every room should be connected to all of its

neighbors. Such a map would be rather bland and uninteresting. A helper function

r returns a boolean true or false representing if the connection should be added to

the overall graph. This r is simple for the time being, but could potentially be made

more complex and interesting in the future. Currently, a random value between 0

and 1 is compared with the dropout rate, which is defined at the top of the file. The

designer actually has no control over this dropout rate because slight changes to it can

19

result in slowed runtimes or worse graph generations. If the random value is greater

than the dropout, then the connection is added to the graph. Now knowing that the

connection should be incorporated into the graph, detConnection considers the various

different options for bidirectional graphings. As discussed previously, a single gating

tech can have multiple different bidirectional configurations. It is at this point that one

of those configurations is randomly selected. Which gating tech will go from left/up

to right/down depends on the relationship between i and the other node. Finally, the

node that was under consideration is pushed onto the nodeStack, so that it too can be

processed eventually.

3.3.3.2 Verifying that the Map Configuration is Winnable

The viableMap function is crucial to the map generation in its current form.

Because of the random nature of how connections are created, it is essential that the

maps be checked to determine that they actually meet the criteria of a Metroidvania.

In Section 6.1.1 we discuss how this process could be improved using a more intelli-

gently designed algorithm, rather than just randomness and checking. This function

has further applications outside the realm of procedurally generating maps however.

With slight modification, it could potentially also be used to verify that human de-

signed levels conform to the constraints chosen by the designer. This would drastically

decrease the time needed to test large levels and rapidly prototype.

First, viableMap checks that the end node, the ultimate goal of the player, is

actually contained within the graph representing the map level. If the end node is not

in the graph, then logically the player can’t reach it, and the map is unwinnable. In

this case the function halts and returns False.

Next, the continuing expansion of new regions during exploration is checked.

Essentially if the currently explorable region (the region reachable with the current

keys) doesn’t grow when another key is added, then the level does not meet the gating

constraints. That is to say that some key or area would be reachable before it should be.

It could be possible to get double jump before triple jump for example. The explorable

20

regions are found using the findExplorable function. In essence, this function iterates

through the graph along all edges that have weights that are keys that the player has

acquired. See Figure 3.6 for an example of this process.

Once viableMap determines that there are enough distinct explorable zones for

each key to be set in, the keys are placed. The process through which the keys are

placed is described in Section 3.3.3.3.

Lastly, viableMap checks that there is at least one primary connection between

the startNode and another node. A primary connection is simply a connection that

uses the first gating technique, typically the neutral connection. This ensures that at

least one other node is reachable from the start.

Currently, viable map also creates a potential map, which it then determines

the validity of using the above conditions. It does this with a call to the createGraph

function described in Section 3.3.3.1. The function generateViableMap, which is called

by both of the demo classes, is used to actually create and return a fully fledged

viable map. This is done by calling viableMap until a map is returned. This means

that many maps are actually created that don’t meet the constraints laid down by

the designer, but they are ignored, and generateViableMap keeps searching until it

finds a suitable mapping. As discussed in the future work section, this system can be

improved. This configuration lends itself to a slower runtime and also introduces the

halting problem. Given certain parameters the generateViableMap function may never

halt. If the constraints given to the function are faulty, there could potentially be no

viable mappings and thus the end loop condition will never be met. However, within

reasonable limits, this system seems to work well.

3.3.3.3 Placing the Keys

Each new key must be placed such that they can only be acquired one at a

time. There are no situations in the levels generated that two keys can be collected

interchangeably. As has been mentioned multiple times previous, this enforces the

gating order. To find the area in which a key can be placed, we look at the area

21

(a) Current Keys: [] (b) Current Keys: [Red]

(c) Current Keys: [Red, Green] (d) Current Keys: [Red, Green, Blue]

(e) Keys: [Red, Green, Blue, Orange]

Figure 3.6: Finding the Current Explorable Region

22

explorable with the current keys the player has. We then compare this to the explorable

region with the addition of the next key in the sequence. The difference between these

two region sets represents the area in which the newest key can be placed. See Figure

3.7. A node is chosen at random from this difference set and is set as the key location.

Now the function must check that the key is reachable from all of the previous nodes.

This prevents a situation in which a player could fall into an unwinnable pit, a problem

introduced with the addition of bidirectional gating. See Figure 3.8 for an example of

this. To do this, we need to check for paths between each node in the difference set

and the node that contains the last placed key. If there exists a path between all of

these nodes and the key location, then paths must exist for all previous nodes as well.

We can prove this transitively. All previous nodes had paths to the last key location.

Therefore if the last key location has a path to the new key location, all the previous

nodes do as well. Due to complications with the bidirectional nature of the graph and

some restraints inherent to networkx, it’s best to create a temporary graph to check

for paths rather than use the full structure. This is because if we use the dijkstra’s

pathfinding method for example, a path can technically exist between two nodes even

if our constraints say that the player can’t pass along that edge yet. So even after

applying weights to the edges, if no better path existed, that technically incorrect path

was returned. Thus, by creating a graph that only contains the edges that are viable,

we can avoid that issue. If at any point a path does not exist, then the viableMap

function will return False, and the entire process should repeat. If there is always a

path from every node to the key location, the location of that key is officially set, and

the process continues for the rest of the keys in the sequence.

3.3.4 Rendering the Map into a Playable Form

After the underlying graph has been created through the process described in

Section 3.3.3, a playable level can be created using the pygame package [8].

23

Figure 3.7: Zone for Proper Key Placement
The next key, in this case blue, can be placed in any rooms in the New Explorable

Zone

Figure 3.8: An Example of an Unwinnable Pit in the Map
It’s possible for the player to reach the bottom node before having the D key. This

results in a situation where the player is unable to make it back up to the rest of the
map

24

3.3.4.1 Keys

The physical keys that appear in the game world are instances of the Key class.

This class inherits from the Drawable class, for more information see Section 2.7. Keys

are initialized with a position in the world, a color, and a gating type. Although it may

at first seem that the color of a key and its gating type could be stored within a single

attribute, it is actually simpler for the general case to keep the two values distinct. For

the simple keys, such as ‘red’ or ‘green,’ having these attributes joined would suffice,

but for more complex keys like double jump, this would present a new issue. Logically

the double ump key cannot be of the color double jump. Therefore it stands to reason

that these two fields should be distinct.

For the time being, keys are represented by simple square sprites. In future

versions of the game, it is more than possible that the representations of keys could

become more interesting and complex. This is an idea that is discussed Section 6.5.

However, designing individual key sprites for each gating type was outside the scope of

this project, which sought to generate the underlying level structure. More appealing

keys would not have improved or detracted from this original goal. All the keys share

the same dimensions. Each is a 15 pixel by 15 pixel square of the provided color. If the

color provided is None, then the square’s surface will be blitted (drawn to the screen)

black.

Keys contain two other attributes, which are important to game play. The

first of these is a flag called ‘collected.’ As the name would imply, this Boolean flag

denotes if the given key has been collected by the player. True meaning the key has

been collected and False meaning that it hasn’t. This flag is set to True by the collect

method. The programmer can get the value of this flag using the collected method,

which returns an intuitive Boolean value. The other important attribute stored within

an instance of a key object is the key type. The programmer can access this value using

the getType method. Additionally, there is a getColor method that returns the key’s

color. The color returned is the same color that was provided during the initialization

of the key. Throughout this project rgb values are used to represent colors, but this is

25

just by convention and is not actually enforced in the code. However, if rgb values are

not used, errors could be created, which would otherwise be absent.

3.3.4.2 Gates

Gates, not to be confused with walls or platforms, which will be discussed later,

are the regions of the map which temporarily impede the progress of the player. That

is, the player cannot pass through a gate if they do not possess the required key,

movement tech, or other gating tech. Although the game allows for bidirectional

gating, this functionality is actually achieved by using two distinct instances of the

Gate class and placing them beside each other. Of course that describes the typical

case, not cases like double jump.

The Gate class inherits from the Drawable class, which is discussed in Section

2.7. Upon its initialization, the programmer provides a position, color, and gate type.

Optional parameters include direction, size, and pass through. The position represents

where the upper left-hand corner of the final gate will be drawn onto the screen. The

color represents the physical rgb value the gate will be colored, whereas the gate type

provides the actual type of the gate. For a further discussion about the differences be-

tween color and gate type see the Section 3.3.4.1. The direction parameter determines

the orientation of the gate. 0 is the default and denotes that this is a vertical gate,

i.e. one that might appear in a wall. A direction of 1, then, denotes a horizontal gate

that one might find in a ceiling or floor component. This is accomplished by flipping

the height and the width of the gate. This height and width is provided through the

size parameter. The size is provided as a tuple that contains the width and then the

height in pixels. The default size of gates is 10 pixels wide by 40 pixels tall. The final

attribute of an instance of the Gate class is the passThrough tuple. This tuple contains

four True-False values, one for each of the cardinal directions. Here these directions

are up, down, left, and right, represented in that order. All of these values are False

by default, meaning that the player cannot pass through the gate in that direction

without the proper key. If one of these values is True, then the player can pass through

26

the gate in that direction. A good example is a jumping platform. The player is able

to jump through the platform, but does not fall through it. This is because the tuple

value representing up is True and the tuple value representing down is False. This

passThrough tuple will be discussed more in later sections. Besides the init method,

there is one other method in the Gate class. The getType method returns the gate

type.

3.3.4.3 Barriers, Walls, and Platforms

The physical surfaces in the game demo are created from Gates. Walls, vertical

barriers, and platforms, horizontal barriers, both inherit from the Barrier class. The

Barrier class establishes both walls and platforms as multi-sprite objects. This means

that each barrier consists of multiple smaller objects. In this case, the smaller objects

are gates. The Barrier class provides functionality for drawing, getting components,

updating, and making the internal objects picklable. Walls and platforms differ only

in their initialization. The various components of a wall or platform are composed

during the initialization. It is essential that the initializations be distinct because, for

example, a double jump gate will look different if it occurs on a wall, rather than a

platform.

Let’s first consider how Wall objects are created. As with all Drawable objects,

the Wall is provided with a position, which represents the coordinates where its top left

corner will be drawn to the screen. The connection type and color of the gate are also

provided. These are distinct for the reasons discussed in the above sections. The size of

the wall is also provided, allowing the designer to make walls larger or smaller. Finally,

the designer can specify a standard unit. This unit allows all wall and platform sizes to

be relative and comparable to that unit. For the sake of my work, this standard unit

is 1.5 times the height of the player’s sprite. This means that when the height of the

player changes, so too do the dimensions of the level. The neutral wall color, in this

case referring to walls that the player can never pass through, is set to (120,120,120),

27

a shade of grey. The height for gates is set to the standard unit, allowing the player

to pass through them without the gates being too snug.

There are four different types of walls: exterior walls, double jump walls, shrink

walls, and standard walls. As is probably apparent, all novel gating types that involve

a non-standard gate will most likely also require a unique wall generation. Exterior

walls are denoted with a connection type of 0. Counterintuitively, exterior walls are

just Gate objects, with a height equal to the height of the entire wall. The color is set

to the neutral grey and the connectionType is set to 99, denoting that the player will

never have a key enabling them to pass through. Double jump walls are composed of 3

components. These include an optional top portion of the wall, the bottom segment of

the wall, and a platform for the player to land on. A graphical representation of this

layout can be seen in Figure 3.9d. The shrink walls are created in a similar fashion.

These walls consist of just two components, including the top portion of the wall, and

the lower bottom piece of the floor. This bottom piece is essential for all walls, so

that the walls are flush with the platforms. In fact there is slight overlap between the

bottom of walls and the right edge of platforms, preventing an awkward design like

what can be seen in Figure 3.10. An example of a shrink gate and the math behind

its creation can be seen in Figure 3.9c.

The final wall is the easiest to generalize. This wall represents all the other

gating techniques by default. There are two variants of this general wall. The first

variant consists of an upper wall segment, a left gate and a right gate, if they are not

neutral connections, and a floor piece. See Figure 3.9a, for an example of this layout.

The second variant represents the same type of gates, but with a single jump added

into the mix. This would need to be adjusted if the player was not able to single jump

at the start. These walls consist of an upper wall component, left and right gates, if

they’re not neutral, a bottom segment, and a platform for the player to land on. See

Figure 3.9b for a visualization.

The creation of platforms is similar to walls, but currently with less variation.

But a designer could easily add more conditions to create more variety in the types of

28

platforms. Exterior platforms are created in the same way as exterior walls, but in the

horizontal direction. All other platform types are created with a left and right sub-part,

which are both of a standardized size. These sub-parts are the landings on which the

player can walk. Platforms that do not make use of a neutral connection or double jump

contain a gate / gates between the left and right sub-parts. All platforms also spawn

additional platforms that allow the player to jump up to the gated entrance. The

distance between these platforms depends on whether the main platform represents

double or single jump. Double jump platforms create lower platforms with greater

distance between them. The player can also pass through these sub-platforms in the

upwards direction. This is because the passThrough parameter of gates is set to (True,

False, False, False) for the sub-platforms. See Figure 3.11 for examples of platforms

and their underlying math.

Bidirectional gates, whether part of a wall or a platform, make use of the

passThrough parameter as well. For example, on a wall, if the gate on the left is

red and the one on the right is blue, then the player should be able to move from left

to right with just the red key. To accomplish this, the passThrough parameter for the

blue gate is set to allow the player to pass through on the left side. The opposite is

done for the red gate.

3.3.4.4 The Player

The player is represented and modeled by the Avatar class. This class is respon-

sible for handling player input and updating the player’s sprite accordingly, as well as,

managing all collisions between the player and gate and key objects. The player has a

position, which initially is within the starting room, a velocity, which is initially zero,

a list of keys, initially empty, and an internal finite state machine managing the state

of the player. The player’s different states include, standing, jumping, falling, and

walking. A graphic of this state machine can be seen in Figure 3.12. The Avatar class

provides methods for getting the player’s keys, determining if a player has a given key,

giving the player a new key, moving the player, and updating the player.

29

(a) Standard Gate Variation One
(b) Standard Gate Variation Two

(c) Shrinking Gate
(d) Double Jump Gate

Figure 3.9: Anatomy of Gate Types

30

Figure 3.10: Example of Corner Generated without Overlap

Figure 3.11: Anatomy of a Platform

31

Figure 3.12: Player’s Finite State Machine

When the space key is pressed, if the player is standing or walking, the player

switches states to jumping. This also sets the boolean flag onGround to False and

increments the jump count by one. If the space key is pressed and the player is

currently jumping, if the player has double jump and the jump count is 1 or less, the

player can jump again. This resets the jump time and increments the jump counter.

When the s key is pressed, if the player is at full size and they have the shrink key,

the player shrinks. If the s key is pressed and the player is shrunk and they possess

the shrink key, the player grows. The scaling factor is two. Other movement events

consist of the arrow keys moving the player left and right.

The update method is actually responsible for moving the player around the

world. If the left arrow is down, then the velocity is set to the negated maximum

velocity. If the right arrow key is down, then the velocity is set to the maximum

velocity. If neither of the keys is down, then the velocity is set to zero. This means

that as soon as the keys are released, the player should come to a complete stop. If

32

Jumping

the player’s state is standing or walking and they are no longer on the ground, their

state is changed to falling. If the player is jumping and there is still time on the jump

timer, the player’s y velocity is set to the negated max velocity and the jump timer is

decremented according to the ticks, otherwise the player’s state is changed to falling,

the jump timer is reset, and the jump count is reset to zero. If the player’s state is

falling and they are still not on the ground, their y velocity is set to the maximum

velocity, otherwise they transition to the standing state. The player’s new position is

calculated using the velocities determined previously. See formula:

newPosition = currentPosition + (velocity ∗ ticks)

The onGround flag is set to False. It is safer to assume that the player is always falling

than it is to assume that the player has reached the ground. This prevents the player

from achieving further jumps by falling off of a high platform and waiting to jump until

they have nearly reached the ground. In other words, this safe guards against players

reaching areas they shouldn’t have access to.

Finally, the update method checks for collisions between the player and the

various components of the walls and platforms. If the player does not possess the

necessary key and collides with a barrier sprite, it is determined which direction the

player approached the barrier from. The player is pushed back the way they came until

they are flush with the outer edge of the barrier. That is unless the barrier specifies

that the player can pass through in the given direction. A diagram of this behavior

can be found in Figures 3.13 and 3.14.

3.3.4.5 Creating the Physical Representation of the Map

The prepareMap method combines all of the pieces described in the other Sec-

tions of 3.3.4 and the underlying graph of the map to create the final playable level.

It is in this function that the standard unit u is determined. As previously mentioned

this standard unit is 1.5 times the height of the player. List containers are also created

to hold the walls, platforms, and physical representations of the keys. The room height

33

Figure 3.13: Horizontal Movement Physics

34

I: The player sprite approaches a wall

PositiveX

~8
ill: The midpoint of the player sprite

passes the left edge of the wall

Positive X
Velocity

II: The player sprite enters the wall

Positive X
Velocity

c:::=>
I
I

t

IV: The player sprite's x position is
reset just outside of the left edge of

the wall

* The same logic, only mirrored,
applies for movement in the leftward

direction (negative x velocity)

Figure 3.14: Vertical Movement Physics

35

I: The player sprite approaches a platform

n Positive Y V Velocity

8
[

ill: The midpoint of the player sprite
passes the top e<ige of the platform

n Positive Y V Velocity

-- --$-- -------

II: The player sprite enters the wall

n Positive Y V Velocity

--$-- -------

IV: The player sprite's x position is reset
just outside of the left edge of the wall

I + l

* The same logic, only mirrored,
applies for movement in the upwards

direction (negative y velocity)

and room width are also set, and these two values are combined into the roomSize

tuple. The width of the barriers is set to be 1/4u or .25 standard units. This means

that the wall size is (barrierWidth, roomHeight + barrierWidth). As mentioned pre-

viously, the border width needs to be added to the height so that visuals like those

in Figure 3.10 don’t occur. The platform size is set to (barrierWidth, roomWidth +

barrierWidth). Finally, the start coordinates for the generation are set. Currently the

coordinates (100,100) are set as the start.

Next, the top corners for each room in the mxn grid are found and added to a

list called topCorners. This list will be used to easily place the walls and floors/ceilings

of rooms later on. Then all of the distinct rooms in the graph are found and added to

a list called rooms. The edges of the graph are then split into two distinct categories,

forward edges and backwards edges. In this case, for a room i, a forward edge connects

i with the room to the right or i to the room below. A backwards edge connects in

the opposite direction. If the graph being used to generate the level predates the dual-

gating, then the backwards edges are the same as the forwards edges. This enables

some backwards compatibility.

Once all of the edges have been found, we iterate through the forward edges to

add the interior walls and platforms to the map. To do this, we get the forward edge

gating type and the backward edge gating type and determine the relationship between

the rooms they connect. If the first node is r and the second node is r+1, then the

edge represents a wall. If the second node is r + the number of columns, then the edge

represents a platform. See Figure 3.15 for a pictorial description. This simple system

suffices to add all interior barriers, meaning that all gating types are added here.

After all of the interior edges have been added, the exterior edges are put in.

While this might at first seem simpler, it actually takes quite a bit more logic to find all

such edges. There are four distinct cases, each with two subcases. The logic for these

is described more fully in Figure 3.16. Once this is done the map is fully enclosed, with

the tops, bottoms, and sides of rooms fully added.

With all of the rooms created and ready to be drawn to the screen, next the

36

(a) Simplified Underlying Graph of Node
Connections

(b) Graph showing only edges in the for-
ward* direction

(c) Map with all interior barriers gener-
ated

Figure 3.15: Plotting Interior Walls on the Map
Iterate through the forward edges*, adding walls/platforms (with gates) between the

nodes/rooms they connect.
*A forward edge is defined as an edge from X and Y, where Y is greater than X

37

(a) Map with all interior barriers gener-
ated

(b) Add barriers to the tops of rooms, us-
ing the following rules, where r is the cur-
rent room and n is the number of columns:
r ≤ n or (r-n, r) is not an edge in the graph

(c) Add barriers to the bottoms of rooms,
using the following rules where r is the
current room, n is the number of columns,
and m is the number of rows: r m*n or
(r, r+n) is not an edge in the graph

(d) Add barriers to the lefts of rooms,
using the following rules where r is the
current room, and n is the number of
columns: r % n = 1 or (r-1, r) is not an
edge in the graph

(e) Add barriers to the rights of rooms,
using the following rules where r is the
current room, and n is the number of
columns: r % n = 0 or (r, r+1) is not
an edge in the graph

Figure 3.16: Plotting Interior Walls on the Map

38

physical key objects are placed. Each key is placed in the center of its respective room,

such that it is easily within reach of the player. The neutral gate, however, does not

have a physical key.

Now that the level has been completely generated, a player object is created

and placed within the start room. The walls and platforms are broken into their

components, so that the player object can check for collisions later. Backups of the

physical keys are created and stored so the player can reload the level. The finishing

block is created and added to the ending room. The mini-map, described in Section

3.3.5, is created.

3.3.5 Mini Map

The mini-map is specific to the game demo and serves as a navigational guide

for the player. Additionally, the mini-map provides the user with an idea as to the

overall structure and shape of the map, probably more so than even the networkx plot.

This mini-map does not, however, provide information pertaining to all the connections

between rooms, or even if such connections exist. For information such as this, the

level demo, described in Section 3.3.7, is ideal.

The physical mini-map can be thought of as a different representation of the

underlying graph structure. The purpose of this representation is to detail the basic

shape and layout of rooms. Additional information provided includes the players cur-

rent position, which is obviously completely independent of the underlying structure of

the level. The mini-map is created in much the same way as the actual physical level.

The top corners of each room are determined and saved and then all distinct rooms are

found. Then for each room, a rectangle (actually a pygame Surface) is positioned using

the top corner for the respective room. All of these rectangles are colored white, except

for the start and the end, which are green and blue respectively. In implementation

the mini-map is nothing more than a list of mySurfaces, where each surface represents

a room.

39

The player’s current position is calculated and the square representing the player

is moved by the updateMiniMap method. The position of the player on the mini-map

is an approximation as to which room the player is in. Given some configurations, the

map can be out of sync by a few pixels. This error seems to increase as the size of the

level increases, becoming more apparent as the player nears the bottom right corner.

The player’s position on the mini-map is calculated using the following process. The

x position for player’s position on the mini-map is found by finding the x-coordinate

for the center of the in-game player, offsetting it by the start coordinate’s x value, and

scaling it by the ratio of the mini-room width vs the full scale width of the in-game

rooms. This value is then offset by the mini-map’s start coordinates. The same process

is done for the y coordinate, but using heights and their associated values. In a sense,

the mini-map is treated as a scaled down version of the larger game world, and the

player’s position is calculated relative using the ratio between the two.

3.3.6 Drawing, Updating, and Event Handling

Because nearly all of the components used to build the platformer demo inherit

from the Drawable class, or have internal components that inherit from Drawable,

they all contain draw methods. This means that to render the map on the screen,

draw is called on the finish block, all walls, all platforms, the keys, and the player. If

the mini-map should be shown, then every MySurface comprising it and the pointer’s

draw methods are called as well. If the player has reached the end and won the game,

then the end game text is displayed on the screen. The orbs representing the collected

keys are drawn to the screen using pygame’s built in draw.circle function.

The LevelTester class allows the player to handle events, if the game has not yet

been won. If the game has already been completed then the LevelTester sets all of the

player’s movement keys to False, effectively stopping the player’s movement. Without

this, the player would continue to move forward until the pygame window was closed

or the game was restarted. Other events handled in the main include listening for

40

various key presses and responding accordingly. These key presses are described more

in Section 3.5.1.

The LevelTester updates the game state, first by updating the camera offset.

This offset is used to keep the player in the center of the screen when possible and

allows for the world size to be much larger than the physical limitations of the screen.

Next, the player object is updated. The player’s update method is described in Section

3.3.4.4. Then the game determines if the player is colliding with one of the physical

in-game keys. If this is the case, then the key is collected and given to the player. The

list of physical keys is reset, removing any keys that have since been collected. The

LevelTester then checks if the player has reached the final room and won the game.

If this condition is true, then the won flag is set to True. Finally, the mini-map is

updated. This update is described in Section 3.3.5.

3.3.7 Other Visualizations

Another, older, version of the game demo exists. This game however, doesn’t

have any sort of applied physics and only strictly adheres to the gating rules. The

levelDemo, aptly named since its main purpose was to demonstrate a level’s structure,

was developed in parallel with the gameDemo, keeping it functional and compatible

with the new map save files. With that being said, the fancier features, like the save

and load GUIs, were not adapted or applied to this older tester. However, the idle shell

or the terminal can still be used to load or save levels. More precisely the levelDemo

displays map templates, since the physical maps actually have more features that aren’t

relevant at this stage, such as different wall variants.

In the levelDemo, the map is represented by rows and columns of black squares,

each a stand in for a room. These squares are connected with lines of varying color.

These lines represent the connections between the rooms. The bottom / right lines

represent forward connections, while the top / left lines represent backward connec-

tions. Rooms that contain keys are colored the same as their respective key. So the

room containing the red key would be red, rather than the standard black. Unlike in

41

the finalized platformer version of the game, the end node is not represented any dif-

ferently. The keys that the player has collected are represented as orbs in the bottom

left corner of the screen in the same fashion as they are in the other demo.

Logic within the Player class, not to be confused with the Avatar class discussed

at length previously, allows the grey square representing the player to navigate the level,

obeying all gating rules. The left, right, up, and down arrow keys are used to move

the player through the web-like structure.

The end result of this demo is a fully playable level with a bird’s eye view of

the entire map.

3.3.8 Summary of Implementation

A fully playable level is created through the following steps. First, the designer

supplies the generator with rules that dictate an ordering for the keys. This is then used

to generate a linear ordering adhering to the specifications. The designer also provides

a list of which gates can be found on the horizontal and vertical edges. This list can

also contain tuples that define the bi-directional behavior for edges. For example, the

double jump / neutral connection. The designer can also provide a custom start node

and a custom end node.

Next, the underlying graph for the level is created obeying the constraints of

the linear key ordering. The structure of this graph resembles a grid or a lattice. The

connections for being neighboring nodes are determined at random and once the entire

graph has been generated, the map is tested for viability. If the map is invalid, then

another map is generated. Once a valid map is created, it is returned.

Then, the physical game world is created based off of the underlying level graph.

This world consists of platforms and walls, which are both made up of gates. There

are multiple variations for the different gating types, allowing for further uniqueness

in the generated product. After all of the rooms have been created, then the keys are

added to their designated rooms.

42

Once the level has been crafted, the human player can interact with it. The

player can pick up keys and pass through gates. They explore the maze-like structure

of the level until they collect all keys and eventually reach the end goal.

3.4 Saving and Loading Maps and Templates

Designers and players have the ability to save and load levels as both maps and

templates.

3.4.1 Pickling and Loading

There are two ways in which mapping information can be saved. The first

involves saving a map template which can be used to generate unique maps that have

the same underlying structure, but a different physical representation. The second

is a true save, that stores all of the features of the map. These features include the

underlying map template as well as all of the walls, platforms, and gates, which would

be unique on each generation. Both varieties of saving make use of Python’s built in

pickle module and two data storage classes. Now we will take a more detailed look at

each of the respective save types.

Map templates are the simpler save format and are stored as .mapdat files. The

underlying structure of the pickled object is an instance of the MapData class. The

MapData class contains the following instance variables: a networkx graph g, keys,

gates, m, n, the end node, the ordering, the start node, the weighted neutral, the

horizontal mapping, and the vertical mapping.

Physical map levels are more complex than templates and are stored as .mapfile

files. The underlying structure of the pickled object is an instance of the GeneratedMap

class. The following instance variables are stored within a GeneratedMap object: tem-

plateData MapData object, finishing block, walls, platforms, physical representations

of the keys, the player’s start position, and the dimensions for rooms. Because the

platforms, walls, gates, and other Drawable objects contain pygame Surfaces, it is im-

possible to pickle and then reload them without modification. Doing so causes the

43

image surfaces associated with objects to become corrupted and ultimately causes the

game to crash. Therefore, each and every one of these surfaces needs to be converted

into a string representation before the pickling process. After the pickling process the

Surface must be converted from a string back to a pygame.Surface object. To accom-

plish this in a clean and concise manner, makePickleSafe and undoPickleSafe methods

were added to the Drawable class, which all of the level’s assets inherit from. The last

hurdle was adding the makePickleSafe and undoPickleSafe methods to the multi-sprite

Barrier objects that would then call the Drawable method on each contained sprite.

All saves can be found in the saves folder. Map templates are saved in the

templates subfolder and physical maps are saved in the maps subfolder.

3.4.2 The User Interface

The graphical user interfaces for saving and loading are built on the graphics

package discussed in Section 2.6. Both interfaces are nearly identical in their layout,

and are therefore both instances of the same menu class. There are two notable dif-

ferences between the saving and loading interfaces. The biggest of which is that users

are not able to type in the input field on loads, but they are on saves. Since all of

the saved maps are prominently displayed in the selector field, there seemed to be no

reason for the user to be able to manually type which map they wanted to load. The

only other difference is the text displayed on the confirmation button. This text either

reads ‘load’ or ‘save.’ See Figure 3.17.

The GUIs for loading and saving maps use the following classes from the graphics

package: TextInput, Button, and ScrollSelector. For more information on the graphics

package used in this project, see Section 2.6.

The ScrollSelectors in both of the interfaces are populated using Python’s built-

in glob module. The glob module provides a means of navigating and extracting

information from the file system. In this instance, it is used to get all of the file names

that are located within a particular directory.

44

Figure 3.17: The Save Interface

3.4.3 Supporting Past Versions

The loading functionality also supports most backwards compatibility. That is

to say that older maps, in which many newer features were not yet available, are still

fully playable in the latest version of the platformer. Examples of features that original

maps would not support include: varying the percentage of neutral connections, user

specified start position, user specified end position, and dual-directional gating, to

name a few.

3.5 Playing the Generated Level

Once the game has been generated and rendered, it can be played.

3.5.1 Controls

The controls for the platforming game demo are similar to those of other such

games in the genre. The left and right arrow keys are used to move the player left and

right across the screen respectively. When the spacebar is pressed, as is the convention,

the player jumps. If the player has unlocked the double jump movement tech, then

they can press the spacebar a second time, while mid-jump, to further increase their

45

player’s altitude. The player cannot jump while falling, as this could result in behavior

similar to the double-jump movement tech. Once the player has acquired the shrinking

gate tech, pressing the ‘s’ key on the keyboard will allow the player to shrink. Hitting

the ‘s’ key again reverts the player back to their normal, default height.

The player also has the ability to see the overall structure and shape of the map,

as well as their current position in it. This information is conveyed through the use of

a mini-map, which is described in Section 3.3.5. The mini-map is invisible by default

so that it does not clutter up the screen and inhibit the player from enjoying or playing

the game. To show the mini-map, the player must press the ‘m’ key. Pressing the ‘m’

key a second time will cause the mini-map to become invisible once more.

Other controls include the saving and loading functionality. By convention,

hitting CTRL + s, allows the player to save their current game map (note, this does

not save the player’s progress in the game). Also by convention, the player can load a

saved map by hitting CTRL + o. For more information on saving and loading maps,

see Section 3.4.

It is also possible for the player to display a graph of the underlying map struc-

ture. This is used mostly for testing or visualizing the map as a whole. Hitting CTRL

+ p (p being for plot) will cause a matplotlib window containing the graph structure to

appear. Before continuing the game, this window must be closed. For more information

on the graph plot, refer to Section 3.6.

3.5.2 Collecting Keys and Passing Through Gates

The objective of Metroidvanias, including this demo platformer, is to collect

keys to explore new regions until the end goal, room, or boss is finally reached. In this

case, the end goal is simply the last explorable room, which contains a large golden

rectangle. In order to reach this final room, the player must first collect all of the keys

in the game and use them to skillfully navigate through the maze-like structure of the

mapping. The player always starts off with the first key or gating tech by default,

lest the game would become unwinnable. In a majority of the generated levels, the

46

neutral key is this first default key, but that is only by convention. Any other key,

including the various colors, double jump, or shrink, could just as easily be this first,

default gating tech. All other keys beyond this first one must actually be collected by

the player. To do this the player must search through the various rooms of the map.

The player must have the required gating tech to pass between rooms. That is to say

that if the gate requires the red key, the player must have already collected the red

key in order to pass through and enter the next room. As discussed in Section 3.3.2.2,

gates can also be directional, meaning that it is possible to pass through a gate in one

direction and impossible to pass back through it in the opposite direction. Each key

that is found leads to the next key, until the final key has been discovered.

3.6 Plotting the Underlying Graphing of Maps

The underlying gating structure of a mapping can be plotted for the designers or

players convenience. The functionality of this feature is built on top of matplotlib and

networkx. To make the graph more visually pleasing and decipherable, the nodes of the

graph are color coded. That is to say that the node that contains the red key should

be colored red in the plot. To prevent a crash, this logic does not follow for nodes

that contain movement tech or other non-traditional gate type keys. So, for example,

the node that holds the double-jump movement tech is just colored grey. This is done

as a precautionary measure because ‘double-jump’ obviously is not a viable color to

plot. But this could be easily remedied in the future by creating a dictionary mapping

such movement techs to representative colors. The above logic is implemented in and

described by a color map. This color map is then fed into networkx’s draw function.

Next, the edge labels are found using networkx’s get edge attributes function. The

edge labels are then drawn onto the final plot by calling draw network edge labels.

Finally the plot is actually displayed and printed to the screen.

47

Chapter 4

ANALYSIS

4.1 The Ability to Win Generated Levels

By the nature of their creation, all the levels generated are winnable. As dis-

cussed in Section 3.3.3.1, the createLattice function enforces rigid constraints on the

connections that can exist between rooms. These constraints result in underlying

graphs that are not only planarizable, that is that no edges cross, but also meet the

more grid-like pattern seen in Figure 3.4. But just because the underlying graph

model can be used to generate a feasible dungeon or maze doesn’t mean that that map

is winnable. In fact, due to the random nature of how the gate types are selected,

many maps generated by the createLattice function are not winnable. However, these

faulty maps never make it to the full game rendering process. Section 3.3.3.2 details

the process through which these generated graphings are verified for winning routes

by the viableMap function. The generateViableMap function uses both createLattice

and viableMap in concert until a viable, winnable map has been created. Once such

a map is found, it is returned and any of a variety of visualizations can be built atop

it. So, because all unwinnable maps are less than viable, they are scrapped, thus only

winnable maps are presented to the player.

4.2 Enforcing Gate Ordering

A linear gate ordering is generated from the directed acyclic graph that the

designer provides to the program. The process through which this information is input

and processed into the final ordering can be found in Sections 3.2.2 and 3.3.2.1. The

manner in which the keys are placed ensures that the gate ordering is enforced. No

48

key is accessible before the previous key has already been acquired. More details about

this implementation can be found in Section 3.3.3.3.

4.3 Playability of Generated Maps

Although no formal user studies have been conducted to date, a handful of my

peers from the Computer Science department took an interest in our work. Once the

game demo had reached a playable point, many of them took the opportunity to test

the game. Obviously nothing conclusive can be drawn from these playthroughs, but

their reactions are still worth mentioning. For many, the graphics or the physics were

the worst aspects of the game experience. Considering both of these functionalities are

incredibly bare-bones and serve only to demonstrate the underlying idea, that was to

be expected. However, there were no complaints about the levels or how they were

generated. On the contrary, one of my colleagues even commented that with improved

graphics, he could easily see this project being something available for purchase on the

app store. For this reason, it seems prudent to move forward with user studies in the

near future.

4.4 Level Generation Times

Most level configurations can be generated within a fraction of a second. One

hundred timed trials were run for each of thirty test cases. Level size and the number

of keys were the two variables tested. The start position and weighted neutral were

held constant. The end node was always set to the node at position m*n. The gating

technologies, gating order, and horizontal and vertical mappings were identical across

trials. All gating technologies occurred both horizontally and vertically. All gates

were bidirectional such that the same key could be used in both directions. Perfectly

square level sizes from 3x3 to 8x8 were tested. Within each of these size categories, the

number of keys from three to seven was examined. When generating winnable levels,

many unwinnable level configurations are also created. This is due to the random

nature of the connection types in the lattice creation described in Section 3.3.3.1. The

49

average number of these potential, less than viable maps was calculated for each of

the thirty test cases. The average generation time for each of the test cases was also

determined. The end results of these trials can be found in Table 4.1.

The collected data suggests that the number of keys in a level has a greater

impact on the average number of potential map generations, and consequently the

generation time, than does the size of the level. It appears that as the number of keys

increases, so too does the number of potential maps generated before a viable map

is found. This is especially true with smaller map sizes. A level with size 3x3 and

seven keys is the worst configuration among the test cases. Whereas all of the other

twenty-nine cases averaged generation times less than a second, this configuration had

an average generation time of over six seconds. This makes sense, considering that a

3x3 map contains only nine rooms, one of which is the ending room, leaving only eight

rooms for potential key placement. Seven keys must be placed among the eight rooms

in such a way that the gating order specified by the designer is not violated. Adding

connections between rooms at random, as the current algorithm does, means that more

potential maps will need to be tested in cases such as these.

The results in Table 4.1 clearly show that the level generation process is swift

enough to provide designers with Metroidvania-style levels without a long wait. The

longest wait among the trials was 6.46 seconds, which is still significantly less time than

it would take for a human to design and create a comparable level. The generation

time can yet be improved further by limiting the number of potential maps that need

to be created. This is described more in Section 6.1.1.

50

Level Size
Number
of Keys

Average Number of
Potential Maps Generated

Average Generation
Time in Seconds

3x3

3 4.94 0.001737027
4 16.5 0.004733682
5 123.84 0.03570178
6 1269.45 0.329310718
7 26506.77 6.464433384

4x4

3 5.5 0.003650911
4 8.01 0.007024148
5 24.38 0.015109587
6 110.83 0.055219085
7 655.81 0.286802242

5x5

3 6.02 0.006556003
4 7.3 0.010442557
5 18.37 0.021231167
6 47.54 0.043254747
7 156.65 0.11885674

6x6

3 5.31 0.010233276
4 8.34 0.01736299
5 13.1 0.02476155
6 33.56 0.050190401
7 80.01 0.101225777

7x7

3 5.9 0.014234133
4 9.42 0.026998692
5 16.35 0.044138813
6 22.98 0.055986459
7 43.19 0.091679959

8x8

3 5.87 0.024189534
4 7.86 0.042017314
5 12.7 0.065249419
6 18.86 0.08191386
7 43.85 0.138554451

Table 4.1: Generation Data by Level Size and Key Count

51

4.5 Example Map Generations

Figure 4.1: Undirected 4x4 Level Demo View and Underlying Graph

52

Figure 4.2: Undirected 4x4 Level Demo View and Underlying Graph

Figure 4.3: Undirected 6x6 Level Demo View and Underlying Graph

53

Figure 4.4: Early Rendering of a 4x6 Game Map and Associated Level Demo View

54

Figure 4.5: Directed 6x6 Level Demo

55

- , L ~i I

•LJ I

rr--1; -

~

I I I

I I

I

I

I 1=~

I

-

•

Figure 4.6: Rendered Game View and Underlying Graph

Figure 4.7: Generated Game View, Level View, and Underlying Graph (5x5)

56

Figure 4.8: Generated Game View, Level View, and Underlying Graph (8x8)

Figure 4.9: Generated Game View, Level View, and Underlying Graph (8x12)

57

Chapter 5

CONCLUSION

A gating taxonomy was created using the popular Metroidvania Castlevania:

Symphony of the Night as a reference due to its position as a keystone in the genre [4].

This taxonomy provides invaluable insight into the key components that make up the

gating of Metroidvanias, and to our knowledge is the first of its kind. Using this

taxonomy we were able to determine which gating techniques should be included in

our final product, and which could be added in the future.

As has been shown, it is possible to generate original Metroidvania-style levels

using simple principles of graph theory and other mathematical processes. Full maps of

varying size can be created with customizable start and end positions. These generated

maps can be rendered into a variety of playable forms. The mappings can also be saved

and loaded by the player for future use and reference. Additionally, the level designer

can specify a key ordering, which is strictly enforced in the generated final product.

This ordering doesn’t have to be linear in nature, but can resemble a directed acyclic

graph of possible orderings. But although the maps can be generated conclusively, it

is still debatable whether the generated maps are on par with those that are of human

design. Human experience user studies will be necessary to reach a conclusion on this

front, and is the next step in this research.

58

Chapter 6

FUTURE WORK

6.1 Improved Generation of Maps

By employing more intelligently designed algorithms, instead of relying on ran-

domness and checking, we can increase the speed by which levels are generated, without

losing variety.

6.1.1 More Intelligent Generation

Currently, the gating techniques associated with the edges between nodes are

randomly assigned. While it’s not pure randomness, and there is a bit of thoughtful

design to the assignment, a better method intelligently assigning values to the edges

surely exists. Such an improvement would not necessarily increase map quality, but

should decrease the amount of time needed to generate levels. Theoretically, designers

could also more readily create larger maps. We were able to generate maps of 15 rows

by 15 columns using the current implementation, but it took a few minutes to process.

There probably isn’t a need for maps larger than a 15 x 15, but the added ability to

scale would still be ideal.

A loss of variety is one of the main issues with intelligently selecting placements

of the gating techniques. With the random solution, any number of different mappings

is possible. These mappings are then verified to meet the strict level constraints. If

the gate placement process isn’t designed with proper thought and insight, then some

of the more obscure or unique combinations for mappings could be lost. Additionally,

placing the gates proves to be a more difficult challenge than just verifying that they

are correct.

59

Designs and rough outlines for such an algorithm were drafted towards the end

of this project. The proposed algorithm closely resembled the verifying step, but in

reverse. We were unable to create a fully functional version of this algorithm within

the time constraints of this project. Given other bugs and issues that were of a higher

priority, improving the generation of the maps was tabled as future work.

6.1.2 Improved Dropout Rates

The generation of sparse maps is a rather rare event. It seems that this is a

side effect of the way in which the maps are randomly generated and then verified for

correctness. It stands to reason that sparser maps have a lower probability of being

winnable, and are thus less likely to occur in the final generations. The same logic

applies for maps that are incredibly dense with connections. If one connection is out of

place, then the whole map is trash. Therefore, if the more intelligent gate assignment

described above was implemented, it would also follow that a richer variety of maps

could be created with regard to sparseness.

6.2 Adding Other Gating Types

As this project neared its conclusion, multiple distinct gating types became

supported by the game demo. By its nature, the underlying networkx structure already

supports any of a variety of gating types. This is due to the fact that the gate type is

stored along edges as a string. Therefore, for the data structure, there is no discernible

difference between ‘red’ and ‘double jump.’ Representing these classifications is where

the true work lies. It is the onus of the programmer / designer to specify how each

distinct gate type should be displayed to the player. For example, shrink gates need to

be represented with smaller entrances and exits than typical gates. Automating this

process is impossible, since the number of gate types is limited solely by the designers

imagination.

Enemies and mobs were one of the interesting categories of gates we would have

liked to have included. These gates would have made use of NPC characters. Having

60

to kill a boss before moving to the next room would be an example of such a gate.

The rules for these gates would need to be considered, and may actually require a few

tweaks to the underlying graph structure as well. How many connections should be

closed in a boss room? Puzzles would be another interesting gate type to include. The

nontrivial nature of these gates would also require some thought to properly implement.

Given more time, combination gates would be the next gating type supported

by the demo. Rather than being a distinct category of gate, this would represent a

combination of two or more distinct gates. For example, green double jump or red

shrink. Undoubtedly an addition like this would have required slight modifications to

how gates are represented in the underlying networkx graph and how the graphs are

checked for ability to be completed.

6.3 Increase Non-Linearity of Key Collection

Designers can provide a directed acyclic graph structure containing all of the

constraints for key collection. Currently, this structure is then flattened into a linear

progression of gating techniques that obeys the rules specified by the designers. The

process for this flattening is discussed in section 3.3.2.1. This means that at any point

in the game there is only one key that the player can collect. This doesn’t have to be

the case, and in many fully-fledged Metroidvanias it isn’t. Small adjustments to how

the keys are placed and how the map is generated and verified could allow for this

improvement. It should be possible to respect the limitations imposed by the designer

while also adding some variation in game play. For example, that the player could

acquire either the red key or the single jump key, within the same explorable region.

When one of the keys is collected, the explorable zone would also expand as usual

revealing more keys.

6.4 Improve the Mini Map

The mini-map was created as a convenience tool for the player and demo tester.

Its aesthetic design and use took a backseat to its functionality. That is to say that

61

the mini-map works, but it might not work in the most ideal of ways. For example,

the size of rooms on the mini map is not relative to the size of the overall map. This

means that with a world size of 15 x 15, when the mini-map is displayed, it covers

the entirety of the screen. As a result, it is near impossible for the player to navigate

the world while the mini map is being displayed. This should be corrected in part by

confining the size of the mini map and scaling the sizes of the room representations

accordingly. Even when the map size is reasonable, it can still be hard for the player to

move around the world while the mini-map is on screen. Adding transparency to this

layer, allowing the player to see both the mini-map and what’s underneath it could

be beneficial. This functionality was ultimately relegated to future work, since the

mini-map itself is a tangent to the actual project at hand.

6.5 Improve the Graphics of the Game

This improvement would be purely cosmetic and promises to add little to the

project. The aim would be making the game demo look and feel more like an actual

Metroidvania game. Improvements would include, but are not limited to, textures for

surfaces like walls and platforms, an actual sprite with animations, key sprites, and

a more visually appealing end room. Ultimately these additions would be nice, but

would only be justified if we were moving towards user studies.

6.6 Increase Variability

The generated maps currently resemble a grid. Every room has the exact same

dimensions. Allowing rooms to have varied widths and heights would be a minor

addition, but one that would make the maps feel more unique. In order to ensure that

rooms still lined up properly, that is that there exists a gate between two rooms, each

row would have an associated height and each column an associated width. This would

result in the same sort of grid structure, but one which isn’t so obviously generated as

such.

62

6.7 Human Level Designer Access

It is currently near impossible for a designer to make manual edits to a generated

map. If this project is to serve as a real world tool allowing game developers to easily

create levels for their games, then an ability to manipulate the generations is essential.

Such a system would most likely focus on editing the representations displayed by the

game demo. Using this generation as opposed to the underlying networkx template

would allow the generator to do more work for the developer. A click and drag graphical

user interface would work well for this feature. Obviously, functionality such as this is

a project in its own right and was thus left as future work.

6.8 User Interface for Designers

There are various toggles and parameters which the developer can set when

generating custom maps. It is easy to forget how, where, or why to include some of

these arguments. It therefore seems apt to have an intuitive user interface that would

allow designers to customize their settings. Fields for start room, end room, weighted

neutral, and others could be displayed with helpful tool tips. A visual representation

of the gate-key directed acyclic graph could be displayed letting the designer see how

the gating rules will be enforced. The UI could also serve to prevent poorly chosen

configurations, those which would hinder or prevent map generation. Ultimately, while

this feature would be nice for a final product being sent to market, for the scope of

this project, it fell into the bells and whistles category.

6.9 User Studies

Finally, there is no point in procedurally generating Metroidvania style levels

if the end results are inadequate. While levels can be generated, the question still

remains, are they comparable to human designed levels. The only way to answer

this is by conducting user studies. Since the goal of this project was to determine if

Metroidvania levels could be procedurally generated, it falls outside the original scope

63

to ask if the generated levels are on par with those that are human designed. However,

since we now know that levels can be generated, this seems the next logical step.

64

BIBLIOGRAPHY

[1] Álvaro Gutiérrez-Rodŕıguez, Carlos Cotta, and Antonio J Fernández-Leiva. Deep
evolutionary training of a videogame designer. EVO* 2019, page 6.

[2] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network struc-
ture, dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught,
and Jarrod Millman, editors, Proceedings of the 7th Python in Science Conference,
pages 11 – 15, Pasadena, CA USA, 2008.

[3] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
Procedural content generation for games: A survey. ACM Transactions on Multi-
media Computing, Communications, and Applications (TOMM), 9(1):1–22, 2013.

[4] Alex Huhtala and Paul Davies. Castlevania: Symphony of the night. Computer
and Video Games, 192:76–77, Nov 1997.

[5] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Sentient sketchbook:
computer-assisted game level authoring. 2013.

[6] Toni Minkkinen. Basics of platform games. 2016.

[7] Michael Nitsche, Calvin Ashmore, Will Hankinson, Robert Fitzpatrick, John
Kelly, and Kurt Margenau. Designing procedural game spaces: A case study.
Proceedings of FuturePlay, 2006, 2006.

[8] Pygame. Pygame documentation. https://www.pygame.org/docs/.

[9] Alvaro Gutiérrez Rodrıguez, Carlos Cotta, and Antonio J Fernández Leiva. An
evolutionary approach to metroidvania videogame design.

[10] Justin Pusztay Trevor Stalnaker. Squirrel simulator.
https://github.com/pusztayj/squirrelSimulator.

65

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Motivation

	2 Background
	2.1 Metroidvanias
	2.2 Gating Taxonomy
	2.3 Graphs
	2.4 Pygame
	2.5 Physics Engines
	2.6 In-House Graphics Package
	2.7 Other Used Files
	2.8 Related Works

	3 Approach
	3.1 Overview
	3.2 Model
	3.2.1 Modeling the Map
	3.2.2 Modeling the Key Orderings

	3.3 Implementation
	3.3.1 Representing Keys and Gates
	3.3.2 Preprocessing
	3.3.2.1 Generating an Ordering for the Keys
	3.3.2.2 Creating Directional Mappings for Gate Types

	3.3.3 Generating the Underlying Map
	3.3.3.1 Creating the Lattice
	3.3.3.2 Verifying that the Map Configuration is Winnable
	3.3.3.3 Placing the Keys

	3.3.4 Rendering the Map into a Playable Form
	3.3.4.1 Keys
	3.3.4.2 Gates
	3.3.4.3 Barriers, Walls, and Platforms
	3.3.4.4 The Player
	3.3.4.5 Creating the Physical Representation of the Map

	3.3.5 Mini Map
	3.3.6 Drawing, Updating, and Event Handling
	3.3.7 Other Visualizations
	3.3.8 Summary of Implementation

	3.4 Saving and Loading Maps and Templates
	3.4.1 Pickling and Loading
	3.4.2 The User Interface
	3.4.3 Supporting Past Versions

	3.5 Playing the Generated Level
	3.5.1 Controls
	3.5.2 Collecting Keys and Passing Through Gates

	3.6 Plotting the Underlying Graphing of Maps

	4 Analysis
	4.1 The Ability to Win Generated Levels
	4.2 Enforcing Gate Ordering
	4.3 Playability of Generated Maps
	4.4 Level Generation Times
	4.5 Example Map Generations

	5 Conclusion
	6 Future Work
	6.1 Improved Generation of Maps
	6.1.1 More Intelligent Generation
	6.1.2 Improved Dropout Rates

	6.2 Adding Other Gating Types
	6.3 Increase Non-Linearity of Key Collection
	6.4 Improve the Mini Map
	6.5 Improve the Graphics of the Game
	6.6 Increase Variability
	6.7 Human Level Designer Access
	6.8 User Interface for Designers
	6.9 User Studies

	Bibliography

