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Abstract

The current field of American politics, particularly within the legislative branch, is considered
highly polarized and significantly inscrutable. In the face of this shifting political landscape,
attempts to rigorously analyze the United States Congress under the standard paradigms of
qualitative political science have proved partially insufficient, particularly efforts to accurately
forecast legislative behavior. We introduce two classes of models to analyze the voting behavior
and political topology of the United States Congress. The first are multi-temperature kinetic
Ising models and the second are weighted network models. These models are presented first
in order to evaluate and study the partisanship and social interactions within Congress, and
second as a means of conveying the versatility of statistical physics and network-based computer
simulations in non-physical contexts. The physical and theoretical basis of these models are
provided, with special attention paid to the distinct challenges and benefits of applying non-
equilibrium statistical physics. The development and legislative forecasting applications of each
are then detailed, alongside the results of interest. Each indicate complimentary and contrasting
results, which are particularly significant when considered alongside modern conceptions of the
American political environment.
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1 Introduction

In the face of government shutdowns, controversial policy decisions, and a decline in the enactment

of laws, the United States Legislature has received increased scrutiny throughout the 21st century.

Gallup polls conducted as recently as February of 2020 indicate a 23% approval rating of the American

legislature [1], while a 2014 report by the Washington Post indicates that these most recent classes

of Congress are among the least effective in United States history [2]. Popular criticism continually

identifies polarization and lack of cooperation as the primary deficiencies of the legislature. The

traditional techniques under which political behavior is studied have only begun to make steps in

qualitatively and quantitatively analyzing these phenomena.

Simultaneously, however, government publications, news media outlets, and direct communication

between legislators and constituents have provided significant access to data detailing not only the

voting records of legislators, but also the external and internal processes which eventually determine

those votes. Armed with this wealth of information, physicists have entered the field of political

science in demonstrably high numbers [3] [4], pioneering the growing field of ‘socio-physics.’ This field

not only provides a new direction for the development of quantitative political forecasting but also

simultaneously capitalizes on this widely available data for the study of complex, cooperative systems.

Moreover, this field provides a pedagogical tool to demystify political processes and educate the public

on legislative trends. In particular, non-partisan organizations such as GovTrack [5] and PredictGov [6]

have gained increased popularity and coverage over the last few years as their sites provide legislative

forecasting and analysis of each legislator’s voting trends, earning these organizations citations from

the Huffington Post [7], New York Times [8], and even HBO’s Last Week Tonight with John Oliver

[9].

These organizations’ simultaneous application of machine learning, network theory, and political

science raises the necessary question implicit in our modern technologically and scientifically literate

society: how can our disparate stores of scientific and social knowledge be brought together in order to

create something greater than the sum of their parts? While this paper cannot claim to represent the

answer to that question, it earnestly attempts to mark its place in the endeavor. Voter models have

been studied for a number of years in statistical physics, and the application of statistical physics to

the modern American political environment may allow for the development of more accurate models.

Moreover, as this research stands at the confluence of physics and political science, the versatility of
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these models promises the possibility of further application in the fields of sociology, epidemiology,

legal studies, and other fields which deal in complex networks. Furthermore, each of these topics also

intersect with the concept cooperation, understood as behaviors in which individuals act on the behalf

of others at a cost to themselves. As such, this thesis also adds to the ongoing effort to explain this

conundrum in social science which has been called one of the most significant of our generation, given

its apparent contradiction to Darwinian and capitalistic paradigms [10].

The translation of the United States Congress to a numerically soluble statistical system benefits

from relatively straightforward analogues to well-known physical and theoretical models. In order

to demonstrate this, a brief explanation of the United States Congress’s structure and legislative

processes is necessary. The United States Congress is a bicameral legislature: it is divided into two

discrete legislative bodies, the House of Representatives and the Senate. The Senate is composed of

100 voting legislators, while the House is comprised of 435 voting legislators. In both the House of

Representatives and the Senate, motions to adopt legislation may be determined by a roll call vote,

or a vote in which each legislator’s vote is individually recorded. Therein, legislators provide votes

of ‘yea/aye’ (approval of the motion) or ‘nay’ (disapproval of the motion). In the case of a majority

vote in the affirmative, the motion is passed. While a supermajority vote may be required under

special circumstances, these occur only under certain conditions, and as such they may be considered

unnecessary considerations for this brief overview. With this sketch of the legislative process in mind,

the United States Congress could be easily conceptualized as a lattice or network comprised of either

100 or 435 sites or nodes, respectively. Each site or node is then occupied by a legislator in either

the ‘yea’ or ‘nay’ states, and therefore the entirety of Congress could be conceptualized as a two state

macro-system determined by the majority of states therein.

While this initial framework may be relatively simple, the process by which each legislator resolves

to a ‘yea’ or ‘nay’ state is a result of internal factors such as the individual’s political leaning and

agenda, as well as external factors including peer influence, public opinion, and lobbyist groups. These

internal factors, though realistically defined on an issue-to-issue basis, can largely be simplified under

the umbrella descriptors of liberal and conservative. These terms are defined according to a legislator’s

general stance on a variety of political issues and how those stances compare to the position of either

the liberal Democratic Party or the conservative Republican Party. While this metric for political

ideology and agenda discounts the divide between fiscal and social liberalism and conservatism, as

well as a variety of complex sociopolitical considerations, it serves as a relatively accurate general
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descriptor of political leaning.

The external factors which may impact a particular legislator’s decision-making are comparably

easier to describe without generalization. Interactions between legislators or their respective staffs,

between legislators and lobbyists, and between legislators and constituents are well documented and

recorded. However, the degree to which a legislator or group of legislators may be susceptible to

external influences varies significantly. This trait manifests on a spectrum ranging from reluctance

to change stance on a given issue to what is often described as maverick voting or bloc voting in

the most extreme case. In the case of ‘maverick’ voting, a legislator may refuse to change an initial

vote regardless of external influence. Similarly, in the case of ‘bloc’ voting a group of legislators may

elect to vote the same as one another regardless of the legislation in question or external influences.

These behaviors are especially noteworthy in that ‘maverick’ voting is especially emblematic of the

intractability frequently commented on in the modern legislature, while ‘bloc’ voting, which frequently

occurs along partisan lines, demonstrates political polarization. On this note, outside of the extreme

cases of maverick Representatives or bloc voting groups, external interactions are also significantly

limited, though not necessarily eliminated, by party politics and disparities in political ideology.

Therefore, legislators of similar political leanings or party affiliations are more likely to influence one

another than legislators of extremely disparate political beliefs.

Working within this readily apparent and analogous statistical system within the United States

Congress, this thesis presents two classes of cooperative, stochastic social network models in order to

describe and analyze voting behavior.

We begin with a presentation on relevant models in section 2, which begins by introducing the

concept of a voting model and illustrates its function through a brief overview of an especially simple

two-state model. The Ising model is presented in 2.2. The non-equilibrium extensions of the Ising

model, kinetic Ising models and multi-temperature kinetic Ising models, are presented in 2.3. Numer-

ical methods significant to solving kinetic Ising models are then provided in 2.4. Next, 2.5 presents

an introduction to network theory and network based models. We present an original application of

multi-temperature kinetic Ising models in section 3, beginning by detailing the model’s development.

This is followed by results of the model alongside our interpretation. We then present an original

application of network theory in order to model the United States Congress in section 4, detailing

development, followed by results and interpretation. Section 5 concludes this thesis with a comparison

of results, alongside a brief exploration of further applications for these models and methods.
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2 Voter Models

The simplest goal of a voting model is to describe the formation or dissolution of consensus in a

population. Before moving on to present our two original classes of voting models, a brief exploration

of a well-studied and simple voting model may be beneficial as an introduction to the topic. While

a variety of simple voting dynamics may be simulated to this end, we will consider a model which

possesses the distinct advantages of being not only solvable in arbitrary spatial dimensions but also

topologically versatile enough to demonstrate the application of both spin-flip Ising-type models and

network models. This model, first proposed by Holley and Liggett [11], considers a population of

voters occupying a system of any given dimensionality. These voters are then graphically arranged

according to a stochastic topology, and each is assigned an initial opinion state, q. As the simulation

progresses over an arbitrary time scale represented by discrete update events, each voter adopts the

opinion state of their nearest neighbor. Throughout each update event over arbitrary time steps, ∆t,

this model simulates the change in opinion of the voter at lattice site x.

The transition rate of any given voter occupying the position, x, while the system is in configuration

s is defined as,

wx(s) =
1

2
[1− s(x)

z

∑
y∈〈x〉

s(y)] (1)

where the opinion state of the voter occupying site x is given by s(x). The coefficient z is the number

of nearest neighbors to x, known as the lattice coordination number. The set of nearest neighbors

to site x is given by 〈x〉. The sum is therefore taken over all other voters, y, in closest proximity to

x. Note that the transition rate of the voter at site x is proportional to the inverse of disagreeing

neighbors, where s(y) 6= s(x). Therefore, a voter will only change opinion if a nearest neighbor

possesses a different opinion state.

While this transition rate exclusively describes the dynamics of a single voter at each update event,

from this rate we are able to derive a master equation describing the transition rates of the entire

system. The probability that the set of all voters are in configuration s at time t is provided by the

master equation,
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d

dt
p(s) = −

∑
x

wx(s)p(s) +
∑
x

wx(sx)p(sx) (2)

where sx denotes the state of the system in which the voter occupying site x has changed opinion.

This means that sx(x) = s(y) when s(y) 6= s(x) or alternatively, sx = −s(x). Therefore, the gain

term relates the probability of all transitions to the configuration s in a single update event, while the

loss term relates the probability of all transitions out of configuration s in a single update event.

An example of two possible configurations following an update event, s and sx, for a system of

N = 3 voters on a one dimensional lattice, wherein x = 2, and opinion states, q, may be either +1 or

−1 is provided in Figure 1.

Figure 1. An example of a possible transition between configurations, wherein the opinion state of
the voter populating site x is updated.

In order to determine the system’s inevitable steady state, we consider the average opinion of the

system, S,

S = 〈f(s)〉 =
∑
s

f(s)P (s) (3)

where f(s) is the set of all voting states.

Drawing from the master equation, we are able to determine the time dependency of S, by con-

sidering the average opinion state of any voter at position x over an arbitrary time step, ∆t.

s(x, t+ ∆t) =


s(x, t) with probability 1− wx(s)∆t

−s(x, t) with probability wx(s)∆t

(4)

As the opinion state of the voter at site x changes by −2s(x) at a rate of ωx, the average opinion
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evolves according to,

dS(x)

dt
= −S(x) +

1

z

∑
y∈〈x〉

S(y) (5)

Summing this over all sites, we note that the average alignment of the system, m =
∑
x
S(x)
N is

necessarily conserved. While the alignment of the system throughout each update event does change

(as only a single site is updated at a time, the alignment of the configuration necessarily changes), the

average over all sites and trajectories of the dynamics are conserved [12]. As a consequence of this

conservation, the system must necessarily reach a consensus.

Consider a finite population of voters wherein an initial fraction ρ are in the opinion state q = +1,

while a fraction 1− ρ are in the opinion state q = −1. The initial alignment is therefore m0 = 2ρ− 1.

The final alignment is then given by,

mt→∞ = E(ρ)× 1 + (1− E(ρ))× (−1)

= 2E(ρ)− 1

(6)

where E(ρ) is the exit probability, or the probability of a final consensus on the opinion state, q = 1.

This expression equals the initial alignment, m0 = 2ρ− 1. According to these conservation dynamics,

this voting system must ultimately reach one of two final alignments, with probabilities given by,

m =


+1 with probability E(ρ)

−1 with probability 1− E(ρ)

(7)

As a result, the probability of reaching a consensus on the opinion state q = +1 is E(ρ) = ρ and

the probability of reaching a consensus on the opinion state q = −1 is 1−ρ. As such, the final opinion

state depends exclusively on the initial fractions of opinion states, ρ and 1 − ρ, indicating that the

steady state of the model has no dependence on the system size or the topology of the network. The

initial and final states of the system given an arbitrary initial alignment, m0, are shown in Figure 2

and 3 respectively.

While this model is notably simple, and largely unrealistic given voters’ immediate willingness to
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Figure 2. The initial alignment, m0 of the
system, with unit probability.

Figure 3. The two possible final alignments
of the system (m = −1 and m = 1), alongside
the magnitude of their probability.

adjust their opinion state towards conformity with nearest neighbors, its significance in this thesis

is critical. In one-dimension, this model is functionally identical to an Ising-type model. In two-

dimensions, this model is a simple application of network theory. In either case, this model succinctly

demonstrates the most essential purposes of a voter model. Specifically, that a model must demon-

strate the process of forming opinions and identify the dependencies of that process. The following

models could therefore be considered adaptations of this simple voting model, in that they attempt to

more rigorously define methods of interaction along political lines, and as such generate more nuanced

results specific to the United States Congress.

2.1 Ising Models

The first class of models we present are multi-temperature kinetic Ising models, a class of non-

equilibrium Ising models. While the methods and applications of statistical physics in general are

versatile and well-developed, the study of systems out of equilibrium is considerably less mature.

Despite considerable effort spread out over more than a century of research, universally applicable

analogs to the near-ubiquitous mathematical formalisms standard in equilibrium statistical physics are

limited. For example, no analogs of the ubiquitous canonical Boltzmann factor or partition function

of equilibrium statistical physics have been found which can be applied with consistency [13]. What

strides have been made in the field of non-equilibrium statistical physics are generally concerned with

systems at small deviations from equilibrium [12]. That being said, systems out of equilibrium are

well appreciated in computer simulation due to their capacity to present conceptually straightforward

and explicit results which may be adapted to a variety of systems [15]. As one-dimensional versions

of kinetic Ising models can be solved exactly, these models provide a versatile space for simulating

soluble complex systems [16].
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Given that non-equilibrium systems are considerably more difficult to approach, our treatment

of multi-temperature kinetic Ising models will begin with a consideration of the comparably simple

equilibrium Ising model. This will not only allow this thesis to better present the distinct advantages

and disadvantages of working in non-equilibrium statistical physics, but also provide a significantly

more approachable space in which to define significant functions of state and tendencies of Ising models

which carry into their non-equilibrium counterparts.

The one-dimensional Ising model, first solved by Ernst Ising in 1925 [17], is an equilibrium model of

ferromagnetism. While modern Ising models may be used to simulate both antiferromagnetic and non-

magnetic systems [18], we will proceed with a discussion of purely the ferromagnetic model as it most

significantly relates to this thesis. Within the Ising model, discrete variables, σi, representing magnetic

dipole moments of atomic spins are arranged in N discrete, equidistant lattice sites (i = 1, 2, ..., N).

Critically, the lattice may have either periodic or non-periodic boundaries, often referred to as toroidal

or free boundary conditions, respectively [17]. In the case of periodic boundary conditions, the N th

spin interacts with the first spin, therefore the one-dimensional lattice is treated as a ring. In the

case of non-periodic boundary conditions, the lattice is treated as a chain. For the purposes of this

thesis, we will proceed with the assumption that boundary conditions are non-periodic, and refer to

the lattice as an Ising chain.

Each spin is in one of two states (σi ∈ {+1,−1}), and each spin is able to interact with its

neighbors. Coupling constants, Jij , are introduced to describe these interactions, and are defined

such that 0 < Jij for ferromagnetic systems. These constants intimate that neighboring spins are able

to induce spin transitions in one another, at a rate defined by the system’s total change in energy for

a given flip. As we have enforced non-periodic boundary conditions, it is worth pointing out here that

lattice sites n = 1 and n = N will each have one less nearest neighbor given their positions at the

beginning and end of the Ising chain, respectively.

The energy of a spin configuration, or any assignment of spin values to each lattice site is given

by the Hamiltonian function [17],

H(σ) = −
∑
NN

Jijσiσj +B

N∑
i=1

σi (8)

where Jij is the coupling constant between neighboring spins σi and σj , and the sum is taken over
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all pairs of adjacent spins. B is an external magnetic field. For the purposes of this thesis, we will

proceed with the assumption that the external magnetic field is 0.

The system at equilibrium tends towards the lowest possible energy; therefore, for a ferromagnetic

system, the spins tend to align with the orientation of the magnetic field. If there is no external

magnetic field, the spin configuration tends towards an equal number of particles aligned in either

states [18]. The total magnetization, or the total alignment of spins, is given by the sum of all spin

states [17],

M =

N∑
i

σi (9)

Therefore, at equilibrium and absent external a magnetic field, the magnetization tends to 0, while

the entropy is maximized.

Considering the Hamiltonian under these assumed conditions, the energy of the non-periodic lattice

site chain is given by [18],

E = −J
N−1∑
i=1

σiσi+1 (10)

in which case the partition function for N particles can be solved as [17],

ZN = (2cosh(βJ))N−1 (11)

where β is the inverse temperature 1
kbT

, in which kb is Boltzmann’s constant. The partition function

relates the probability of the Ising chain existing in any configuration, σ, by Pσ = 1
z e
−βEs . Given

this, the equilibrium properties of the Ising model follow relatively clearly [18] and are provided in

Figure 4.

This application of equilibrium statistical physics, while largely inapplicable for systems outside

of equilibrium, does provide a critical insight. Specifically, that the Boltzmann weight should provide

a solution for non-equilibrium systems as they move towards the steady state [13].

It should also be noted here that, as can be observed from a cursory examination of the Ising
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Mean Internal Energy (〈E〉) −∂Z∂β

Heat Capacity (Cv)
∂〈E〉
∂T

Entropy (S) kB(lnZ + β〈E〉)

Free Energy (F) −kBT ln(Z)

Figure 4. The relation between the partition function and functions of state.

Hamiltonian and subsequently derived partition function, increases in the temperature of a lattice

yield increases in the system’s entropy, indicating that temperature increases the spectrum of possible

spin states at any given time.

Furthermore, the partition function provides a means by which to define the relationship between

spin states. The relation between two spins is described by the spin-spin correlation function, 〈σiσi+r〉,

which notes the likelihood of a spin i and another spin r lattice sites away to point in the same direction

or in opposite directions at equilibrium.

This value, taken alongside the magnetization of the Ising chain, is perhaps the most immediately

significant to this thesis. As we intend to treat an Ising chain as analogous to the United States legis-

lature, the interdependence of the constituent particles’ spin states is a vital concept to understanding

how an Ising-type model might serve as an analog to the influence between legislators’ voting states.

The most critical insight here is the Ising model’s assumption of exclusively local interactions

between particles [12]. With this in mind, we may reasonably assume that spins located in closer

proximity within the lattice possess a larger correlation between spin states. This is readily apparent

following a brief application of the partition function.

We begin by considering the average spin of a single lattice site [19],

〈σi〉 =
1

Z

N∑
i

σie
−βEi (12)

where the sum is taken by multiplying the possible spin states of σi by the Boltzmann weight, scaled

by the corresponding energy of the system, Ei. The average alignment is then a simple extension

given by,
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〈σiσi+r〉 =
1

Z

N∑
i

σiσi+re
−βEi (13)

Figure 5. The spin correlation between two particles as the distance between the two, r, increases.

A cursory analysis of this relation reveals that as r →∞, 〈σiσi+r〉 goes to 0, as shown in Figure 5

[12]. This result, while built into the Ising model’s exclusive concern with nearest neighbor interactions,

is significant to our purposes.

If one were to imagine a legislation as an Ising chain, this enforced condition of locality allows the

lattice to be populated in a manner which precludes interaction between certain legislators, particularly

those which are opposed on ideological or partisan lines.

2.2 Kinetic Ising Models

Having studied the Ising model in equilibrium, we now turn to consider the model’s non-equilibrium

extension, kinetic Ising models. Kinetic Ising models are structured identically to Ising models, the

critical distinction being an external agency induces spin flips within the system over time [20]. These

spin flips are defined by a transition rate that leads to a steady state, which may in turn be studied

using results from equilibrium statistical physics.

While the equilibrium properties of the Ising model follow clearly from the partition function and

Boltzmann statistics, non-equilibrium properties depend on the nature of the system’s spin dynamics
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[12]. These dynamics, while often unique to particular systems, are flexible and numerically soluble so

long as certain conditions are met. This flexibility in the dynamics is a cornerstone of non-equilibrium

statistical physics, and demonstrative of the absence of the universal principles which dominate the

study of equilibrium systems [21].

In order to simulate the Kinetic Ising model accurately, a modeled system must possess two

critical properties, ergodicity and detailed balance [15]. Ergodicity refers to the capability of the

system to reach any possible energy state from any arbitrary state. This condition implies that,

however improbable, the system must be capable of eventually reaching any configuration with non-

zero probability [13]. Given the Ising model’s tendency towards equilibrium, or a steady state in

the case of non-equilibrium models, this may seem impossible. However, the ergodicity condition

is complemented by the detailed balance condition. This condition states that each transition of

orientation is in equilibrium with its reverse process [13]. The detailed balance condition is essentially

a statement of probability current conservation [21], given by

ωs→s′P (s→ s′) = ωs′→sP (s′ → s) (14)

Here s and s′ are arbitrary states of the system, P is the probability of transition between any two

states of the system, and ω are the transition rates. While perhaps a somewhat intuitive statement,

this condition is critical in the study of non-equilibrium systems and the design of models which

accurately describe those non-equilibrium systems. When taken together, the ergodicity and detailed

balance conditions imply that Kinetic Ising model simulations will, eventually, reach a steady state,

following the Ising models observed tendency to equilibrium [12].

Beyond satisfying these fundamental conditions, certain other considerations must be made in the

construction of non-equilibrium spin dynamics. As we have said, equilibrium physics states that the

equilibrium Boltzmann weights should be a solution of non-equilibrium dynamics [13]. Therefore, if

a non-equilibrium model is meant to follow the Boltzmann distribution, e
β(E)
Z , the detailed balance

condition states that

P (s′)

P (s)
= eβ(∆E) (15)
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That said, should a system begin far from equilibrium, other rates may also be selected in order

to drive the system to equilibrium, or a steady state [13].

Furthermore, in order to better relate this system to the Ising model, the requirements of locality

and symmetry should be taken into consideration [13]. Locality, as demonstrated by our treatment of

the spin correlations, restricts dependencies of a single spin’s transition rate to its nearest neighbors.

Therefore transition rates are defined such that, wi(σ) = wi(σi−1, σi, σi+1). Complementing this

condition, symmetry requires that the transition rate does not vary under a translational swap of

nearest neighbors, wi(σi−1, σi, σi+1) = wi(σi+1, σi, σi−1).

In order to analyze a spin dynamic of particular interest to this project, which also satisfies the

above conditions, we will now develop expressions for the equations of state and time dependencies

of kinetic Ising models treated as being in contact with a heat reservoir, wherein a temperature

dependency of spin states induce transitions as the system relaxes to equilibrium. We will assume

that these spin transitions occur randomly but at a known rate. In order to solve the dynamics of

these models, we turn to the Glauber method, also referred to in literature as Glauber dynamics.

Glauber dynamics, first proposed by Roy Glauber in 1963 [20], exactly solve the time-dependent

behaviors for a one-dimensional Ising model in contact with a heat reservoir through both numerical

and analytical methods and are capable of calculating the magnetization and two-site spin correlation

functions exactly. Glauber dynamics are a single-flip kinetic generalization, meaning a single spin

transition is considered at a time and as a result magnetization is often not conserved.

Kinetic Ising models solved according to Glauber dynamics are most completely described by the

master equation, which expresses the conservation of probabilities for all configurations of a lattice of

N sites [20],

d

dt
p(σi, ...σN , t) = −

∑
i

wi(σi)p(σi, ...σN t) +
∑
i

wi(−σi)p(σi, ...σN , t) (16)

where p(σi, ...σN t) are the 2N probability functions for all possible configurations, and wi(σi) is the

transition rate of σi based on the fixed spins of all other sites. The sum is taken over all spins,

considering the transfer of probability into configuration σi from other configurations in the gain

term, or from σj into others in the a loss term.

The evolution of this configurational probability is dictated by a set of transition rates,
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∑
i

wi(σi)p(σi, ...σN t) =
∑
i

wi(−σi)p(σi, ...σN , t) (17)

As has previously been stated, in order for these systems to resolve to a steady state, the detailed

balance condition must be upheld. Therefore we select transition rates such that,

wi(σi)p(σi, ...σN t) = wi(−σi)p(σi, ...σN , t) (18)

Under this condition, the probability currents are conserved in both directions between all possible

configuration pairs. In order to relate the steady-state of this non-equilibrium system to the well-known

Ising model solutions, Glauber dynamics enforces the condition that,

wi(σi)p(σi, ...σN t)

wi(−σi)p(σi, ...σN , t)
= eβ(∆E) (19)

Transition rates which satisfy this expression are then selected which further satisfy the locality

and symmetry relations,

wi(σi) =
1

2
− 1

4
γiσi(σi−1 + σi+1) (20)

Here the factor γ is related to the lattice site i by γi = tanh( 2J
kBT

), which further relates the

transition rate wi(σi) to the temperature of the heat reservoir.

These probabilities, wi(σi), can therefore be seen to take on three possible values for particles

arranged in a non-periodic, one-dimensional lattice,
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wi(σi) =



1
2 −

1
4γ if σi−1 = σi = σi+1

1
2 if σi−1 = −σi+1

1
2 + 1

4γ if σi−1 = −σi = σi+1

(21)

It is clear from these possible values alongside the Hamiltonian that so long as γ is positive,

configurations of lower total energy will be more likely than configurations of higher energy [22]. As

such, the factor γ is further defined such that, 0 ≤ γi ≤ 1, in order to relate the behavior of the kinetic

Ising model to the equilibrium model.

Having completely defined the spin dynamics of the kinetic Ising model, we now possess an expres-

sion for the time dependence of the probability of each possible spin configuration, as well as a means

of solving for the time dependent behavior of macroscopic variables of interest. The magnetization

functions are of particular interest here, given that they relate the alignment of particles over time,

or, in an analogous legislative system, consensus over time.

The magnetization as a function of time is given as [22],

m = 〈σi〉 = −
∑
σ

σip(σi, ...σN , t) (22)

Taking this expression alongside the master equation, we see that the differential equations for the

magnetization are therefore,

d

dt
m1 = −m1 +

γ

2
m2 (23)

d

dt
mn = −mn +

γ

2
(mn+1 +mn−1) (24)

d

dt
mN = −mN +

γ

2
mN−1 (25)

Having considered the Ising model both in and out of equilibrium, we now turn to the final

extension necessary to this thesis, the multi-temperature Ising model. This model may be solved by

a generalization of Glauber dynamics provided by Racz and Zia [22]. In this case, each lattice site, n,
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within the Ising chain is in contact with heat baths of various temperatures, Tn. If Tn is different for

any two lattice sites within N , the system is perpetually unable to reach equilibrium as each unique

heat bath drives the system toward a different equilibrium. Therefore, energy flows between lattice

sites at different temperatures. While the system will reach a steady state under these conditions, it

will not be an equilibrium state.

Under these conditions, the equation of states and time dependencies are identical to those for the

single-temperature kinetic Ising system; however, the possible variance in temperature at each lattice

site significantly complicates solutions, due to the temperature dependency of the factor γ. As such,

γ now takes a unique value for each lattice site i, given by γi = tanh( 2J
kBTi

).

In the multi-temperature case, the magnetization takes the form of a matrix equation comprised

of real, non-negative elements [14],

M =



−1 γ1
2 0 . . . γ1

2

γ2
2 −1 γ2

2 . . .

γ3
2 −1 γ3

2 . . .

...
. . .

γN
2 . . . . . . γN

2 −1



(26)

This matrix can then be simplified by the transformation mn → mn√
γn

, giving the symmetric matrix

[14],

M =



−1
√
γ1γ2
2 0 . . . 0

√
γ1γ2
2 −1

√
γ2γ3
2 . . .

0
√
γ2γ3
2 −1

√
γ3γ4
2 . . .

...
. . .

0 . . . . . .
√
γN−1γN

2 −1



(27)

While this final extension in the development of the multi-temperature kinetic Ising model does
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complicate matters, it should be stated that this provides a further opportunity to develop more

complex and dynamic models. These further dependencies and considerations which must be made in

developing complete descriptions of non-equilibrium systems, while perhaps increasing computational

load, provide more nuanced dynamics in each model, thereby revealing more insightful correlations.

2.3 Methods of Solving Kinetic Ising Models

While the Glauber method is of particular interest to this thesis, dynamics of one-dimensional spin

systems out of equilibrium may be also simulated and solved by a variety of stochastic algorithms,

each informed by their own mathematical machinery and analogues to physical features. Moreover, as

it is this thesis’s goal to elaborate the variety of methods through which statistical physics might be

applied in the simulation of non-physical systems, a foray into these numerical methods is worthwhile.

Therefore we will conclude our exploration of the Ising model here as we consider the translation

between method and algorithm, by describing alternative methods to Glauber dynamics such as the

Metropolis and Kawasaki methods.

Numerical solutions to kinetic Ising models are simulated through an algorithm based on Markov

Chain Monte Carlo (MCMC) methods [23]. The Markov chain is an algorithm for describing stochastic

processes, which generates a sequence of outputs based solely on a previous output. Markov chains are

therefore ‘memory-less,’ meaning that all information necessary to predict the next output is present

in the current state [24]; this is referred to as the Markov Property. MCMC methods construct

multiple Markov chains from a continuous random variable whose values are accepted or rejected with

a probability density proportional to a known function. In the case of one-dimensional spin systems

out of equilibrium, the random variable is the energy change of the system as a result of a randomly

selected spin flip, while the function is the Boltzmann distribution. As these chains develop, their sum

therefore tends towards a similar proportionality with the known function. As a result, the Markov

chains are generated such that the equilibrium distribution of the chains is similarly proportional

to the known function [23]. Through this algorithm, MCMC methods approximate the posterior

distribution of a parameter of interest by random sampling in a probabilistic space [24].

The Metropolis method is likely the simplest of Ising model simulation algorithms, and, similarly

to Glauber dynamics, is a ‘spin-flip’ algorithm, meaning it induces a change in orientation for a single

spin at a time [13]. Under this algorithm, the probability with which the system moves between

configurations at each update event is given by [25],
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Figure 6. A comparison of a given, arbitrary probability distribution and the approximated posterior
distribution generated by an Markov Chain Monte Carlo algorithm.

P (s→ s′) = g(s→ s′)A(s→ s′) (28)

where g(s→ s′) is the selection probability and A(s→ s′) is the acceptance ratio. The selection prob-

ability indicates which configurations can be reached by the algorithm from a preceding configuration.

The acceptance ratio is the fraction of events in which the transition takes place.

The Metropolis method assumes that the acceptance ratio, A, is given by [25],

A(s→ s′) =


e−β∆E if ∆E > 0

1 if otherwise

(29)

Therefore, at each update event, any transition which lowers the energy of the system is accepted,

while any transition which raises the energy of the system is accepted with a probability proportional

to the Boltzmann weight associated with the energy difference between the initial and final state.

While many simulations of the Ising model are ‘spin-flip’ algorithms, the Kawasaki method simu-

lates Kinetic Ising models by swapping the orientation of spins [23]. As such, the Kawasaki method is

a magnetization conservation method, meaning the total magnetization is unchanged over each itera-
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tion of the algorithm. This is useful in studying systems dominated by a single magnetization phase;

while a given system may tend to positive magnetization, the Metropolis method is equally as likely

to select and settle to a negative magnetization. The Kawasaki method comes in two varieties, the

local and nonlocal Kawasaki methods. The local Kawasaki method refers to algorithms which swap

only neighboring spins. The non-local Kawasaki method swaps spins regardless of their separation

along the lattice. While the non-local is more efficient, meaning simulations tend towards equilib-

rium with less computation time [25], it is a non-physical simplification as spin transitions therefore

do not depend on the physical distance between coupled particles, thereby disregarding the locality

requirement implicit in most Ising simulations. Outside of this modification, the Kawasaki method

and Metropolis method are largely identical. Specifically, the acceptance ratio remains the same as

that selected for the Metropolis method.

While these methods for simulating and thereby solving kinetic Ising models over discrete time

steps are versatile and precise, we have shown above in our treatment of the system’s magnetization

that the Glauber master equation can be easily manipulated to form efficient expressions for the

system’s time dependent functions of state. As such, the ODEINT routine in the Python package

SCIPY is an easily accessible means of simulating the dynamics of the system. In this case, a system

simply evolves according to the selected transition rates on an arbitrary time scale, within which the

integrated magnetization equations are solved at each discrete time step [22].

2.4 Network Theory and Social Networks

The second class of models we employ are weighted, complex networks. Network theory, whose first

relation was proven in 1736 by Euler’s solution to the Seven Bridges of Könisberg problem [26], is

the analysis of graphs as representations of symmetric and asymmetric relations. Complex network

theory, by extension, is the analysis of interacting nodes represented within a graph. While a complete

overview of network theory is outside the scope of this project, given that the mathematical and

computational machinery of each network is at least somewhat unique to the systems analyzed, a

brief overview of terms and analytical techniques related to network theory is worthwhile here.

A network, in the simplest terms, is a two-dimensional representation of nodes and edges which

connect those nodes [30]. A network is depicted as a graph, defined as the ordered triple G = (V,E, f)

wherein V = {v1, v2, ...., vn} is the set of nodes and E ⊆ V × V is the set of edges [27]. We define n

and m as the cardinality of the sets V and E respectively, such that, | V |= n and | E |= m. The
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function f is then the function which maps elements of E to corresponding pairs of elements in V .

Figure 7. A simple network in both graphical and mathematical terms.

Within a graph, edges may be either directed or undirected. Undirected edges denote a binary,

symmetric relation between nodes, while directed edges denote the relationship between a node to

another, which may not be symmetric [28]. A graph is therefore undirected if, for any two pairs of

vertices, (v, u) ∈ E and (u, v) ∈ E. The degree, di, of a node, vi, is the number of edges incident upon

the node, and is given by the degree value, ki. The degree sequence is defined at, dT = [d1d2d3 . . . dn]

[27]. The function, f , may also determine the edge weight and length of connections made [28]. The

dependencies of this function vary with application, though typically within the set V , nodes may

be assigned any number of items of information significant to their graphical position, propensity to

form edges, etc [28]. A simple graph refers to a graph wherein nodes are connected without multiple

edge between the same nodes or loops (edges which connect the node to itself) [27]. We will consider

exclusively simple graphs for the purposes of this thesis.

That said, various other descriptors will be significant to our model. A graph may be described as

connected if any node can be reached by traveling along the edges starting with any given node [29].

A graph may also be strongly connected if the edges provide a direct path between any two nodes [10].

The maximum number of edges possible in an undirected graph of N nodes is N(N−1)
2 . Furthermore,

a graph may be described as k-connected if each node has the same degree, k. A given graph may also

be broken into subgraphs, or a set of nodes connected by edges which may be extracted and analyzed

independently of the graph itself [30].

Of particular note here are networks of social influence and interaction, specifically voter models
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and models which may be adapted to simulate voting behaviors. In general, our attention is focused

on connected graphs comprised of nodes, encoded into which is an index of data which determines

that nodes position, capability to influence other nodes, and susceptibility to influence from other

nodes. For the purposes of this thesis, we will refer to those nodes as agents.

In the field of network theory, significant work has been undertaken to analyze the effect of dif-

ferent structural and topological network parameters on the evolution of cooperation [10]. Significant

parameters include degree distribution, degree heterogeneity, average degree, and assortativity [29].

Degree heterogeneity is a relatively simple concept. A network may be considered homogenous

or regular if any given node may be reached in the same number of steps from any other node [28].

Conversely, degree heterogeneity refers to the spectrum of degree values within the network [28].

Furthermore, degree heterogeneity provides a measure of a network’s diversity of structures. As the

spectrum of d-values of the nodes increases, the network becomes more irregular and complex. This

spectrum is measured through the degree distribution, P (k), which determines how many nodes in a

network have the given degree, k. For example, in stochastic networks in which edges are generated

randomly but with a given probability, P (k) is a Poisson distribution around the average degree, 〈k〉

[10].

The first proposed measure of heterogeneity comes from Snijders, alongside a modification by Bell

[28], is given as

P (k) =
1

N

N∑
i

(ki − 〈k〉)2 (30)

This expression is particularly accurate in the case of random graphs [10], and is sufficient to our

purposes.

That said, the development of network edges may either be random or preferential to varying

degrees; this is referred to as assortativity. For the purposes of a social network, these preferences

usually depend on either following a probability distribution which favors nodes of higher degree or on

certain criteria nested within each node in the set V [27]. We will proceed with the latter definition,

as it most closely relates to the tendency of politicians to interact with members of the same political

party.

Closely related to measurements of interactions between agents of differing political parties, and
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especially pertinent to the needs of this thesis, are measurements of cooperation. We will proceed

with the definition, provided by Krackhardt and Stern [31], that cooperation index, µ is given by,

µ =
EI − EE
EI + EE

(31)

where EI is the number of edges internal to an organization, while EE is the number of edges exiting

an organization.

These fundamentals of network theory alongside these metrics of graphical qualities form the

foundation by which social networks may be constructed and analyzed. We apply these in the context

of the United States legislature in section 4.

3 Kinetic Ising Model of the United States Legislature

We now present a kinetic Ising-type model of the United States Legislature. This model is constructed

in Python 3.7, and the code is provided in Appendix A. Within this model, each lattice site of a finite

Ising chain is populated by a two-spin particle, representing a legislator, in either the ‘yes’ state (s = 1)

or ‘no’ state (s = −1). The current state of each particle represents that legislator’s vote.

The sites are arranged to reflect the spectrum of political ideologies, such that s1 and sN may be

considered the ideological extremes. As such, the nearest neighbors of each particle represent the most

ideologically similar legislators. The Ising chain is considered to have non-periodic boundary conditions

in order to reflect the lack of influence between ideologically opposed legislators. As such, given the

locality condition, spin transition interactions occur only between ideologically similar legislators.

The initial spins of the particles at each site are set to either alternate between the two possible

spin states (i.e. s1 = 1, s2 = −1, s3 = 1 . . .), or be evenly distributed between portions of the chain.

Therefore, the initial magnetization is 0.

Equal sections of the Ising chain are treated as being in contact with a heat reservoir, with portions

segmented according to ideological similarity. The temperature of each heat reservoir is assigned, and

while the temperature is an arbitrary value, it critically informs the dynamics of the system.

We select the standard transition rates described by Glauber, alongside the multi-temperature

extension from Racz and Zia. As a result, we express the magnetization of each sub-lattice according
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to the differential equations provided above,

d

dt
m1 = −m1 +

γn
2
m2 (32)

d

dt
mn = −mn +

γn
2

(mn+1 +mn−1) (33)

d

dt
mN = −mN +

γn
2
mN−1 (34)

From these initial conditions, the magnetization of each particle is solved using Python package

SCIPY routine ODEINT, which solves the master equation and differential equations of magnetization

for individual particles. These values are then stored, and total magnetization of the system is calcu-

lated. The total magnetization of the system represents the average alignment of particles in either the

‘yes’ or ‘no’ states. As a result, the total magnetization represents the consensus of the entire lattice,

while the magnetization of each sub-lattice is the consensus of each ideologically-separated popula-

tion. A positive magnetization indicates a majority in the ‘yes’ state, while a negative magnetization

indicates a majority in the ‘no’ state.

In order to apply this model to the United States Legislature, we consider an Ising chain of 435 sites,

representing the House of Representatives. Each site is occupied by a two-spin particle, representing

a voting member of the House of Representatives. Lattice sites are arranged according to political

ideology, such that sites n = 1 through n = N
2 may be considered as representing the comparably

more ‘liberal’ legislators and n = N
2 + 1 through n = N may be considered the comparably more

‘conservative’ legislators. We divide this Ising chain into equal sub-lattices, each treated as being in

contact with a heat bath.

We begin by dividing the chain into three sub-lattices; the results of this simulation are provided

in Figure 8. We find that regardless of initial conditions the system eventually moves towards a steady

state in which total magnetization is 0. This indicates that the system inevitably fails to reach any

consensus, as an equal number of legislators are in the ‘yes’ and ‘no’ states. In order to examine this

system further, we observe the localized magnetization of each sub-lattice, provided in Figure 9.

We note that the magnetization of the system tends to follow the behavior of those regions in

contact with the lowest temperature heat reservoir, as those regions move most slowly to the steady

state. This follows naturally from the model’s parameters under Glauber dynamics. Due to the

temperature dependency of γ in the magnetization differential equations, temperature could be treated
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Figure 8. The change in overall magnetization for a lattice chain of length N = 435, wherein three
equally segmented populations are in contact with a corresponding heat bath of various temperatures.
The time scale is arbitrary.

Figure 9. The change in overall magnetization for a lattice chain of length N = 435, wherein three
equally segmented populations are in contact with a corresponding heat bath of various temperatures.
The time scale is arbitrary.

as the tendency of each sub-lattice’s population of particles to align with the system. As such, the

higher the relative temperature of the reservoir, the faster the system will move towards the steady

state; conversely lower temperatures relate a lower affinity towards alignment, or ‘stubbornness’.

This result is better demonstrated in the case in which the Ising chain is divided into five equal

sub-lattices, each in contact with a heat reservoir of a distinct temperature. Here we observe that the

magnetization of any two sub-lattices, set to identical initial spin configurations, will move towards
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Figure 10. The change in overall magnetization for a lattice chain of length N = 435, wherein five
equally segmented populations are in contact with a corresponding heat bath of various temperatures.
The time scale is arbitrary.

Figure 11. The change in individual magnetizations for five populations occupying equal portions
of a lattice chain of length N = 435. The lattice sites comprising each population are in contact with
a corresponding heat bath of varying temperatures. The time scale is arbitrary.

the steady state at different rates which are inversely proportional to temperature, as in the case of

the sub-lattices in contact with heat reservoirs T = 2.5 and T = 3.0 shown in Figure 11. The total

magnetization of the five temperature system is provided in Figure 10, and the localized magnetization

for each sub-lattice is provided in Figure 11.

When considered in the context of the United States Congress, this model presents an immediately

apparent shortcoming. While this model invariably predicts that the House of Representatives will
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not be able to reach a consensus regardless of their initial vote or stubbornness, approximately 3%

of bills were enacted into law under the 115th Congress [32]. Therefore, an accurate predictive model

should allow for at least certain cases to yield a positive consensus. That being said, the model does

reflect the lack of compromise between ideologically opposed legislators frequently criticized in the

current field of American politics.

Moreover, despite the consistent tendency of this model to move towards a steady state of 0 magne-

tization regardless of initial conditions, certain lattice sites and graphical features are worth exploring

further. Most notably, the particles occupying lattice sites n = 1 and n = N display noteworthy behav-

iors. As a result of the non-periodic boundary conditions within which the model is constructed, these

particles possess one less nearest neighbor interaction than other particles. Moreover, these particles

occupy lattice sites maximally removed from those sub-lattices in contact with other heat reservoirs.

As a result, the local interactions which define the Ising model, as well as the flow of thermal energy

which drive the kinetic Ising model, are minimally expressed at these sites. Consequently, these sites

resist any transition to a non-zero steady state within the sub-lattice population, and as such rapidly

contribute to the system’s move towards its steady state of 0 magnetization. This provides what is

perhaps this model’s most critical insight on voting behavior. Specifically, that ideological extremism

limits cooperation.

Beyond these particular sites, the short-term behavior of the system is also noteworthy. Within

the short-term, the total magnetization of the system does have a non-zero magnitude. This indicates

that early in the simulation, a majority of particles occupying the Ising chain are in a single state.

Given that legislation brought before Congress is rarely voted on over as many iterations as we present

here, this is certainly worth noting.

There are several avenues by which to improve this model in order to better reflect the United

States Congress and potentially yield more significant results. While the unrealistic time-scale in which

these simulations take place has already been noted, this is not a discrepancy within the model itself,

but rather a consideration on the significance of certain data. Otherwise, the model could incorporate

the already well-defined features of the multi-temperature kinetic Ising model. While the influence

of ideologically similar legislators is a significant factor in determining a legislator’s vote, external

influences are abundant. The behavior of this multi-temperature kinetic Ising model in an external

magnetic field may be considered in order to simulate the effects of lobbying groups, constituents, or

the media. Moreover, as the political agenda and opinions of these groups are varied (and as such the
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politicians they appeal to are varied), this magnetic field could be treated as being dependent upon

the heat reservoir in contact with each sub-lattice, allowing for a variety of magnetic fields to impact

each ideologically separated sub-lattice in unique ways. The spin correlation functions may also be

considered for particles occupying lattice sites at the borders of the sub-lattices in order to analyze

the impact of ideologically similar particles in contact with distinct heat reservoirs.

4 Social Network Model of the United States Legislature

We now present a model which applies network theory in order to simulate the voting behaviors of

the United States Legislature. This model was constructed in Python 3.7, and the code is provided in

Appendix B. This model is particularly concerned with the effect of variances in degree heterogeneity,

average degree, and assortativity on agent’s cooperation and capability to resolve to a steady state.

Within this model, each agent is assigned a political ideology value, αi defined such that 0 ≤ α ≤ 1.

A political ideology value of 0 indicates that the agent is maximally liberally inclined, while a political

ideology value of 1 indicates that the agent is maximally conservatively inclined. Each agent is capable

of existing in either the ‘yes’ state, (σi = 1) or ‘no’ state (σi = −1), which represents their current

vote.

The name, political party, and political ideology value of each agent is stored in a PANDAS data-

frame. An issue value, z, then is selected in order to represent each agent’s affinity for a legislative

issue, and is defined such that 0 ≤ z ≤ 1. Following the introduction of the issue value, the initial

vote of each agent is also determined and stored within the data-frame. The initial vote is selected

by the NUMPY package’s random number routine with the probability of a ‘yes’ vote given by,

Pi = 1− | αi − z | (35)

This probability is selected in order to maximize the probability of a ‘yes’ vote in the case that

αi = z.

Critically, each agent’s initial vote is formed in a vacuum, without any external influence from other

agents. At this point, however, edges are randomly placed between agents, with one edge formed per

agent. These edges represent the connected agents’ ability to influence one another in order to align
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their votes. These edges are considered undirected, under the assumption that these social influences

are inherently mutual.

These edges are then weighted according to each agent’s ability to influence the vote of the other. In

order to identify which forms of social influence are significant enough to contribute to this process, we

turn to 3 of the canonical mechanisms of social cooperation [33], which have clear political analogues:

1 Kin selection, or an agent’s predisposition to cooperate with others in a shared population, in

this case a shared party affiliation.

2 Direct reciprocity, or an agent’s predisposition to cooperate in order to gain some obvious benefit

from those they cooperate with, in this case an agent’s willingness to vote alongside agent’s of

a similar political learning with the expectation of ongoing political support.

3 Network reciprocity, or an agent’s predisposition to cooperate with others they are closely affil-

iated with, in this case frequent interactions as a result of caucuses, committees, etc.

In order to quantify these mechanisms, we define the edge weight between two agents, wij , as,

wij = γ(1− | αi − αj |) + β (36)

where γ represents the frequency of interaction between agent’s, and β is a boolean value of either 1

in the case that connected agents share a party affiliation or −1 in the case that they do not.

The nested function, 1− | αi − αj |, is selected in order to maximize agent’s influence in the case

that αi = αj .

The magnitude of all edge weights connected to an agent are then summed in order to identify the

influence, ρ, of the agent’s connections on their voting state, with the final value given by,

ρ =
∑

(ij)∈E

− σi
σj
wij (37)

If connected agents’ initial votes are out of alignment, this contributes positively to the sum, as

σi
σj

= −1. If connected agent’s initial votes are aligned, this contributes negatively, as σi
σj

= 1. If ρ is

30



greater than Pi, the agent’s initial affinity for the issue, then the influenced agent changes their vote;

otherwise, their vote remains unchanged.

The process of assessing this influence and consequently changing votes is a single voting step in

this model. The critical application of this model is found in carrying out multiple iterations. At each

voting step one new edge per agent is formed. As such, the average degree necessarily increases by 1

for each iteration, and the network will be completely connected following N−1
2 voting step iterations.

The heterogeneity of the network, given that edges are formed randomly, conforms closely to the

Poisson distribution [28].

The probability with which edges are formed between members of the same party or ideologically

similar agents can also be adjusted, thereby disrupting the degree heterogeneity and increasing the

assortativity of the network. Moreover, throughout each step of the algorithm, a permanent vote

can be assigned to agents. This freezes the agent in a particular state in order to simulate the effect

of maverick voting. Similarly, in order to simulate bloc voting, multiple agents can be assigned the

maverick state, as well as a shared and unchanging initial vote.

The introduction of non-cooperative voting and preferential connection in this voting network has

unique and interesting results on both the behavior of the model.

Figure 12. The spread of political ideologies, α, within the network.

In order to apply this model to the United States Congress, we populate this network with 435

agents, representing legislators in the House of Representatives. Within each node the political ideol-
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ogy and party affiliation of a corresponding legislator from the 115th United States Congress is stored,

with values taken from GovTrack’s 2017 ‘Report Cards’ [5]. Within this population, 238 agents be-

long to the Republican Party while 197 agents belong to the Democratic Party. We note that within

this system, a disproportionate amount of agents possess ideologies at or near both the extreme and

median values. The spread of political ideologies are provided in Figure 12.

We first consider a scenario wherein agents form edges completely randomly, with no bias towards

party affiliation or political ideology. We observe that presented with any issue value the total votes

will eventually collapse to a complete consensus, with the total number of agent’s in the ‘yes’ state

moving to 0 or 435. The sum of agents in the ‘yes’ state over each iterative step under these conditions

is provided in Figure 13.

In this case, the system moves towards a consensus aligning with the average initial vote of the

political party whose cooperation index is initially greatest, meaning agents within the party formed

the most external connections during the initial iterations. Given that these connections are formed

randomly, the likelihood of completely aligning in the ‘yes’ or ‘no’ state is largely random and inde-

pendent of the issue value.

Of particular note here are agents whose ideological values are near the median, α ≈ 0.5, and

whose initial vote reflects the average state of their political party. These agents show an especially

strong influence on agents belonging to the opposing political party. This follows naturally from the

model, as their neutral ideological value maximizes their potential influence on agents of other parties.

Figure 13. The sum of all agents in the ‘yes’ state over multiple iterations.

We then consider the case in which politicians of the same political party prioritize connection
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with one another. In this case, the network in the initial iterations can be effectively considered two

distinct subgraphs, each populated by one of the two political parties. As the maximum number

of edges is approached for each subgraph, N(N−1)
2 , the subgraphs then begin to interact. Critically,

as the Democratic party is occupied by less agents, Democratic agents will tend to find connections

outside their political party first.

Figure 14. The sum of all agent’s in the ‘yes’ state over multiple iterations, throughout which agents
formed networks with a bias towards shared political party.

The sum of ‘yes’ votes over each iterative step under these conditions is provided in Figure 14.

When the agents connect preferentially, we observe that the system still resolves to consensus re-

gardless of the issue value presented. However, the consensus reached is no longer randomly dictated

by the most cooperative party. Under these conditions, voting states on conservative issue values,

0.75 ≤ z ≤ 1.0 tend to resolve to the ‘yes’ state, as Republican voters are more likely to initially vote,

‘yes’ on conservative issues. Conversely, voting states on liberal issue values, 0.0 ≤ z ≤ 0.25 tend to

resolve to the ‘no’ state. Neutral or middle of the line issue values continue to yield a random consen-

sus to either state, which is determined by the average initial voting state of the system. These results

are to be expected, given that Republican conservative voters outnumber Democratic liberal voters.

As each party forms connections with like-minded agents over initial iterations, they quickly come

to a consensus. As Democrats run out of party members to connect with, the Republicans are still

able to connect with like-minded agents. As such, when Democrats eventually begin to connect with

Republican agents, their individual influences cannot overcome the influence of the party. This rapid

collapse to consensus within the partisan subsystem also accounts for the notably smaller amount of

voting steps required to reach a consensus on the issue.
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We further observe that agents whose ideological values are near the median are no longer signifi-

cantly influential within the system. Rather, agents at the conservative ideological extreme, z ≥ 0.9,

tend to determine the final consensus.

With this result in mind, we next enforce the condition that all agents whose ideological values are

at the political extremes, α ≤ 0.1 or α ≥ 0.9, are unable to change their initial vote. The sum of agents

in the ‘yes’ state over each iterative step under these conditions is provided in Figure 15. Under these

conditions, the system is incapable of reaching a complete consensus, as a number of agents will not

change states regardless of influence. That being said, we once again note that given a near neutral

issue value, the system will approach a consensus. This consensus is once again randomly determined

based on the average initial vote of the system. For conservative and liberal issue values, the system

is unable to reach a consensus over any number of iterations. After the network is strongly connected

over initial iterations, the total votes tend to oscillate as frozen agents induce changes, which are then

reversed by frozen agents on the other end of the political spectrum.

Figure 15. The sum of all agent’s in the ‘yes’ state over multiple iterations, throughout which the
votes of agents with ideologies α ≤ 0.1 and α ≥ 0.9.

When considered in the context of the United States Congress, this model possesses a noteworthy

inaccuracy. Regardless of preferential connection or bloc and maverick voting, this model predicts

complete consensus on certain legislation. As has already been noted in this thesis, within the roll

call vote which this model emulates, this occurs with a significant statistical infrequency in the House

of Representatives.

That being said, the insights into cooperation between political agents this model provides are
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not insignificant. From initial trials on random connections between agents, we observe a party’s

willingness to cooperate with the opposition leads to consensus in that party’s favor. Moreover, we

observe that centrist agents are able to generate bi-partisan support.

When connections are made preferentially along partisan lines, we observe that cooperation be-

tween parties is considered secondary to generating a party-wide consensus. As a result, the majority

party is able to enforce their consensus on the system. Finally, in the case of bloc and maverick vot-

ing, we observe that an unwillingness to cooperate drastically affects the system’s ability to resolve to

consensus, eventually leading to a political tug of war between unyielding legislators. Taking these in-

sights into account, we note that this model leads to the crucial, if somewhat obvious, conclusion that

bi-partisan interaction, centrist politics, and a willingness to yield a position under social influence

should naturally yield a legislative consensus.

There are several potential avenues through which to improve this model in order to make it

not only more reflective of the United States Congress, but also to potentially yield more significant

results. As in the case of the multi-temperature kinetic Ising model, the most obvious consideration

to be made is on the model’s iterative nature. Legislation in Congress is typically voted on once or,

occasionally, twice. While the same legislation may be presented multiple times following amendments

or be placed inside a larger omnibus bill, it would be inaccurate to ascribe those amended or compiled

bills an identical issue value. As such, we might consider not only adding connections between agents

at each iterative step, but also introducing a separate issue value for each iterative step.

Furthermore, legislation is not introduced directly to the entirety of a Congressional body. Legis-

lation is first presented in committees, wherein anywhere from 12 to 63 legislators must vote on the

bill before it is presented to Congress. While only those legislators within the committee vote on the

bill in question, it would be inaccurate to say that social interactions and influences which decide their

final votes are limited to those committee members. Therefore, we might consider either scaling the

size of the network to consider only the votes and interactions of legislators within the committee, or

examining a committee as a cluster within the network.

Finally, the factors which influence legislators cannot be limited to exclusively their fellow leg-

islators. Constituents, lobbyists, and media attention are significant influences as well. Therefore,

we might consider incorporating these influences into the model. This could be accomplished by

connecting each agent to a node which does not contribute to the sum of votes or change its vote,

and assigning that node an ideological value representing the average political stance of that agent’s
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electorate. While this may be difficult to implement with accuracy in respect to the actual political

mindset of a given state or congressional district, a general linear progression from 0 to 1 based on

registered voters may prove sufficient to provide interesting results. Finally, GovTrack releases leader-

ship values for each legislator, calculated according to that legislator’s influence on other voters. We

might consider making the edges of the network directed and scaling influence between legislators by

that leadership value.

5 Conclusions and Further Applications

In this thesis we have presented two models of the United States Legislature, alongside the body of

statistical physics and network theory which both inform and define them. We then applied those

models specifically to the United States House of Representatives. These have provided distinct, yet

complementary results, as well as interesting insights into the United States political system.

From both the multi-temperature kinetic Ising model and social network model we observe that

politicians on the extremes of the ideological spectrum may significantly impact cooperation within

a system. Either driving the system towards a lack of consensus, as in the case of the kinetic Ising

model, or enforcing their unpopular opinion on otherwise cooperative voters, as in the case of bloc

voting. We further note that the kinetic Ising model seems to indicate that polarization between

ideologically separated groups seems inevitable, a dire conclusion, though one that resonates with

the current perception of American politics. However, we also observe that communication between

ideologically divided political parties does yield consensus in the case of the social network model, a

reassuring thought following an examination of the kinetic Ising model. In either model, we see that

cooperation between ideologically opposed organizations is critical to reaching a consensus. While

this is perhaps an obvious result, given the sociological conundrum that is cooperation, expressing

this result under such simple two-state parameters is worthwhile.

That being said, the complexity of American politics goes beyond the scope of this thesis, and is

undeniably somewhat random given its dependence on human behavior. Traditionally ‘liberal’ issues

may appeal to a ‘conservative’ legislator and vice versa for a variety of reasons including personal

bias, lobbying influences, or the particular benefit the issue in question provides to that legislator’s

constituents. Given the extreme difficulty which would accompany quantifying these factors in a

legislator’s decision, it should not be surprising that there is a lack of reputable research on the topic.
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As such, the results of these models, while certainly interesting, could not be considered predictive or

truly reflective of political realities as of yet. Regardless, the field of socio-physics continues to grow,

and alongside it legislative forecasting models grow more complex and nuanced [34] [35] [36] [37].

With that in mind, we present this thesis as a contribution to the ongoing effort to bridge the divide

between physical and social sciences, and the pedagogical and analytical role of statistical physics in

that confluence. Moreover, given the range and versatility of non-equilibrium statistical physics and

network theory, this thesis presents these models not only as a potential means of studying American

politics, but also to demonstrate the flexibility in applying these models to study a variety of systems.

While the Ising model’s relevance in legislative forecasting efforts is clearly its most significant

contribution to this thesis, it should be noted that the Ising model has been applied in a variety

of other non-physical contexts. Among the most conceptually diverse of these applications include

studies of tree yield in timberland [38], rumor propagation in confined populations [39], and cancer

growth in isotropically arranged cells [40].

Similarly, social network models enjoy a diverse range of applications. Given their topological

and mathematical flexibility, these networks may be adapted to reflect a variety of complex networks.

These include ecological models which predict the impact of invasive species [41], the evolution of

game theory strategy in the canonical Prisoner’s Dilemma [42], and, perhaps most significantly in

recent times, the spread of pandemic infections under various social parameters [43].

Each of these models may provide not only valuable data on the dynamics and dependencies of a

system, but also a conceptually clear educational tool for translating complex biological, sociological,

or ecological information to the public through these models’ readily apparent results and graphical

representations. Moreover, these systems provide a valuable pedagogical tool, and in the information

age, wherein knowledge has become increasingly democratized, this is a worthwhile and valuable

endeavor. These models may provide insight into political discourse, knowledge on how to ‘flatten the

curve’ in the face of a pandemic, and crucial information on the potential impact of human interactions

with the environment.
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A Multi-Temperature Kinetic Ising Model Code

#Author: Sho Gibbs, Washington and Lee Department of Physics and Engineering

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

import math

from scipy.optimize import curve_fit

def ODO(x, a, b, c,d,e):

return a * np.exp(b * x) + c* np.exp(d*x)+e

def ODOPaper(x,i,j,k):

Tau = math.sqrt(g0[0] * g0[1])

return i * np.exp(j *(1-Tau)* x) + k* np.exp(j* (1+Tau)*x)

def MatGen(g0,bounds):

size= g0.size

A=np.zeros((size,size))

for i in range(size):

for j in range(size):

if i==j:

A[i,j]=-1

elif abs(i-j)==1:

A[i,j]= np.sqrt(g0[i]*g0[j])/2

if bounds ==0:

A[0,size-1]=np.sqrt(g0[0]*g0[size-1])/2

A[size-1,0]=np.sqrt(g0[0]*g0[size-1])/2

return A

T = (3.0, 2.5, 5, 3.5, 4.5) #modify for number of sub-lattices

N = 435

timestop = 20

ystart = 1

bounds = 1

field = 0

const = 0

#Cutoff values (modify for number of sub-lattices)

Cutoff1=N/5

Cutoff2=2*N/5

Cutoff3=3*N/5

Cutoff4=4*N/5

#gamma values based on temprature bath

T0=np.zeros(N)

g0=np.zeros(N)

for i in range(N):

if i<Cutoff1:

T0[i]=T[0]

elif i<Cutoff2:

T0[i]=T[1]

elif i<Cutoff3:
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T0[i]=T[2]

elif i<Cutoff4:

T0[i]=T[3]

else:

T0[i]=T[4]

g0[i]= np.tanh(2/T0[i])

#time array

timesteps= 100

tinc= timestop/ timesteps #this number is the number of steps

t= np.arange(0,timestop,tinc)

x_data =t

#set initial spin conditions

y0=np.zeros(N)

for i in range(N):

if i < Cutoff1:

y0[i]= 1

elif i < Cutoff2:

y0[i] = 1

elif i < Cutoff3:

y0[i] = 0

elif i < Cutoff4:

y0[i] = -1

else:

y0[i] = -1

if ystart==2:

for i in range(N):

y0[i]=1

##Magnetic field

if field==0:

b0=np.zeros(N)

if field==1:

b0=np.zeros(N)+ const

if field==2: #field depending on temperature bath

b0=np.zeros(N)

for i in range(N):

if i < Cutoff1:

b0[i]= const

elif i < Cutoff2:

b0[i] = 0

else:

b0[i] = -const

B0=np.zeros(N)

B0=np.tanh(b0/T0)

#boundary conditons+ solve system

if bounds==1:

psoln = odeint(f1, y0, t, args=(N,g0,B0))

if bounds==0:

psoln = odeint(f0, y0, t, args=(N,g0,B0))

magnetization= np.sum(psoln,axis=1)/N

43



y_data = magnetization

####Matrix work

matrix = MatGen(g0,bounds)

eigVal, eigVec =np.linalg.eig(matrix)

print("eigenvalues:")

print(eigVal)

print("eigenvectors:")

print(eigVec)

xdata = x_data

y = y_data

ydata = y

fig=plt.figure(figsize=(12,12))

plt.plot(xdata, ydata, label=’data’)

popt, pcov = curve_fit(ODO, xdata, ydata, p0=(-1,-2,1,-1,0), maxfev=100000)

print(T,N)

fitCon=np.round(popt,4)

plt.plot(xdata, ODO(xdata, *popt))

plt.xlabel(’x’)

plt.ylabel(’y’)

plt.title((T,field,const), loc=’left’)

plt.title(fitCon,loc=’right’)

B Social Network Model Code

#Author: Daniel Clark, Washington and Lee Department of Physics and Engineering

import networkx as nx

import random

import numpy as np

import pandas as pd

k = 0.00 #Issue value

df = pd.read_excel(’Legislature.xlsx’, index_col=0)

G = nx.Graph()

H = nx.path_graph(435)

G.add_nodes_from(H)

#Defines a Function to Store the Randomly Generated Starting Votes in a List Object

def old_vote(G):

starting_votes = []

for node in G:

starting_votes.append(df.iat[node, 3])

return starting_votes

#Defines a Function to Determine the Weight of Interactions Between Representatives

def edge_weight(u, v):

a1 = df.iat[u, 2]
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a2 = df.iat[v, 2]

gamma = np.random.random_sample()

beta = (df.iat[u, 1])/(df.iat[v, 1])

w = (beta + gamma*((1-np.abs(a1-a2))))

wrounded = round(w, 3)

return wrounded

#Defines a Function to Randomly Create Edges Between Representatives

def add_random_edges(G):

new_edges = []

for node in G.nodes():

connected = [to for (fr, to) in G.edges(node)]

unconnected = [n for n in G.nodes() if n not in connected and n != node]

if len(unconnected):

new = random.choice(unconnected)

if new != node:

G.add_edge(node, new, weight=edge_weight(node, new))

new_edges.append( (node, new) )

connected.append(new)

return new_edges

#Defines a Function to Selectively Create Edges Between Representatives of the Same Party

def add_selective_edges(G, P_assort):

new_edges = []

for node in G.nodes():

x = np.rand_random_sample()

if x > P_assort:

connected = [to for (fr, to) in G.edges(node)]

unconnected = [n for n in G.nodes() if n not in connected and n != node

and df.iat[node,1] == df.iat[n,1]]

if len(unconnected) != 0:

new = random.choice(unconnected)

if new != node:

G.add_edge(node, new, weight=edge_weight(node, new))

new_edges.append( (node, new) )

connected.append(new)

else:

for node in G.nodes():

connected = [to for (fr, to) in G.edges(node)]

unconnected = [n for n in G.nodes() if n not in connected and n != node]

if len(unconnected) != 0:

new = random.choice(unconnected)

if new != node:

G.add_edge(node, new, weight=edge_weight(node, new))

new_edges.append( (node, new) )

connected.append(new)

else:

for node in G.nodes():

connected = [to for (fr, to) in G.edges(node)]

unconnected = [n for n in G.nodes() if n not in connected and n != node]

45



if len(unconnected):

new = random.choice(unconnected)

if new != node:

G.add_edge(node, new, weight=edge_weight(node, new))

new_edges.append( (node, new) )

connected.append(new)

return new_edges

#Defines a Function to Model the First Step of Voting Interactions

def second_vote(G, u, v): #u and v provide the ideological cutoffs for ’Bloc’ voting

second_votes = []

for node in G.nodes():

a1 = df.iat[node, 2]

connected = [to for (fr, to) in G.edges(node)]

influence = 0

starting_vote1 = df.iat[node, 3]

if df.iat[node,2] < u or df.iat[node,2] > v:

second_votes.append(starting_vote1)

else:

for connection in connected:

starting_vote2 = df.iat[connection, 3]

if starting_vote1 == starting_vote2:

stay = G.get_edge_data(node, connection, ’weight’)

hold = stay[’weight’]

influence = influence - hold

else:

sway = G.get_edge_data(node, connection, ’weight’)

change = sway[’weight’]

influence = influence + change

if (1-np.abs(a1-k)) < influence:

if starting_vote1 == 1:

second_votes.append(0)

else:

second_votes.append(1)

else:

second_votes.append(starting_vote1)

return second_votes

#Defines a Function to Model Multiple Stages of Interactions

def multiple_vote(G, generations, u, v):

second_votes = second_vote(G, u, v)

t = 0

t_votes = []

G = nx.Graph()

H = nx.path_graph(435)

G.add_nodes_from(H)

influence = 0

while t < generations:

add_random_edges(G)

for node in G.nodes():

a1 = df.iat[node, 2]

46



connected = [to for (fr, to) in G.edges(node)]

starting_vote1 = df.iat[node, 3]

if df.iat[node,2] < u or df.iat[node,2] > v:

t_votes.append(starting_vote1)

else:

hold = []

change = []

if t == 0:

previous_vote1 = second_votes[node]

else:

previous_vote1 = t_votes[node+(434*(t-1))]

for connection in connected:

if t == 0:

previous_vote2 = second_votes[connection]

else:

previous_vote2 = t_votes[connection+(434*(t-1))]

if previous_vote1 == previous_vote2:

stay = G.get_edge_data(node, connection, ’weight’)

hold.append(stay[’weight’])

else:

sway = G.get_edge_data(node, connection, ’weight’)

change.append(sway[’weight’])

influence = sum(change) - sum(hold)

if (1-np.abs(a1-k)) < (influence):

if starting_vote1 == 1:

t_votes.append(0)

else:

t_votes.append(1)

else:

t_votes.append(previous_vote1)

t+=1

yield t_votes

def multiple_vote_selective(G, generations, u, v):

second_votes = second_vote(G, u, v)

t = 0

t_votes = []

G = nx.Graph()

H = nx.path_graph(435)

G.add_nodes_from(H)

influence = 0

while t < generations:

add_selective_edges(G)

for node in G.nodes():

a1 = df.iat[node, 2]

connected = [to for (fr, to) in G.edges(node)]

starting_vote1 = df.iat[node, 3]

if df.iat[node,2] < u or df.iat[node,2] > v:

t_votes.append(starting_vote1)

else:

hold = []
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change = []

if t == 0:

previous_vote1 = second_votes[node]

else:

previous_vote1 = t_votes[node+(434*(t-1))]

for connection in connected:

if t == 0:

previous_vote2 = second_votes[connection]

else:

previous_vote2 = t_votes[connection+(434*(t-1))]

if previous_vote1 == previous_vote2:

stay = G.get_edge_data(node, connection, ’weight’)

hold.append(stay[’weight’])

else:

sway = G.get_edge_data(node, connection, ’weight’)

change.append(sway[’weight’])

influence = sum(change) - sum(hold)

if (1-np.abs(a1-k)) < (influence):

if starting_vote1 == 1:

t_votes.append(0)

else:

t_votes.append(1)

else:

t_votes.append(previous_vote1)

t+=1

yield t_votes

#Look at the Initial Conditions, Create Connections, and Change Votes

first_votes = old_vote(G)

new_edges = add_random_edges(G)

second_votes = second_vote(G, ideological_cutoff_low, ideological_cutoff_high)

#Preform a Multi-Generational Voting Scenario, and Organize the Results

generation_voting = list(multiple_vote(G, generations, cutoffl, cutoffh))

generational_votes = [generation_voting[1]]

final_votes = []

for sublist in generational_votes:

for item in sublist:

final_votes.append(item)

seg_length = 435

voting_pattern=[final_votes[x:x+seg_length] for x in range(0,len(final_votes),seg_length)]

pd.DataFrame(voting_pattern).to_excel(’houseoutput.xlsx’, header=False, index=False)

#Perform a Selective Multi-Generational Voting Scenario

generation_voting = list(multiple_vote_selective(G, generations, cutoffl, cutoffh))

generational_votes = [generation_voting[1]]

final_votes = []

for sublist in generational_votes:

for item in sublist:

final_votes.append(item)

seg_length = 435
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voting_pattern=[final_votes[x:x+seg_length] for x in range(0,len(final_votes),seg_length)]

pd.DataFrame(voting_pattern).to_excel(’houseoutput.xlsx’, header=False, index=False)
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