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Abstract

In this thesis, we describe, analyze, and extend ionic self-assembly of monolayers (ISAM),
a bottom-up nanostructure production technique designed to coat surfaces in uniform layers of
charged nanoparticles. Using mean field theory, we develop cooperative sequential adsorption
with evaporation (CSAE) models of the assembly process, designed to predict the particle coverage
density of ISAM samples. We simulate the particle assembly process via the Monte Carlo technique,
and we evaluate our CSAE models primarily by comparing them to these simulated results. Finally,
aided by scanning electron microscopy, we analyze experimental ISAM samples. This experimental
approach provides us with information about the time scale of assembly, as well as the relationship
between our CSAE models and particle suspension concentration. Our approach considers ISAM
under no external influence, as well as ISAM conducted under constant and oscillating electric fields.
Assembly under electric fields represents a type of directed self-assembly of monolayers (DSAM),
an emerging technique designed to control particle coverage density using an external influence.
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Chapter 1

Introduction and Background

1.1 Introduction to Nanoscience

On December 29, 1959, renowned physicist Richard Feynman addressed members of the
American Physical Society at their annual gathering. His talk, entitled “There’s Plenty of Room
at the Bottom” [1], considered a world in which scientists could carefully manipulate individual
molecules and atoms to store information on the smallest scales. For nearly two decades, his
thoughts went mostly unnoticed. However, by the 1980s, they had become an important tool
for members of the newly emerging nanoscience community, which used Feynman’s ideas to both
inspire new areas of research and justify their belief that meaningful physics could be reasonably
conducted at the nanoscale.

Feynman’s exploration of what would become nanoscience begins with an unusual question:
is there enough room on the head of a pin to print the entirety of the Encyclopaedia Britannica?
He answers this question by stating that the head of a pin would need to be magnified roughly
25,000 times before its area would equal the area of all the pages in the encyclopedia. Naturally,
therefore, one could print the entire encyclopedia on a pin head if he or she could simply reduce
the text of the encyclopedia by 25,000 times. Feynman argues that, even at such a small scale, the
smallest discernible dots contained in a standard printing of the encyclopedia would contain around
1000 atoms—more than enough to ensure that the information could be preserved for a long period
of time without corruption. Furthermore, Feynman notes that the electron microscopes available
in 1959 could certainly read text of that size, and an inverted electron microscope lens could be
used to focus ions onto the pin’s surface to engrave the text. Once one copy of the text had been
created, further copies could easily be produced via a plastic mold of the original.

Feynman then considers the physical storage of information via a binary code. Reasoning
that each letter within the Latin alphabet would require between six and seven bits of data for
unique storage, he suggests using cubes of 5× 5× 5 = 125 atoms to encode the information within
(not just on the surface of) a pin head. For one binary state, called a dot, one type of atom would
be used, while for the other state, called a dash, another type of atom would suffice. Given these
parameters, Feynman calculates that “all the books in the world can be written in this form in a
cube of material one two-hundredth of an inch wide—which is the barest piece of dust that can be
made out by the human eye.” Herein lies Feynman’s central argument: not only does the nanoscale
provide sufficient room to store vast amounts of information, but also it appears to provide plenty
of room.
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After demonstrating the vast storage capabilities of the nanoscale, Feynman continues his
argument by taking up a discussion of the electron microscope. While avoiding a discussion of any
practical engineering details, Feynman suggests that the electron microscope of his day could be
improved to the point of being able to discern individual atoms. His reasoning, he states, relies upon
the fact that the wavelength of an electron is only around 1/20 of an angstrom, much smaller than
the width of an atom. The results of improving the resolution of the electron microscope to even 100
times its 1959 resolution would have numerous consequences for the scientific community. Biologists
would be able to probe the structures of DNA, RNA, amino acids, proteins, and microsomes
directly. Chemists, rather than using an extensive set of reactions to determine the atomic makeup
of a complicated molecule, could simply look at the molecule under the electron microscope to
determine its structure and constituent parts.

Inspired by the ability of biological systems to complete complex tasks at the molecular
level, Feynman continues by considering a variety of miniaturized machines and devices. He first
suggests a miniature computer, perhaps one with wires 10 to 100 atoms in diameter, which would
allow for circuits thousands of angstroms in width. From Feynman’s point of view, developing
miniaturized computer components is an important step in creating computers powerful enough to
complete human-like tasks, such as (what we now call) machine learning and image recognition.
In 1959, standard computers took up entire rooms. Building a computer with enough processing
power to learn from past experience and recognize images would take up a space roughly the size
of the Pentagon. A computer of this size would encounter a vast array of problems besides simply
being unwieldy. First, it would require too much material—not just in terms of cost but, more
importantly, in terms of availability on Earth. Second, it would produce too much heat. Third, it
would consume as much power on a yearly basis as is produced annually by the Tennessee Valley
Authority. Finally, because information would need to be passed between components separated
by vast distances, such a computer would be prohibitively slow.

Feynman considers the production of other miniaturized machines via a variety of methods.
First, he suggests evaporating alternating layers of conductors and insulators onto a surface, thus
converting the surface into a viable circuit containing components as complicated as coils, capac-
itors, and transistors. He also suggests that the mechanical devices of our world (e.g., cars and
engines) could be scaled down directly to nanosize. Doing so would require considerations of force
scaling and material strength. Furthermore, any electrical systems in the scaled-down device would
need to be redesigned since magnetic properties change at such a size. However, scaled-down de-
vices would have a variety of benefits, the chief of which would be the elimination of a need for
lubricating agents and heat sinks (devices on the order of 10−9 m would dissipate heat much too
quickly to require standard cooling techniques). To produce such scaled down devices, Feynman
imagines a chain of tiny hands, each a quarter of the size of the one before it, which eventually
produce the “tools” necessary to manufacture on the nanoscale. The engineering feasibility of this
idea is less important than its spirit: Feynman imagines a world in which we produce versions of
macroscopic tools which function on the nanoscale, a concept which would allow for advancements
in fields as far reaching as medicine and electrical engineering.

Feynman ends his discussion of the nanorealm by considering the potential to produce syn-
thetic molecules directly. If an electron microscope could (at least theoretically) view individual
atoms, why could some other tool not be used to move them around and arrange them in a de-
sired structure? Such a tool would have a profound impact on the field of chemistry. No longer
would chemists have to rely upon long reaction chains just to produce a sample of a molecule that
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inevitably contains impurities. Instead, if a chemist desired a particular molecule, he or she could
simply put it together piece by piece.

The impact of Feynman’s speech on the field of nanoscience is perhaps best measured by
the number of real-world advancements it has inspired. Electron beam lithography [2, 3, 4, 5]
is an excellent example. In electron beam lithography, a beam of electrons is focused onto the
surface of an electron-sensitive film known as a resist. When the beam makes contact with the
resist, it changes its properties (“cures” it). Later, a solvent can be applied to the surface of the
resist, causing either the cured or uncured portion to fall away. In this way, intricate patterns and
structures can be drawn on the resist’s surface. The resist is then easily used as a template for
etching onto a more solid material (substrate) such as a silicon wafer. Electron beam lithography is
very similar to Feynman’s suggestion that text from the Encyclopaedia Britannica could be written
onto the head of a pin by reversing the optics of an electron microscope. Perhaps even more directly
inspired is nanostructure etching via focused ion beams [2, 6, 7]. A focused ion beam is simply
a steady stream of ions focused via an electromagnetic optical system until powerful enough to
cut away a surface. Rather than relying upon resists and solvents, focused ion beam etching cuts
nanostructures into a substrate directly, allowing for rapid prototyping of complex nanostructures.

Feynman’s discussion also predicted the development of nanostructure stamping technology
[2, 8, 9, 10]. During his discussion of the encyclopedia, Feynman suggests creating plastic molds of
its miniaturized version so that copies could be easily produced for students and researchers all over
the world. George Whitesides’ nanostamping technology [8], in which silicone rubber is allowed to
cure on top of an already-produced nanostructure, is almost identical to Feynman’s vision.

While three-dimensional, high-density storage of the type Feynman envisioned when dis-
cussing his attempt to compress every known book into a single speck of dust has not been realized,
nanoscientists have managed to utilize three dimensions in the construction of nanostructures. Per-
haps the best known example of a three-dimensional nanostructure is the integrated circuit [11, 12].
Incorporating potentially thousands of transistors, resistors, capacitors, coils, and other electrical
components, integrated circuits require more space than the simple two-dimensional plane to be
realized.

Feynman’s suggestions about imaging in biology and chemistry have ultimately been realized
via the atomic force microscope [13], which routinely produces images of individual atoms [14].
The atomic force microscope can even be used to detect the atomic structure of molecules [15] and
move atoms around [16], allowing for the production of fully-synthetic molecules.1 Furthermore, his
ideas concerning the production of nanoscale computers and machines, particularly his comments
on nanostructure production via evaporation, have found life via the study of biological motors [17]
and the development of molecular beam epitaxy [18].

The techniques for producing nanostructures in today’s research environment are generally
divided into one of two categories. Top-down approaches, as the name suggests, involve the selective
removal of material from a surface until all that remains is the desired nanostructure [2]. On
the other hand, bottom-up approaches involve the use of chemical processes to deposit materials
sequentially on a surface, eventually building up a nanostructure layer by layer [2]. It is often easy
to think of top-down approaches like the work of a sculptor. The sculptor begins with a large
block of material and removes portions little by little until a masterpiece emerges. In contrast,
bottom-up approaches are similar to the work of a painter, who layers paint on a canvas until a
clear, structured image appears.

1
This method of molecule production is still nowhere near as efficient as typical chemical synthesis methods.
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While the methods generally classified as top-down approaches are especially diverse, most
laboratories use procedures that include similar steps. Almost every procedure includes an oxidation
step, in which a protective layer of silicon dioxide is placed on the surface of a silicon substrate.
During masking, photolithographic methods are used to etch features into the freshly deposited
silicon layer. With the desired features etched, thus exposing portions of the silicon substrate, the
implantation phase commences. In implantation, charged ions are delivered to the exposed portions
of the substrate. This leads to doping, which changes the exposed areas’ electrical properties relative
to the rest of the substrate. After implantation, etching occurs. During etching, the manufacturer
removes the protective silicon dioxide layer and any undesired potion of the silicon substrate.
Metallization involves the use of evaporative or electromechanical methods to deposit metals on the
surface of the nanostructure, allowing for electrical contacts to form between critical components.
Finally, manufacturers use lift-off to deposit a photoresist on the surface of the nanostructure,
which, when selectively cured and placed in a dissolving bath, allows for control over the selective
removal of material [2].

Well-established nanostructure production processes that make use of top-down approaches
include photolithography [19], electron beam lithography [2, 3, 4, 5], reactive ion etching [2, 6, 7],
molecular beam epitaxy [18], self-assembled masks [20], focused ion beam milling [21], and stamp
technologies [8]. Utilizing different combinations of the methods explained above, these manufac-
turing processes offer nanoscientists a high level of control over the nanostructure’s construction.

While each step of nanostructure production via top-down approaches is carefully controlled
by the experimenter, bottom-up approaches use a much more hands-off approach, in which the
random collisions of suspended particles facilitate the assembly of a structure. Using random
collisions as a means of assembly implies that bottom-up approaches rely heavily on the enthalpy
and entropy of the system. If the enthalpy is too low, the nanoparticles will not have enough energy
to (weakly) bond and form a structure. If the entropy is too low, incorrectly formed nanostructures
(often dubbed “erroneous” nanostructures in the literature) will be unable to disassemble, thus
ruining the sample. Conversely, if the entropy is too high, any correctly formed nanostructures will
be unstable. This instability will result in their quick dissolution [2].

Ideas from traditional chemical synthesis and techniques from contemporary experimental
chemistry are also important in bottom-up nanostructure production. For example, the theory of
chemical synthesis helps to predict the amount of reactants needed to drive an irreversible reaction.
Similar analysis helps nanoscientists determine the amount of nanostructure components to add
to a solvent to facilitate the self-assembly of a nanostructure. Concepts from surface chemistry
are also especially important in nanostructure production, as nanostructures commonly have high
surface to volume ratios, and their surface atoms are often unable to bond traditionally with atoms
of the same type [2].

Contemporary examples of bottom-up nanostructure production include organic synthesis
[22], vesicle [23] and micelle [24] production, self-assembled molecular monolayers [25, 26, 27],
kinetic control of growth [28, 29] (nanowire [30] and quantum dot [31, 32, 33] production), and
DNA nanotechnology [34, 35]. In each case, the nanoscientist sacrifices direct control over the
construction of the assembly in order to take advantage of self-assembling characteristics.
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1.2 Self-Assembly of Molecular Monolayers

One of the most versatile nanostructure production methods currently in use is the self-
assembly of molecular monolayers. This method, in which charged particles arrange themselves
into particle sheets of uniform thickness, is used to coat objects in nanoparticles, thus changing the
objects’ surface properties. For example, self-assembly of molecular monolayers has been used to
apply thin films to sheets of glass, thus producing the thin-film interference necessary for an anti-
reflective coating [36, 37, 38]. For the remainder of this thesis, we discuss self-assembly of molecular
monolayers in detail, in particular the experimental techniques necessary to produce high quality
monolayers. We also develop and evaluate modeling and simulation techniques designed to predict
monolayer properties before the assembly process begins.

A functional method of achieving self-assembly of molecular monolayers was first proposed by
Iler [25] in 1966. Building upon the work of Langmuir, whose 1941 patent [26] states that adsorbing
ions will form a single layer until every available occupation site is filled, Iler demonstrated how
particles of colloidal size can adsorb onto a surface of the opposite charge. Iler’s advancement was
particular important to nanoscience because most of the particles that scientists wish to employ in
the self-assembly process (e.g., SiO2, TiO2, etc.) are of colloidal size.

Iler’s method began with the selection of an assembly surface. While he stated that any
anionic surface is sufficient, his experiments made use of a sheet of clean, hydrophilic glass.2 The
siliceous nature of the glass ensured that it would remain anionic throughout the experiment. With
the assembly surface selected, Iler then coated it with a cationic layer. In his case, the cationic layer
was a 0.25% aquasol of colloidal boehmite alumina containing 5-6µm (diameter) fibrils of AlOOH.
He followed the cationic layer with a 2% aqueous sol of colloidal silica. Each silica particle was
essentially spherical with a diameter of approximately 100 nm. Attracted by the cationic aluminum
layer, the silica adsorbed onto the surface of the glass, forming a uniform layer, or thin film. Iler
found that, after rinsing the assembled layer of silica, he could repeat this process to form additional
layers. This permitted to creation of silica films of varying thicknesses.

Iler made two important observations while developing this assembly method. First, he noted
that the alternation of cationic and anionic layers was essential to the development of multiple layers
of silica. Silica attempting adsorption after a uniform layer had formed would be repelled by the
charge of already deposited silica. By placing an aluminum layer on top of the adsorbed silica, the
suspended silica would be attracted to the resulting cationic charge, thus permitting the formation
of an additional layer. Second, Iler observed that films with thicknesses over 50 nm would become
visible in reflected light. This visibility is due to the thickness of the film approaching the wavelength
of visible light.

Iler also noted a number of factors affecting the formation of layers. First, he found that
rinsing the sample with distilled water between the deposition of cationic and anionic layers was
essential to ensuring that the next layer would be uniform. Second, he observed that the concen-
tration of the cationic and anionic colloidal solutions used could also be important. As a general
rule, he suggested using concentrations less than 0.5% for small particles (defined as particles with
specific surface areas on the order of several hundred square meters per gram) and 3-5% for larger
particles (e.g., the 100 nm silica used in his experiment). Third, the pH of the solutions was criti-
cal. In particular, Iler found that the adsorption of this silica particles took place most efficiently
(i.e., rapidly and completely) in the low pH range (pH 2-4). Finally, suspensions that contained

2
Iler selected black-tinted glass to aid in the analysis of the optical properties of the assembled layers.
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supercolloidal aggregates or a gel phase would produce layers with significant irregularities. These
irregularities would often prevent the formation of a layer capable of producing interference, thus
rendering the layer invisible when observed under visible light.

Iler’s methods were built upon by Lvov, Ariga, Onda, Ichinose, and Kunitake [27] in 1997.
Using a quartz crystal microbalance (QCM), scanning electron micoscopy (SEM), and atomic force
micoscopy (AFM), their team completed more thorough analysis of monolayers produced using
Iler’s method.

In their experiments, Lvov et al. used poly(diallyldimethylammonium chloride) (PDDA),
sodium poly(styrenesulfonate) (PSS), and poly(ethyleneimine) (PEI) as their bonding agents. They
tested a variety of anionic nanoparticles, including silicon dioxide (SiO2), titanium dioxide (TiO2),
and cesium dioxide (CeO2). Their primary investigation involved the use of the quartz crystal
microbalance technique to detect changes in the mass of the assembly. This mass value could then
be converted into a measurement of the thickness (d) of the assembled layer. Their team was
interested in determining whether the thickness of the film increased linearly as additional particle
layers were deposited. For the particular QCM their team used, the change in quartz frequency
depended directly upon the mass (M) and inversely upon the surface area (A) of the sample:

∆F = (−1.83× 108)
M

A
. (1.1)

Furthermore, the sample thickness (d) was related to this frequency shift via

d (nm) = 0.022(−∆F (Hz)). (1.2)

Lvov et al. assembled a thin film layer by layer, measuring the change in frequency it produced
within the QCM after each layer (either cationic or anionic) had fully formed.3 Their results
demonstrated several interesting properties. First, the deposition of the bonding agent (PDDA,
PSS, PEI, etc.) contributed minimally to the thickness of the film. This behavior is shown by
the nearly constant ∆F at odd adsorption steps (see Figure 1.1). Meanwhile, the adsorption of
nanoparticles produced a consistent frequency shift, which corresponds to a consistent increase
in film thickness, no matter the layer being produced (see even adsorption steps in Figure 1.1).
Furthermore, the magnitude of the frequency shift (i.e., the magnitude of the increase in film
thickness) depended upon the the concentration of nanoparticles but not on the size of the particle
used (see Figure 1.2). Specifically, an increase in concentration corresponded to an increase in the
size of the growth step. These results were particularly significant because they indicated that
the experimenter can closely control the thickness of a film simply by determining the appropriate
concentration of particles and number of nanoparticle layers.

Lvov et al. also observed that SiO2, an anionic nanoparticle, could not adsorb onto the
anionic PSS bonding agent. Additionally, SiO2 could not be adsorbed onto another SiO2 layer
without first depositing a cationic bonding agent between the two layers. These results confirmed
Iler’s observation that the alternation of cationic and anionic layers is necessary for successful self-
assembly of molecular monolayers. The team also investigated a claim published in [39], which
stated that the rinsing of the sample between deposition steps would result in the desorption of
some of the colloidal particles. However, Lvov et al. found that their results were reproducible
regardless of the number of rinsing steps used. This result indicates that little to no desorption
occurs during rinsing.

3
They used a deposition time of around 15 minutes.
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Figure 1.1: Frequency shift in Lvov et al.’s quartz crystal microbalance per adsorption step for
several different particle suspension concentrations. The thickness of the adsorbed film varies
directly with the frequency shift. Notice that deposition of the bonding agent (odd adsorption
steps) produces minimal changes in frequency, while particle deposition (even adsorption steps)
increases the frequency at a consistent rate. (Reproduced from [27].)
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Figure 1.2: Frequency shift in Lvov et al.’s quartz crystal microbalance versus particle size for
several different particle suspension concentrations. Notice that the frequency shift, and, conse-
quently, the film thickness, depends upon nanoparticle concentration but not nanoparticle size.
(Reproduced from [27].)
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1.3 Applications of Self-Assembly

Self-assembling nanoparticles play an important role in a variety of engineering applications.
Perhaps the most direct application of self-assembled bilayers is the production of anti-reflective
coatings [40]. In an anti-reflective coating, light is incident upon two surfaces. The first is the surface
of a thin-film (the coating), and the second is the surface of the coated substrate. At each point
of incidence, some of the light refracts while the remainder reflects. We depict this arrangement
in Figure 1.3. An anti-reflective coating exploits the physical geometry of the thin film and the

Figure 1.3: The ray diagram for an anti-reflective coating. When the width of the thin film is an
integer multiple of λ/4, the path length difference between the beam that reflects off the thin-film
(R1) and the beam that reflects off the glass surface (R2) is an integer multiple of λ/2. This
produces a π-phase shift, which results in destructive interference. Thus, no light reflects, and all
the electromagnetic energy passes through the glass.

difference between the indices of refraction of the film and substrate to cause one of the reflected
light rays of experience a π-phase shift with respect to the other.4 This produces destructive
interference between the two reflected beams, which, in turn, prevents light from reflecting off of
the coated material. Therefore, all of the incident light passes through the coated material. Anti-

4
A π-phase shift corresponds to an optical path length difference which is an integer multiple of λ/2, as we show

in Figure 1.3.
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reflective coatings are often applied to eyeglasses, increasing the amount of light that can pass
through the glass and reducing glare. As described in [36, 37, 38], bilayers of silica and cationic
macromolecules (like PDDA) can be used to produce anti-reflective coatings, with the number of
bilayers applied and layer separation affecting the reflectance.

Another application of nanoparticle assembly is drug delivery. As explained in [41], nanopar-
ticles are often used to protect drug molecules until they reach a particular part of the body,
creating a type of targeted drug delivery. This process is often completed using dendrimers, or
tree-like assemblies of nanoparticles. Figure 1.4 is a geometric diagram of a dendrimer. Notice

Figure 1.4: A geometric diagram of a dendrimer used for drug encapsulation. The white circles
are nanoparticles which self-assemble in a branching pattern. The solid black lines indicate weak
bonds between nanoparticles. The gray octagons are drug molecules. The drug molecules sit in
openings between the branches known as dendric boxes. When the dendrimer reaches the intended
target, the branches open, releasing the drug molecules. (Reproduced from [41].)

how the nanoparticles (white circles) form branches, which enclose cavities called dendric boxes
that hold the drug molecules (gray octagons). When the dendrimer reaches the targeted area,
the branches open, destroying the dendric boxes and releasing the drug molecules. [42] provides a
description of one investigation which uses self-assembling particles in this way.

In electrical engineering, nanoparticle self-assembly serves as an important tool in the de-
velopment of nano-scale circuitry. [43] describes the use of self-assembly techniques to arrange
electrochemically synthesized nanowires into viable electrical circuits. Nano-scale circuits, whether
constructed using more traditional top-down approaches or via bottom-up approaches like stochas-
tic assembly, have made possible massive advances in computing capabilities. For this reason, we
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anticipate further work in this area.

Finally, nanoparticle self-assembly also facilitates more controlled nano-construction tech-
niques like nanoprinting. As explained in [44], nanoprinting via self-assembly allows scientists to
easily copy complicated nanostructures. In many cases, these techniques permit construction times
that are far less than required by more traditional techniques, including electron beam lithography
and scanning probe lithography. Nanoprinting’s ability to revolutionize the reproducibility of more
complicated structures makes this a particularly active area of research.

1.4 Imaging Techniques

1.4.1 Scanning Electron Microscopy (SEM)

Scanning electron microscopy [2], the primary technique used throughout our investigation
for the imaging of nanoparticle monolayers, is a class of experimental methods which use the wave-
like properties of electrons to produce an image, just as the wave-like properties of photons are
used to produce an image in an optical microscope. SEM was pioneered by Ernst Ruska [45], who
in 1931 demonstrated that the image of a grid could be magnified if the grid were placed after a
converging electron beam’s focal point. Ruska’s work noted that the magnification m produced by
his electron beam behaved according to the rules of geometric optics, which state that

m = −s
′

s
, (1.3)

where s′ is the image distance (the distance between the lens and the image) and s is the object
distance (the distance between the sample and the lens) [2]. Optical microscopes are limited by the
finite wavelength of a photon (i.e., the cannot image any object that is smaller than the wavelength
of light used to illuminate it). This same limitation exists for electrons, which according to de
Broglie, also have an associated wavelength λ. However, de Broglie’s formula

λ =
h

mv
, (1.4)

where λ is the wavelength of the particle, h is Planck’s constant, m is the particle mass, and v is
the magnitude of the particle velocity, predicts that electrons (moving at speeds typical of those
that can be produced in an electron microscope) possess wavelengths anywhere from 0.08 Å to 0.03
Å. With most atoms having radii on the order of a few angstroms, these values indicate that SEM
techniques can, in principle, achieve atomic resolution. For imaging on the nanoscale, SEM is more
than sufficient.

Most SEM imaging is achieved according to the following method [2]. First, an electron
beam is produced using either thermionic emission or field emission. In thermionic emission (the
method used by our SEM), a filament is heated, increasing the energy of internal electrons until
they overcome an energy barrier, denoted by a work function φ (see Figure 1.5) [12]. Electrons
that have overcome this energy barrier can then be collected into an electron beam. The current
density of the produced electron beam is given by Richardson’s law

J =
4πme

h3 (kBT )2exp

(
− φ

kBT

)
, (1.5)
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Figure 1.5: Electron beam production via thermionic emission. When the filament is heated,
electrons are excited over the energy barrier, which is indicated by the work function φ.

where m is the mass of an electron, e is the fundamental charge, h is Planck’s constant, kB is
Boltzmann’s constant, T is the temperature of the filament, and φ is the work function of the
filament [2]. Alternatively, in field emission, a strong external electric field is used to encourage the
electrons in a source material to tunnel through the energy barrier (see Figure 1.6) [12]. For this

Figure 1.6: Electron beam production via field emission. Under the influence of a strong electric
field, electrons in the filament are encouraged to tunnel through the energy barrier, indicated by
the work function φ.

method, the current density of the produced electron beam is proportional to the tunneling rate,
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given by the Fowler-Nordheim equation

J ∝ E2exp

(
− 4
√

2m

3e~
φ3/2

E

)
, (1.6)

where E is the magnitude of the electric field used to induce tunneling, m is the mass of the electron,
e is the fundamental charge, ~ is the reduced form of Planck’s constant, and φ is the work function
of the source material [2]. While thermionic emission is more typical, field emission is capable of
higher resolution due to a higher consistency in electron wavelength. Furthermore, the aberrations
in electron lenses have less of a negative effect on an electron beam produced via field emission
than a beam produced via thermionic emission.

After a beam of electrons has been produced, a series of magnetic lenses are used to focus
the beam on the surface of the sample. The path of an electron deflected by electric and magnetic
fields is given by

m
d2r

dt2
= −ev ×B − eE, (1.7)

where m is the mass of the electron, r is the electron’s position vector, e is the fundamental charge,
v is the velocity of the electron, B is the magnetic field vector, and E is the electric field vector.
This equation predicts a motion similar to that depicted in Figure 1.7, which shows a series of two
magnetic lenses being used to focus a diverging electron beam originating at point O onto an image
plane at point I. The vector product between v and B forces the electrons to spiral around the
magnetic field [2].

Figure 1.7: Electron beam focusing via magnetic lensing. The two electromagnets, M1 and M2,
cause the beam originating at point O to focus at point I.

Once the beam has been focused into a small spot on the sample, magnetic deflection of
the beam is used to raster across the sample’s surface. The image is then produced in one of
several ways, all of which depend upon the interaction between the electron beam and the sample
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at their point of contact. For especially thin samples, the electrons striking the surface are collected
directly using a sensor placed below the sample. In this scenario, often called scanning transmission
electron microscopy (STEM), the transmitted current is used to produce the image. Thicker samples
often rely upon the collection of elastically backscattered electrons, or even inelastically scattered
electrons. SEMs that can achieve especially high electron beam energies can even excite and detect
X-ray emissions from the electrons in the sample [2].

1.4.2 Atomic Force Microscopy (AFM)

Another emerging method for the imaging and manipulation of nanoscale structures is atomic
force microscopy (AFM). Developed by Binnig, Quate, and Gerber [13] in 1986 to address several
limitations of scanning tunneling microscopy (another imaging method), AFM measures the deflec-
tions of a cantilever tip to produce a reliable image of a surface. Advantages of this method include
the ability to directly manipulate atoms or molecules on a sample as well as the option of producing
three dimensional images and sample height profiles. AFM techniques are also commonly used to
measure the electrical properties of samples.

As depicted in Figure 1.8, AFM imaging begins with a laser source, which reflects off of a
cantilever arm and is detected by a two segment photodiode. As the cantilever arm rasters across

Figure 1.8: The AFM detection process. A laser beam bounces off of a cantilever arm, which is
deflected by atoms on the surface of the sample. A two-segment photodiode collects the reflected
light, using the quotient of the difference and sum of the two photodiode currents to calculate the
arm’s deflection. The AFM combines deflection information obtained from across the sample to
produce an image.

the sample, atoms within the sample deflect the tip, causing the entire cantilever arm to vibrate at
a frequency given by

f0 =
1

2π

√
k

m
, (1.8)

where k is the effective spring constant of the arm and m is its mass. The image is ultimately
produced using information about the deflection of the cantilever arm (δz), which is proportional
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to the quotient of the difference and sum of the two photodiode currents (iA and iB):

δz ∝ iA − iB
iA + iB

. (1.9)

AFM can be performed in several different modes, including contact mode, in which the tip is
allowed to make direct contact with the sample, non-contact mode, in which the tip is held a set
distance above the sample and deflected by electrostatic repulsion, and vibrating mode, in which
the tip is allowed to vibrate on top of the sample [2].
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Chapter 2

Self-Assembly under No External
Field (ISAM)

2.1 ISAM Overview

Building on the work of Iler and Lvov, our models, simulations, and experiments concern thin
films constructed from uniform layers of nanoparticles. To produce these layers, we use the ionic self-
assembly of monolayers process (ISAM). Figure 2.1 details the ISAM process when used to adhere
negatively charged particles to a flat glass surface such as a microscope slide. Due to the presence

Figure 2.1: The standard ISAM process for negatively charged nanoparticles, in which a clean slide
with a slight negative charge becomes positively charged due to exposure to a polycationic sus-
pension. The positively charged slide then enters the nanoparticle suspension, where nanoparticles
self-assemble on its surface according to electrostatic forces. (Reproduced from [41, 46].)

of silica in glass, the surface of any standard glass slide immersed in water has an innate negative
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charge [47]. This is indicated by the negative signs on the surface of the Clean Slide in Figure
2.1. We first dip the slide in a suspension of poly(diallyldimethylammonium chloride) (PDDA),
which is a standard polycation. Its positively charged molecules easily adhere to the surface of the
negatively charged slide, forming a single monolayer of positively charged ions. This is indicated
by the positive signs on the Polycation Monolayer Slide shown in Figure 2.1. After producing the
polycation monolayer, we then dip the slide in a suspension of silicon dioxide (SiO2) nanoparticles,
which is anionic. Thus, the electrostatic forces present between the cationic PDDA and the anionic
SiO2 cause the SiO2 to adhere to the surface of the slide. We now have a single bilayer formed from
individual monolayers of PDDA and SiO2, as indicated by the Polycation/Anion Bilayer Slide in
Figure 2.1. By repeating the ISAM process, we can produce thin films with any number of bilayers.

2.2 CSAE Modeling Techniques and Results

Physicists and engineers naturally desire a means of predicting the properties of a film pro-
duced via ISAM. For this purpose, a variety of techniques have been developed using principles
from statistical physics to model the nanoparticle assembly process. By connecting the assembly
process to emergent properties such as particle coverage density, it is possible to accurately predict
the optical properties of a thin film produced via ISAM.

One of the primary modeling techniques for nanoparticle assembly is the use of a cooperative
sequential adsorption with evaporation (CSAE) model [41, 48]. CSAE models imagine the assembly
surface as a grid, as shown in Figure 2.2. Each location on the grid is called a site and is indicated

Figure 2.2: A square grid of the type used in CSAE modeling. Black squares indicate occupied
sites (ni = 1), while white squares indicate unoccupied sites (ni = 0). (Reproduced from [41].)

mathematically by a site number i. Each site can exist in one of two states, indicated by a state
value ni. Sites that contain particles (colored black in Figure 2.2) are considered occupied and are
denoted mathematically by ni = 1. Sites that do not contain particles (colored white in Figure 2.2)
are considered unoccupied and are denoted mathematically by ni = 0. Sites transition between
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states according to a transition rate c(ni → (1−ni)). The rules of the transition rate depend upon
the particular CSAE model used. CSAE models differ in their complexity, which corresponds to
the amount of physical detail they encompass. Our work considers two different CSAE models:
the total lattice model (CSAE-TL) and the nearest neighbors model (CSAE-NN). We consider the
construction and use of each model in detail in the following sections.

2.2.1 CSAE-TL

The transition rate for the CSAE-TL model [41] is given in Equation (2.1):

cTL(ni → (1− ni)) = niγ + µ(1− ni)

(
1−

∑n
i=1 ni
N

)
. (2.1)

When a site is occupied (i.e., ni = 1), the first term, niγ, is active. This term is called the
evaporation term because it allows the particle to detach from the surface of the slide (a transition
cTL(1 → 0)) with a probability γ ∈ [0, 1]. For this reason, γ is called the evaporation coefficient.

When a site is unoccupied (i.e., ni = 0), the second term, µ(1 − ni)

(
1 −

∑n
i=1 ni

N

)
, is active.

This term is called the deposition term because it allows a particle to attach to the surface of
the slide at the unoccupied site (a transition cTL(0 → 1)). The probability of deposition relies
upon the deposition coefficient µ ∈ [0, 1]. Unlike the evaporation coefficient γ, µ changes as the
number of particles on the slide changes. This behavior is important because charged nanoparticles
experience electrostatic repulsion when in proximity to one another. The CSAE-TL model considers
the previously deposited particles as one single charge screen (see Figure 2.3). Thus, the probability

Figure 2.3: The total-lattice approach to CSAE. The left grid has a low occupation number. The
resulting electrostatic force (Felectrostatic) is weak, allowing the particle to easily deposit onto the
grid. The right grid has a high occupation number. The resulting electrostatic force (Felectrostatic)
is strong, making particle deposition more difficult.
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of deposition, which begins at µ when no particles have been deposited, decreases as the fraction

of occupied sites
∑n

i=1 ni

N increases. (N indicates the total number of sites on the lattice.)

While the CSAE-TL model fails to account for the distribution of charge on the surface of
the slide, it produces an analytically solvable equation for steady state particle coverage density.
This makes the CSAE-TL modeling method particularly useful in situations where exact charge
distribution detail is not necessary or when numerical solution methods are not available.

Converting the CSAE-TL transition rate into an equation for coverage density requires the use
of mean field theory, a collection of approximative methods from statistical physics (see Appendix
A for more detail). By assuming that edge effects are negligible in the interior of the slide and
that particles tend to distribute themselves evenly across the slide, we reason that particle coverage
density, ρ, does not depend upon location on the slide. Thus, mean field theory’s assumption that
each site will have approximately the same number of occupied neighbor sites and feel the same
effect is valid. This allows us to replace the local ‘field’ felt by each particle with an overall mean
field that is felt by the entire lattice.

Mathematically, we use the mean field approximation as follows. We begin with the partial
differential equation

∂〈ni〉
∂t

= −γ〈ni〉+ µ

〈
(1− ni)

(
1−

∑n
i=1 ni
N

)〉
(2.2)

where 〈ni〉 indicates the mean individual site occupation. Because we assert that neighboring
sites are uncorrelated, we can assume that the ensemble average of nearest neighbor correlations is
approximated by the product of the mean individual site occupations. Mathematically, this means
that

〈ninj〉 = 〈ni〉〈nj〉, (2.3)

where ni and nj are any two neighboring sites. This equality reduces our equation as follows:

∂〈ni〉
∂t

= −γ〈ni〉+ µ(1− 〈ni〉)

(
1−

∑n
i=1 〈ni〉
N

)
. (2.4)

Technically, each site ni has a different rate equation like the one expressed in Equation (2.2).
However, if we assume every site is relatively the same, we can reason that

〈ni〉 = 〈n〉. (2.5)

This assumption removes the site-specific nature of our rate equations, allowing us to apply the
same equation for all sites. Finally, we define particle density ρ as

ρ =

∑
〈ni〉
N

. (2.6)

This gives us the following partial differential equation for particle coverage density:

∂ρ

∂t
= −γρ+ µ(1− ρ)2. (2.7)
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Figure 2.4: The numerical solution to our CSAE-TL model (Equation (2.7)) when γ = µ = 0.5.
Notice that the particle coverage density ρ increases rapidly until reaching a steady state of ρs ≈
38.2%.

Equation (2.7) suggests that ρ changes over time. Using the odeint function from Python’s
SciPy package (see Appendix B.1 for a description of odeint and Appendix C.1 for a detailed look
at our program), we can produce plots depicting the coverage density over time. Figure 2.4 is an
example of such a plot. In this case we use γ = µ = 0.5. Notice how the particle coverage density
(which we have denoted as a percentage of slide area) rapidly increases until a steady state is
achieved. The particle coverage density at steady state ρs can be easily calculated without the use
of numerical solving methods like odeint by simply setting ∂ρ

∂t = 0 in Equation (2.7) and solving
for ρ:

ρs =
2µ±

√
γ(4µ+ γ) + γ

2µ
. (2.8)

When γ = µ = 0.5, we calculate ρs ≈ 38.2%, which matches the steady state achieved in Figure
2.4.1

Figures 2.5 and 2.6 show how ρs varies as γ and µ change, respectively. From these plots, we
make three primary observations. First, the steady state coverage density ρs decreases steadily as
the evaporation coefficient γ increases. This mathematical behavior mirrors what we would expect
physically: a higher chance of particle detachment corresponds to a lower steady state coverage
density. Second, ρs increases as the deposition coefficient µ increases. This result also makes sense
physically, as a higher likelihood of particle deposition should correspond to a higher steady state

1
The second solution, ρs ≈ 262% is discarded because it describes a non-physical scenario.
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Figure 2.5: The γ response of steady state particle coverage density calculated using our CSAE-TL
model. Notice that a higher γ value corresponds to a lower ρs value. Also notice that changing µ
alters the value of ρs but not the shape of the response curve.

Figure 2.6: The µ response of steady state particle coverage density calculated using our CSAE-TL
model. Notice that a higher µ value corresponds to a higher ρs value. Also notice that changing γ
alters the value of ρs but not the shape of the response curve.
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coverage density. Third, we note that the slopes of the curves in both Figure 2.5 and Figure 2.6
are steeper for lower values of γ and µ, respectively. This non-linear behavior indicates that small
changes in γ or µ have a greater impact when these values are lower on the lower end of their
domain than when they are on the higher end.

2.2.2 CSAE-NN

The transition rate for the CSAE-NN2 model [41, 48] is given in Equation (2.9):

cNN (ni → (1− ni)) = niγ + (1− ni)αβ
η. (2.9)

When a site is occupied (i.e., ni = 1), the first term, niγ, is active. Like in the CSAE-TL model, this
term is called the evaporation term because it allows the particle to detach from the surface of the
slide (a transition cTL(1→ 0)) with a probability γ ∈ [0, 1]. For this reason, γ is once again called
the evaporation coefficient. When a site is unoccupied (i.e., ni = 0), the second term, (1−ni)αβ

η, is
active. This deposition term allows a particle to attach to the surface of the slide at the unoccupied
site (a transition cTL(0 → 1)); however, it functions quite differently from the deposition term
found in the CSAE-TL model. The probability of deposition is now governed by three different
parameters: α, β, and η. α ∈ [0, 1] describes the probability of deposition when no nanoparticles
are present on the slide surface. Like the decrease from µ in the CSAE-TL model, the probability of
deposition will decrease from α as more particles occupy the slide. However, the CSAE-NN model
takes a more detailed approach, decreasing the deposition probability from α according to the
number of deposited particles neighboring the site in question (hence the nearest neighbors model
name). This approach ensures that local variations in the electrostatic force created by previously
deposited nanoparticles are taken into account (see Figure 2.7). Two parameters are needed to
describe this variable deposition probability. β ≥ 0 describes the strength of the electrostatic force
which causes individual SiO2 particles to repel one another. η =

∑
j∈NN nj quantifies the number

of sites neighboring site ni. As the number of occupied neighboring sites increases, the strength of
electrostatic repulsion increases exponentially. Thus, the CSAE-NN model describes a scenario in
which particle deposition becomes increasingly difficult as a particular region of the slide becomes
more occupied with nanoparticles

Like with the CSAE-TL model, the transition rate for the CSAE-NN model can be converted
into a partial differential equation describing the change in particle coverage density over time. Once
again, the mean field approximation is integral to this conversion. We begin with the following rate
equation:

∂〈ni〉
∂t

= −γ〈ni〉+ 〈(1− ni)αβ
η〉. (2.10)

Because the application of mean field theory allows us to approximate the correlations between
neighboring sites as

〈ninj〉 = 〈ni〉〈nj〉, (2.11)

Equation (2.10) reduces to

∂〈ni〉
∂t

= −γ〈ni〉+ (1− 〈ni〉)α〈β
η〉. (2.12)

2
As a reminder to the reader, CSAE-NN stands for cooperative sequential adsorption with evaporation using the

nearest neighbors approach.
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Figure 2.7: The nearest neighbor approach to CSAE. The depositing particle on the left experiences
a weak electrostatic force (Felectrostatic) since few particles are in that region of the grid. Thus,
it may deposit easily. The depositing particle on the right experience a strong electrostatic force
(Felectrostatic) since many particles already occupy that region of the grid. This makes deposition
more difficult.

By performing a Taylor series expansion on 〈βη〉, we can show that, to a first approximation,

〈βη〉 = β〈η〉:

〈βη〉 = 〈eηlnβ〉 =
〈
1 + ηlnβ +

1

2
(ηlnβ)2 + · · ·

〉
(2.13)

= 1 + 〈η〉lnβ +
1

2
〈η2〉ln2β + · · · (2.14)

= 1 + 〈η〉lnβ +
1

2
〈η〉2ln2β + · · · (2.15)

= e〈η〉lnβ (2.16)

= β〈η〉. (2.17)

Equation (2.12) now becomes

∂〈ni〉
∂t

= −γ〈ni〉+ (1− 〈ni〉)αβ
〈η〉. (2.18)

Like with the CSAE-TL model, we eliminate the need for site-specific equations by assuming that
〈ni〉 = 〈n〉. For the CSAE-NN model, this also means that 〈η〉 = z〈n〉, where z is the mean number
of the nearest neighbors for each site.3 Defining the particle coverage density ρ once again as

ρ =

∑
〈ni〉
N

, (2.19)

3
For a square lattice, z = 4.
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we arrive at

∂ρ

∂t
= −γρ+ (1− ρ)αβzρ. (2.20)

Using odeint, we can produce plots describing the numerical solution to Equation (2.20).
Figure 2.8 is an example of such a plot, produced when α = γ = 0.5, β = 1, and z = 4. Once again,

Figure 2.8: The numerical solution to our CSAE-NN model (Equation (2.20)) when α = γ = 0.5,
β = 1, and z = 4. Notice that the particle coverage density ρ increases rapidly until reaching a
steady state of ρs ≈ 50%.

the coverage density increases rapidly until steady state is achieved. Unlike with the CSAE-TL
model, however, the CSAE-NN model does not have an analytic solution for the coverage density
at steady state ρs. This does not mean that an analytic approximation is not possible. To find
such an approximation, we begin by setting ∂ρ

∂t = 0 in Equation (2.20):

0 = −γρs + (1− ρs)αβ
zρs . (2.21)

This yields the transcendental equation

ρs =
αβzρs

γ + αβzρs
. (2.22)

This equation can be solved graphically. Analytically, however, we can take the Taylor series
expansion about β = 1:

ρs = ρs(β = 1) + (β − 1)
∂ρs
∂β

∣∣∣∣
β=1

+ · · · . (2.23)
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In our approximation, we keep only the constant and linear terms. If we assume that ρs(β = 1) =
α

γ+α , we arrive at

ρs =
α

γ + α
− (1− β)

[
4

(
α

γ + α

)2(
1− α

α+ γ

)]
. (2.24)

For our example, Equation (2.24) predicts a particle coverage density of ρs ≈ 50%, which is ap-
proximately the same as the steady state predicted by our numerical solution (Figure 2.8).

Figures 2.9 and 2.10 demonstrate how ρs changes as γ and β change, respectively. Like with

Figure 2.9: The γ response of steady state particle coverage density calculated using our CSAE-NN
model. Notice that a higher γ value corresponds to a lower ρs value. Also notice that changing
β alters the value of ρs but not the shape of the response curve for β ≤ 1. When β > 1 (e.g.,
the orange curve) the ρs response exhibits a maximum. The orange (β = 2.0) curve represents an
over-packing scenario, which occurs when previously deposited particles attract particles that have
not yet been deposited.

Figures 2.5 and 2.6, these plots show a decrease in particle coverage density ρs as the evaporation
coefficient γ increases. Conversely, ρs increases as the deposition coefficient β increases. These
results mirror our physical expectation, as a higher evaporation tendency should reduce the slide’s
coverage density while a higher deposition tendency should increase coverage density.

In Figure 2.9 we include an extra curve plotted when β = 2.0. This helps to demonstrate the
physical correspondence of the β factor and its distinction from α. While α describes the probability
of particle deposition before any particles have attached to the slide (identical to µ in the CSAE-
TL model), β describes the interactions between particles on the slide and particles attempting to
deposit. If β < 1 (red, green, and blue curves in Figure 2.9), particles present on the slide repel
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Figure 2.10: The β response of steady state particle coverage density calculated using our CSAE-
NN model. Notice that a higher β value corresponds to a higher ρs value. Also notice that changing
γ alters the value of ρs but not the shape of the response curve. The response curves are linear
because we only include the first two terms in our Taylor series expansion.

depositing particles, with values closer to β = 1 corresponding to a lower repulsive force. If β = 1,
there is not interaction between particles on the slide and depositing particles. Finally, if β > 1
(orange curve in Figure 2.9), particles on the slide attract depositing particles. This attraction not
only allows a coverage density greater than 100%, a scenario we call over-packing, but also produces
a maximum particle coverage density. While the particles used in our experiment do not exhibit
β > 1 behavior, the model remains significant in several other applications, including extensions to
voter models and other scenarios investigated in the social sciences.

Of note in Figure 2.10 is the linear behavior. This is the result of our use of only the constant
and linear terms in our Taylor series approximation for ρs. We will discuss the limits of including
only these terms in Chapter 4, where we compare our model and simulation results.

2.3 Simulation Techniques and Results

The use of the mean field approximation to convert our CSAE-TL and CSAE-NN transition
rates into numerically solvable partial differential equations for particle coverage density depends
upon several assumptions. Perhaps the most important is the supposition that each constituent
particle experiences the same overall average electric field (i.e., a mean field). To verify this method,
we must compare our models’ results to experimental data. As we will explore in Chapter 2.4,
physical samples of nanoparticle bilayers produced via ISAM are necessarily time consuming to
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produce. Thus, one efficient way to test the validity of our use of the mean field approximation is
via computer simulation.

As originally published in [46], we produce two Python simulations of the ISAM process, one
that performs site transitions according the CSAE-TL transition rate (Equation (2.1)) and one that
performs site transitions according the the CSAE-NN transition rate (Equation (2.9)). The syntax
governing each Python program is shown in detail in Appendix C.3. Here, we discuss the general
methodology surrounding our simulation technique, which is based on the ubiquitous Monte Carlo
method.

Throughout our simulation efforts, we attempt to replicate attachment and detachment on a
slide with (m×n) attachment sites. Each simulation begins by collecting values for the appropriate
evaporation and deposition coefficients (γ, µ, α, β, η, etc.). The program then creates an (m+ 2×
n+ 2) matrix:

D =


d0,0 d0,1 · · · d0,n d0,n+1

d1,0 d1,1 · · · d1,n d1,n+1
...

...
. . .

...
...

dm,0 dm,1 · · · dm,n dm,n+1

dm+1,0 dm+1,1 · · · dm+1,n dm+1,n+1

 . (2.25)

The entries found in submatrix

Dsub =

d1,1 · · · d1,n
...

. . .
...

dm,1 · · · dm,n

 (2.26)

represent the sites (ni) found on the simulated slide. Meanwhile, the exterior entries {d0,0, d0,1, · · · ,
d0,n, d0,n+1}, {dm+1,0, dm+1,1, · · · , dm+1,n, dm+1,n+1}, {d0,0, d1,0, · · · , dm,0, dm+1,0}, and {d0,n+1,
d1,n+1, · · · , dm,n+1, dm+1,n+1} represent nanoparticles within the SiO2 suspension that are in the

same plane as the surface of the slide.4

Before simulation begins, every entry in Dsub is assigned a value 0, while every exterior entry
is assigned a value of 1. This attempts to replicate the initial state of the system: when the slide is
exposed to the nanoparticle suspension, it is completely unoccupied (every entry di,j = 0), while, to
a first approximation, the suspension is concentrated enough to be completely occupied (every site
in the suspension holds a value of 1). Before every simulated time step, the program first sets every
exterior entry to a value of 1.5 It then cycles through every entry in Dsub. At each entry, it first
generates a random number R ∈ [0, 1]. Next, it determines whether the entry is occupied (di,j = 1)
or unoccupied (di,j = 0). Then, using the appropriate evaporation and deposition coefficients and
either the CSAE-TL or CSAE-NN transition rate, the simulation calculates a value P ∈ [0, 1].
When P ≤ R, the site changes state, representing either evaporation or deposition depending on
its original state. When P > R, the site maintains its original state. At the end of each time step,
the simulation program calculates the simulated slide’s coverage density by dividing the number of
occupied entries in Dsub by the total number of entries in Dsub.

4
While tracking nanoparticles from the suspension which occupy the same plane as the slide is not particularly

important when simulating ISAM, it becomes especially important in our simulations of nanoparticle assembly under
parallel electric fields (Chapter 3.3). For this reason, we include these elements in our simulation.

5
Again, this becomes important under parallel electric fields, when the exterior entries can change state. We

assume that the suspension is concentrated enough to ensure that there is always a nanoparticle available on the
exterior of the slide.
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Our simulations produce several different outputs. The first is a plot of the coverage density
versus time step, an example of which is shown in Figure 2.11. Notice how the shape of this

Figure 2.11: Particle coverage density for a (100×100) grid produced using our simulation method
with the CSAE-NN transition rate. Notice the rapid approach of steady state, just as predicted by
our CSAE-NN model. (Reproduced from [46].)

simulation output is similar to the shape of the numerical solutions we produced using our mean field
approximation-derived rate equations. The slide’s particle coverage density rapidly increases until
steady state is achieved. However, the steady state in the simulation result shows a slight variance
around an average steady state value. This presumably indicates that the simulation is better
at demonstrating small fluctuations in particle coverage density as evaporation and deposition
continue to occur on the slide’s surface after steady state has been achieved.

The second output type is a static image of the slide’s state at the end of any time step.
These images are produced using MatPlotLib’s imshow function, which converts entries in a matrix
into an image. Figure 2.12 is an example of one of these images. The blue cells represent sites that
are occupied by a nanoparticle (di,j = 1), while the white cells represent unoccupied sites (di,j = 0).
Note that, like with the matrix D, only the interior cells represent the slide’s surface. The exterior
cells (all blue/occupied in our example image) represent particles in the suspension.

The third output type is an animation showing how the slide’s occupation state changes
over time. We produce this animation using the ArtistAnimation function from MatPlotLib’s
animation class. While this method is described in more detail in Appendix C.5, we note here that
the function simply collects individual static images and plays them in succession. Thus, by pro-
ducing a static image of the simulated slide’s state at the end of each time step, ArtistAnimation
allows us to easily produce an animation of the entire adsorption process. An example of one of
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Figure 2.12: A sample (20 × 20) grid produced via a simulation of the CSAE-NN transition rate.
Notice that all sites on the outer edges (the suspension) are occupied (blue), while internal sites
(the slide surface) are either occupied or unoccupied (white). (Reproduced from [46].)

our animations can be found at https://youtu.be/nQiVCYc1epk.

Figures 2.13 and 2.14 demonstrate how the steady state particle coverage density ρs changes
as γ and µ vary for our simulation of the CSAE-TL model, while Figures 2.15 and 2.16 demonstrate
how ρs changes as γ and β vary for our simulation of the CSAE-NN model. We carried out all
simulations on a 100×100 grid over 1000 time steps. In Chapter 4, we compare in detail the results
of our models (Figures 2.5 - 2.6 and 2.9 - 2.10) and our simulations.
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Figure 2.13: The simulated γ response (points) overlaid with the model-predicted γ response
(curves) for CSAE-TL.

Figure 2.14: The simulated µ response (points) overlaid with the model-predicted µ response
(curves) for CSAE-TL.
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Figure 2.15: The simulated γ response (points) overlaid with the model-predicted γ response
(curves) for CSAE-NN.

Figure 2.16: The simulated β response (points) overlaid with the model-predicted β response
(curves) for CSAE-NN.
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2.4 Experimental Techniques and Results

Using ISAM to produce thin films in the laboratory setting is a time consuming process.
Before sample production, we first prepare suspensions of PDDA and SiO2 nanoparticles by mix-
ing stock suspension with de-ionized (DI) water. We determine the ideal concentration for each
investigation via a series of qualitative experiments, in which we image samples produced using
a wide variety of PDDA and SiO2 concentrations. We select the combination of concentrations
which result in the most uniform distribution of particles. We allow every suspension to stir for at
least 24 hours before deposition. This stirring helps to ensure a uniform distribution of the stock
(solute-like material) throughout the DI water (solvent-like material).

After preparing our suspensions, we clean our glass microscope slides using the Acetone-
Methanol-Isopropol Alcohol (AMI) method [49]. We place each slide in a staining jar filled with
acetone and allow it to soak under sonication for five minutes. We then move the slides to a staining
jar filled with methanol for another five minutes of sonication, followed by a staining jar of isopropol
alcohol for yet another sonication cycle. The now-cleaned slides finally move to a DI water bath,
where they remain until they are dried under a gentle flow of N2 gas. Drying under a flow of N2

gas prevents spotting, as well as the introduction of dust particles from the atmosphere.

Sample production then proceeds as follows: for each sample, we fill one staining jar with
unused PDDA suspension, one with unused SiO2 suspension, and two with unused DI water. We
dip a cleaned slide in the PDDA suspension, allowing it to soak. We then quickly move the slide to
one of the two DI water jars, where we gently stir it. Following this rinsing step, we dip the slide
in the SiO2 jar, where it again soaks. We rinse the slide in the remaining DI water jar, leaving it
in the DI water until we are ready to dry the sample under a gentle flow of N2 gas. As during the
cleaning procedure, the N2 gas prevents spotting as well as the deposition of particulates from the
atmosphere. Figure 2.1 shows this process schematically. The time periods used for each dipping
and rinsing step vary depending upon the requirements of each investigation.

Determining the steady state particle coverage density of each sample requires the production
of several images of the sample’s surface. Throughout our investigation, we use scanning electron
microscopy (SEM) as our imaging method of choice. SEM requires conductive samples. Therefore,
before we image our samples, we first coat them in gold using a Cressington 108 plasma sput-
ter coater. Under vacuum, the sputter coater bombards a thin sheet of gold with argon atoms,
producing a plasma which uniformly coats the sample.

We coat each of our samples two times for one minute. We find that this coating procedure
produces clear, analyzable SEM images of our particles. We use carbon tape to mount the sample
onto the SEM stage, ensuring that a portion of the tape wraps around to the surface we intend to
image. Wrapping the tape onto the imaging surface provides a conductive path for electrons that
often build up on the surface of the slide. This buildup of electrons, often called “charging” of the
sample, reflects electrons released from the SEM’s electron gun, obscuring the image.

We image each gold coated sample using a EVO MA-15 scanning electron microscope, man-
ufactured by Zeiss. Our images are produced via the detection of secondary electrons in a high
vacuum. In particular, we use the specifications listed in Table 2.1. To ensure that we capture
a representative sample of particle coverage densities across the entire slide, we often perform a
stratified random sample, in which we divide the slide into 16 individual strata and use a random
number generator to determine which strata to image.
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SEM Setting Value

EHT Target 20.00 kV

Aperture Size 20.00 µm

Collector Bias 300 V

Signal SE1

Spot Size 150

Table 2.1: SEM settings used throughout our experimental investigation.

Figure 2.17 is one of the many SEM images we produced throughout our investigation. Notice
how the nanoparticles in this image exhibit high contrast with the background, a characteristic
that will aid in our calculation of the particle coverage density. To determine particle coverage
density, we use ImageJ, a Java-based image processing and analysis suite originally designed by
the National Institutes of Health. Due to the high contrast in our SEM images, we can easily use
ImageJ’s Make Binary process to convert our image into a black and white equivalent without the
loss of significant detail (see Figure 2.18).6 The program’s Analyze Particles process then easily
identifies the particles and calculates the particle coverage density. Figure 2.19 is an example of
the visual output provided by the Analyze Particles process.

Figure 2.17: An unprocessed SEM image of a 1:100 dilution of ST-20L SiO2 nanoparticles. The
image is magnified 9.79 thousand times.

6
We also Invert the image to ensure that the particles are represented by black regions while the slide surface is

represented by white regions.
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Figure 2.18: The same SEM image after using ImageJ’s Make Binary and Invert tools.

Figure 2.19: Particle outlines detected using ImageJ’s Analyze Particles tool. The tool also
calculates the image’s particle coverage density.
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The results of our experiments are published in [50]. Our first investigation focuses on
determining the relationship between a slide’s steady state particle coverage density and the con-
centration of the nanoparticle suspension. We produce and image samples for each suspension
concentration using the methods outlined above. Table 2.2 provides an overview of the experimen-
tal conditions, and Figure 2.20 summarizes our results.

Parameter Value

SiO2 Nanoparticles SNOWTEX ST-20L from Nissan Chemical

Suspension pH 10.3

Suspension Temperature 21 ◦C

PDDA Concentration 10 mM

Dipping Time (per step) 10 min

Rinsing Time (per step) 1 min

Table 2.2: Experimental conditions during our investigation of the relationship between particle
coverage density and suspension concentration.

Figure 2.20: Experimental and theoretical concentration dependence of particle coverage density.
Notice the strong agreement between our experimental data and theoretical predictions. Also notice
that ρ and 1/C are linearly related. (Reproduced from [50].)

By fitting the CSAE-TL model to our experimental results (see red curve in Figure 2.20), we
find that we can express the deposition coefficient µ in terms of the evaporation coefficient γ and
concentration C as follows:

µ = e−γ/2C . (2.27)

This equation maintains its validity when γ is low (γ ≈ 0.1). It generally performs better at low
concentrations.
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Our second investigation seeks a thorough description of the time dependence of the de-
position process. While previous investigations [27, 36] thoroughly describe the kinematics of
nanoparticle deposition, they do not provide an adequate investigation of the time scales neces-
sary to achieve steady state. Theoretically, electrostatic screening causes the deposition process to
divide into two distinct regimes: a rapid Langmuir-type adsorption followed by a slow approach
to the maximum particle coverage density. [27] suggests a 90% saturation of a PDDA monolayer
with adsorbed silica in 10 s. However, because these results were collected over longer time periods
(on the order of seconds), they failed to capture information about how full saturation is achieved.
By imaging particle coverage densities that occur during deposition times less than 2 s, we hope
to characterize this portion of the deposition process, especially the amount of time needed to
transition from Langmuir-type adsorption to slow adsorption.

To obtain this characterization, we begin by dipping cleaned slides in a 10 mM suspension
of PDDA for 10 min. We follow the PDDA dip with a 1 min rinse in DI water and then dry the
slides under a stream of N2 gas. Each slide is pre-marked with small, regularly spaced reference
dots. As we dip them into the SiO2 suspension, we film the process with a high-speed camera at
1000 frames/s. This allows us to review the footage and determine the exact time each pre-marked
point spends in the suspension, to a precision on the order of milliseconds. We collect 11 data
points, ranging in exposure time from 0.058 s to 0.639 seconds. We image each using the SEM and
calculate the coverage density using ImageJ.

Figure 2.21 shows our experimental results, along with the predictions of the CSAE-TL model
(µ = 0.7 and γ = 0.2). The results show that approximately half of the particles are deposited

Figure 2.21: Experimental and theoretical time dependence of particle coverage density. Notice
that half the particles are deposited in the first 0.058 s (Langmuir-type adsorption). The remainder
deposit during a smooth transition to steady state. Also notice the strong agreement between our
theoretical predictions and experimental data. (Reproduced from [50].)

in the first 0.058 s. This corresponds with the rapid Langmuir-type adsorption. Between 0.058 s
and 0.639 s, adsorption continues slowly, and the system eventually transitions smoothly to steady
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state. This time interval corresponds to the expected slow approach to maximum particle coverage
density. Overall, the system achieves steady state much faster than in [27]. We believe this occurs
because their results were produced using a nanoparticle suspension containing NaCl, while our
suspension lacked NaCl. When NaCl is present, the attractive force between the PDDA and SiO2

molecules is reduced since counterions can form. This reduced attractive force should slow down
the deposition process.
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Chapter 3

Self-Assembly under External Electric
Fields (DSAM)

While the ability to model, simulate, and produce thin film samples via ISAM is of great
importance to nanoscientists, there remains much to be learned about the effect of external bias on
the assembly process. Particles could undergo self-assembly in a variety of environments, including
those with strong electric fields, strong magnetic fields, or even intense mechanical vibrations. In
this chapter, we explore attempts to model, simulate, and produce thin films formed under the
influence of electric fields. In doing so, we develop a new production technique, dubbed Directed
Self-Assembly of Monolayers, or DSAM, in which the particle coverage density of a thin film sample
is controlled by the strength of an applied electric field. The ability to easily control particle coverage
density promises to be of great importance to researchers and manufacturers alike.

3.1 Overview of Electric Fields, Electric Potentials, and Capaci-
tors

Before discussing two distinct electric-field driven DSAM techniques, we first briefly review
the physics of electric fields and potentials [51], as well as parallel plate capacitors [52]. Like any
classical field, an electric field pervades all space. It originates from any object that possesses electric
charge, typically denoted with the variable Q. Likewise, only an object with an electric charge may
experience an electric field. Mathematically, the electric field is perhaps best understood in relation
to the electric force Fe. In general, we understand that a particle with charge Q experiences a force

Fe = QE (3.1)

when subjected to an electric field E. The electric field itself may be calculated one of two ways.
If originating from a collection of point-like charges, the principle of superposition states that the
field may be calculated by adding the field vectors of each individual charge. Mathematically, this
technique is written as

E(r) ≡ 1

4πε0

n∑
i=1

qi

r2
i

r̂i, (3.2)
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where ε0 is the permittivity of free space, qi is the charge of point-like charge i, and ri = r − r′i,
as depicted in Figure 3.1. If originating from a continuous distribution of charge, the field may be

Figure 3.1: Calculating the electric field at point P produced by a collection of charges qi. Cal-
culating the position vector of P in the frame of each charge qi allows us to sum the individual
electric fields. This sum represents an effective field felt by any charged object residing at point P .

calculated via integration:

E(r) =
1

4πε0

∫
1

r2
r̂dq. (3.3)

dq can be written as

dq → λdl′ (3.4)

→ σda′ (3.5)

→ ρdτ ′, (3.6)

where λ is the charge-per-unit-length, σ is the charge-per-unit-area, and ρ is the charge-per-unit-
volume, for linear (dl′), surface (da′), and volume (dτ ′) charge distributions, respectively.

Since the curl of an electrostatic field E is always 0 (i.e., ∇×E = 0), the electrostatic field
is conservative and possesses a potential function V (r). We define the electric potential as

V (r) ≡ −
∫ r

O
E · dl, (3.7)

where O is some predefined reference point. Using this definition of electric potential, we say that
there exists a potential difference between two points a and b:

V (b)− V (a) = −
∫ b

a
E · dl. (3.8)
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The potential difference plays an important role in the calculation of the field of a parallel plate
capacitor, the primary tool we use to produce electric fields during DSAM. Additionally, we can
easily calculate the electric field produced by an electric potential via

E = −∇V. (3.9)

Equation (3.9) suggests that electric field lines are always perpendicular to the contours produced
by the potential.

One common method of producing a constant electric field E is the use of a parallel plate
capacitor. As depicted in Figure 3.2, a parallel plate capacitor produces a uniform, linear electric
field, directed from the plate with higher electric potential to the plate with lower electric potential.1

The magnitude of an electric field E produced by a parallel plate capacitor is given by

E =
V

d
, (3.10)

where V is the potential difference between the plates and d is the distance between the plates.

Figure 3.2: The field lines within a parallel plate capacitor attached to a DC source. The electric
field always flows from the positively charged plate to the negatively charged plate.

3.2 Perpendicular Electric Fields

When applying an electric field during the ISAM process, the field’s orientation is critical to
determining the modeling, simulation, and experimental techniques used. While any orientation
is theoretically possible, we limit our discussion to fields that are perpendicular and parallel to
the surface of the glass slide used during the deposition process. In this section, we describe our
efforts to model, simulate, and produce experimentally samples that are subjected to perpendicular
electric fields. The modeling portion of our treatment is published as [53]. This scenario is by far
the simplest, as negatively charged particles will be forced directly onto the slide when subjected

1
Near the edges of the plates, the field is not truly uniform. However, since we only consider effects near the center

of the capacitor throughout our work, we will treat the field as if it were perfectly uniform.
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to a field oriented out of the surface of the slide. Conversely, they will be forced away from the
slide when subjected to a field oriented toward the slide’s surface.

3.2.1 DSAM for Perpendicular Fields

The process for achieving directed self-assembly under a perpendicular electric field is similar
to the traditional ISAM process (see Figure 2.1). We again begin by dipping a clean microscope
slide, which possesses and innate negative surface charge, in the standard polycation PDDA. This
gives the slide a positive surface charge, which will allow negatively charged SiO2 nanoparticles to
adhere to its surface. Just before dipping in the SiO2 suspension, however, we power a parallel plate
capacitor, which is placed on the outside of the staining jar holding the suspension. As depicted in
Figure 3.3, the plates of the capacitor are oriented parallel to the surface of the glass slide. This

Figure 3.3: Our modification of the nanoparticle staining jar to allow for the application of a
uniform perpendicular electric field across the slide face during self-assembly. Note that the two
capacitor plates (indicated by the two vertical lines on either side of the jar) are actually adhered
to the side of the jar. The separation in the image is for visual clarity only.

orientation produces an electric field that is perpendicular to the slide’s surface. For a field that
is directed away from the slide’s surface, which encourages negatively charged particles to travel
toward the glass slide, the negative terminal of the power supply is attached to the plate closest to
the surface to be examined. Conversely, for a field that is directed toward the slide’s surface, which
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encourages negatively charged particles to travel away from the glass slide, the positive terminal
of the power supply is attached to the plate closest to the surface to be examined. We leave the
capacitor powered until the end of the deposition process, ensuring that depositing/evaporating
nanoparticles experience the effects of the uniform field at all times.

3.2.2 CSAE Modeling Techniques and Results

Like with ISAM, we once again use cooperative sequential adsorption with evaporation
(CSAE) models to represent the assembly process mathematically. To account for the presence
of the electric field, however, we alter our transition rates by replacing the evaporation term niγ
with a new set of terms: γ1(1− ni) + γ2(ni). The γ1(1− ni) term represents particles being driven
onto the surface of the slide (with probability γ1) by the electric field. Similarly, the γ2(ni) term
describes particles being driven away from the surface of the slide (with probability γ2) by the
electric field. Both γ1 and γ2 can be scaled to the strength of the applied electric field (typically
given in V/m) using experimental data, with higher values of γ1 and γ2 corresponding to stronger
electric fields.

With our new terms implemented, the transition rate for the CSAE-TL model becomes

cTL(ni → (1− ni)) = γ1(1− ni) + γ2(ni) + µ(1− ni)

(
1−

∑n
i=1 ni
N

)
. (3.11)

Equation (3.11) can be described via the partial differential equation

∂〈ni〉
∂t

= −γ2〈ni〉+ γ1(1− 〈ni〉) + µ

〈
(1− ni)

(
1−

∑n
i=1 ni
N

)〉
. (3.12)

Applying the mean field approximation, in which higher order correlations are approximated as
〈ninj〉 = 〈ni〉〈nj〉 and ρ =

∑
i
ni
N , yields

∂ρ

∂t
= −γ2ρ+ γ1(1− ρ) + µ(1− ρ)2, (3.13)

the mean field equation for the CSAE-TL model under the influence of perpendicular electric fields.
The steady state solution ρs to this equation, found when ∂ρ

∂t = 0, is then

ρs =
±
√
γ2

1 + 2γ1γ2 + 4γ2µ+ γ2
2 + γ1 + γ2 + 2µ

2µ
(3.14)

when µ 6= 0 and

ρs =
γ2

γ1 + γ2
(3.15)

when µ = 0 and γ1 + γ2 6= 0.

Likewise, the transition rate for the CSAE-NN model becomes

cNN (ni → (1− ni)) = γ1(1− ni) + γ2(ni) + (1− ni)αβ
η. (3.16)
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Equation (3.16) can be described via the partial differential equation

∂〈ni〉
∂t

= −γ2〈ni〉+ γ1(1− 〈ni〉) + 〈(1− ni)αβ
η〉. (3.17)

Using the mean field approximation, Equation (3.17) becomes

∂ρ

∂t
= −γ2ρ+ γ1(1− ρ) + (1− ρ)αβzρ. (3.18)

Like with ISAM, the steady state equation for CSAE-NN is transcendental. We can again use a
Taylor series expansion about β = 1 to find an approximate solution, yielding

ρs =
α+ γ1

α+ γ1 + γ2
− (1− β)

[
4

(√
α2 − αγ1

α+ γ1 + γ2

)2(
1− α+ γ1

α+ γ1 + γ2

)]
. (3.19)

Like with ISAM, Equations (3.13) and (3.18) can be solved numerically using odeint. Figures
3.4 and 3.5 show how steady state particle coverage density changes with respect to µ (for the
CSAE-TL case) and β (for the CSAE-NN case) at several different values of γ2 6= 0 when γ1 = 0.
This configuration of γ-values represents a field directed into the slide, which encourages negatively
charged nanoparticles to detach. Figures 3.6 and 3.7 show similar information when γ1 6= 0 and
γ2 = 0. This configuration of γ-values represents a field directed away from the slide, which
encourages negatively charged nanoparticles to attach.

For both CSAE-TL and CSAE-NN, we see the steady state coverage density ρs increase as
the deposition coefficients µ and β increase. Like in our modeling of assembly under no electric
field, these results mirror reality, in which a higher tendency to deposit corresponds to a higher
steady state coverage density. In Figures 3.4 and 3.5, where γ1 = 0 and γ2 6= 0, we see a higher
γ2 value correspond to a lower ρs value. This is because this scenario reflects a field oriented so as
to encourage detachment. In Figures 3.6 and 3.7, where γ1 6= 0 and γ2 = 0, both models predict
that a 100% coverage density will be achieved for all values of µ. In this case, a 100% coverage
density is achieved because γ2 = 0 ensures that no particles can detach. A scenario in which a field
encouraging detachment is superimposed over a system that also experiences evaporation would
require a non-zero γ2 in addition to the non-zero γ1.

The linear behavior in Figure 3.5 is once again the result of our Taylor series approximation
for ρs, in which we take only the constant and linear terms. Like with the no-field case, we will
discuss the limits of this approximation in Chapter 4.
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Figure 3.4: The µ response of steady state particle coverage density calculated using our CSAE-
TL model. Here, particles assemble under a perpendicular field encouraging particle detachment
(γ1 = 0, γ2 6= 0). Notice that a higher µ value corresponds to a higher ρs value. Also notice that
changing γ alters the value of ρs but not the shape of the response curve.
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Figure 3.5: The β response of steady state particle coverage density calculated using our CSAE-
NN model. Here, particles assemble under a perpendicular field encouraging particle detachment
(γ1 = 0, γ2 6= 0). Notice that a higher β value corresponds to a higher ρs value. Also notice that
changing γ alters the value of ρs but not the shape of the response curve. The response curves are
linear because we only include the first two terms in our Taylor series expansion.
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Figure 3.6: The µ response of steady state particle coverage density calculated using our CSAE-
TL model. Here, particles assemble under a perpendicular field encouraging particle attachment
(γ1 6= 0, γ2 = 0). Notice that the system achieves a steady state particle coverage density of
ρs = 100% for all γ1 values since a field of any strength will continue to drive particles onto the
slide surface until 100% coverage is achieved. The red and green curves for γ1 = 0.1 and γ1 = 0.5
are hidden under the blue curve representing γ1 = 0.9.
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Figure 3.7: The β response of steady state particle coverage density calculated using our CSAE-
NN model. Here, particles assemble under a perpendicular field encouraging particle attachment
(γ1 6= 0, γ2 = 0). Notice that the system achieves a steady state particle coverage density of
ρs = 100% for all γ1 values since a field of any strength will continue to drive particles onto the
slide surface until 100% coverage is achieved.. The red and green curves for γ1 = 0.1 and γ1 = 0.5
are hidden under the blue curve representing γ1 = 0.9.

48

104 

102 

'ii. 
100 

98 

96 

0.0 

Steady State Coverage Density vs. 13 for CSAE-NN 
under a Perpendicular Electric Field 

0.2 0.4 
B 

0.6 0.8 

Y1 = 0. 1 

Y1 = 0.5 

Y1 = 0.9 

1.0 



3.2.3 Simulation Techniques and Results

The simulation technique for particles assembling under a perpendicular electric field is iden-
tical to the Monte Carlo procedure used for particles assemblying under no field. The only change
in the simulation program is the use of the perpendicular electric field CSAE-TL and CSAE-NN
transition rates for calculation of the value P , which we use to determine whether a particle site
should transition states via comparison to a random number R. Figures 3.8 and 3.9 show steady
state coverage densities across a wide range of µ and β values, respectively, from simulations on
a 100 × 100 grid over 1000 time steps when γ1 = 0 and γ2 6= 0. These values represent a field
oriented so as to encourage particle detachment. Figures 3.10 and 3.11 show steady state coverage
densities across of a wide range of µ and β values, respectively from simulations on a 100 × 100
grid over 1000 time steps when γ1 6= 0 and γ2 = 0. These values represent a field oriented so as
to encourage particle deposition. In Chapter 4 we compare these simulation results to our CSAE
models for nanoparticle self-assembly under perpendicular electric fields (Figures 3.4 - 3.7).

Figure 3.8: The simulated µ response (points) overlaid with the model-predicted µ response (curves)
for CSAE-TL. Here, particles assemble under a perpendicular field encouraging particle detachment
(γ1 = 0, γ2 6= 0).
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Figure 3.9: The simulated β response (points) overlaid with the model-predicted β response (curves)
for CSAE-NN. Here, particles assemble under a perpendicular field encouraging particle detachment
(γ1 = 0, γ2 6= 0).
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Figure 3.10: The simulated µ response (points) overlaid with the model-predicted µ response
(curves) for CSAE-TL. Here, particles assemble under a perpendicular field encouraging particle
attachment (γ1 6= 0, γ2 = 0). The red points and curve for γ1 = 0.1 and the green points and curve
for γ1 = 0.5 are hidden under the blue points and curve representing γ1 = 0.9.
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Figure 3.11: The simulated β response (points) overlaid with the model-predicted β response
(curves) for CSAE-NN. Here, particles assemble under a perpendicular field encouraging particle
attachment (γ1 6= 0, γ2 = 0). The red points and curve for γ1 = 0.1 and the green points and curve
for γ1 = 0.5 are hidden under the blue points and curve representing γ1 = 0.9.
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3.3 Parallel Electric Fields

The other natural orientation for our applied electric field is parallel to the surface of the
slide. While the perpendicular orientation simply altered the evaporation term by forcing us to
consider particles being driven into and away from the slide, the parallel orientation instead forces
us to consider diffusion (i.e., the translational motion of particles on the slide surface) in addition
to deposition and evaporation. In this section, we consider this scenario from the perspective of
mathematical models, computer simulations, and experimental production methods, building on
the work found in [46].

3.3.1 DSAM for Parallel Fields

The DSAM method for electric fields parallel to the surface of the slide is almost identical to
the DSAM method for electric fields perpendicular to the slide’s surface. Like in the perpendicular
case, as well as with ISAM, we begin by dipping a clean slide in the polycation PDDA. The now
positively charged glass can attract negatively charged SiO2 nanoparticles. Immediately before
dipping in the nanoparticle suspension, we power the parallel plate capacitor, which is now oriented
perpendicular to the slide’s surface. This orientation creates a uniform electric field parallel to the
surface of the slide (see Figure 3.12).

Figure 3.12: Our modification of the nanoparticle staining jar to allow for the application of a
uniform electric field parallel to the slide face during self-assembly. Note that the two capacitor
plates (indicated by the two vertical lines on either side of the jar) are actually adhered to the side
of the jar. The separation in the image is for visual clarity only.
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3.3.2 CSAE Modeling Techniques and Results

Modeling the deposition, evaporation, and diffusion of particles assembling under a parallel
electric field requires reconsideration of the grid model discussed in Chapter 2.2 (see Figure 2.2).
While deposition and evaporation continue to follow the same rules as described by CSAE-TL and
CSAE-NN for ISAM, diffusion demands that we consider the state of particle site immediately
adjacent to the site under consideration. Figure 3.13 shows why the consideration of adjacent
particles is necessary. Under the influence of the electric field E, each negatively charged particle has

Figure 3.13: A square grid depicting the conditions governing the diffusion of negatively charged
nanoparticles under a parallel electric field. The red particle may diffuse because it has no neighbor
in the up-field direction. The green particle may not diffuse because it has a neighbor in the up-field
direction.

a chance of diffusing to the neighboring site in the up-field direction.2 This behavior is demonstrated
by the red particle, which is attempting to move up-field to the immediately adjacent site. However,
diffusion is forbidden if the site in the up-field direction is occupied since the electrostatic repulsion
between the two particles will prevent the diffusing particle from moving. This rule is demonstrated
by the green particle, which cannot diffuse into the adjacent site in the up-field direction due to
the presence of another particle. Assuming diffusion occurs with a probability λ (also scalable to
the strength of the applied field using experimental data) that depends upon the strength of the

2
In the case of positively charged particles, diffusion would occur in the down-field direction.
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electric field, we describe this diffusive behavior mathematically using the transition term

λni(1− ni±1). (3.20)

Like in our other transition terms, ni represents the transitioning site. Thus, diffusion can only
occur if ni = 1, which indicates that the site is occupied. ni±1 represents the immediately adjacent
site in the up-field direction, with the ± sign indicating that the exact direction depends upon
the orientation of the field. Thus, if the immediately adjacent site is occupied (ni±1 = 1) the
diffusion term goes to 0 is and diffusion cannot occur. Conversely, if the immediately adjacent site
is unoccupied (ni±1 = 0) the diffusion term goes to λ and diffusion is permitted.

Adding our diffusion term to the transition rate for the CSAE-TL model yields

cTL(ni → (1− ni)) = niγ + µ(1− ni)

(
1−

∑n
i=1 ni
N

)
+ λni(1− ni±1). (3.21)

This transition rate can be expressed as the partial differential equation

∂〈ni〉
∂t

= −γ〈ni〉+ µ

〈
(1− ni)

(
1−

∑n
i=1 ni
N

)〉
+ λ〈ni〉(1− 〈ni±1〉), (3.22)

which under the mean field approximation becomes

∂ρ

∂t
= −γρ+ µ(1− ρ)2 + λ(ρ− ρ2). (3.23)

Equation (3.23) represents the rate equation for the CSAE-TL model under parallel electric fields.
It suggests a steady state particle coverage density (ρs) of

ρs = ∓

√
γ2 − 2γλ+ 4γµ+ λ2 ± γ ∓ λ± 2µ

2λ− 2µ
(3.24)

when λ 6= µ and

ρs =
µ

γ + µ
(3.25)

when λ = µ.

If we add our diffusion term to the transition rate for the CSAE-NN model, we find

cNN (ni → (1− ni)) = niγ + (1− ni)αβ
η + λni(1− ni±1). (3.26)

As a partial differential equation, this transition rate becomes

∂〈ni〉
∂t

= −γ〈ni〉+ 〈(1− ni)αβ
η〉+ λ〈ni〉(1− 〈ni±1〉). (3.27)

Under the mean field approximation, Equation (3.27) becomes

∂ρ

∂t
= −γρ+ (1− ρ)αβzρ + λ(ρ− ρ2), (3.28)
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the rate equation for CSAE-NN under parallel electric fields. Once again, the equation for the
steady state particle coverage rate (ρs) is transcendental; however, we can approximate a value for
ρs by performing a Taylor series expansion about β = 1. Using this method we find

ρs = ρs(β = 1)− (1− β)

[
4

αρs(β = 1)

α+ γ + λρs(β = 1)− λ

(
1− α

α+ γ + λρs(β = 1)− λ

)]
, (3.29)

where

ρs(β = 1) =
−(γ + α− λ)±

√
(γ + α− λ)2 + 4λα

2λ
. (3.30)

odeint can again be used to solve both Equation (3.23) and (3.28). In Figures 3.14 and
3.15, we show the change in steady state particle coverage density as µ (for CSAE-TL) and β
(for CSAE-NN) at several λ values. Steady state coverage density once again increases as µ and
β increase, mirroring physical reality. Raising the diffusion coefficient λ, which corresponds to
increasing the strength of the parallel electric field, seems to suggest elevated ρs values in both
models. Nevertheless, the ρs curve maintains its overall shape no matter the λ value used. Like our
models for assembly under no electric field field and perpendicular electric fields, the linear behavior
of ρs under the CSAE-NN model (see Figure 3.15) is a result of our Taylor series approximation,
which we discuss further in Chapter 4.

Figure 3.14: The µ response of steady state particle coverage density calculated using our CSAE-TL
model. Here, particles assemble under a parallel field . Notice that a higher µ value corresponds
to a higher ρs value. Also notice that changing γ alters the value of ρs but not the shape of the
response curve.
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Figure 3.15: The β response of steady state particle coverage density calculated using our CSAE-
NN model. Here, particles assemble under a parallel field . Notice that a higher β value corresponds
to a higher ρs value. Also notice that changing γ alters the value of ρs but not the shape of the
response curve.

3.3.3 Simulation Techniques and Results

Like in our simulations of nanoparticle assembly under no electric fields and perpendicular
electric fields, we use a Monte Carlo-based method to simulate nanoparticle assembly under parallel
electric fields. The algorithm contains one major difference, however. If the comparison of our test
value P and random value R leaves a particular cell unchanged (i.e., if neither deposition nor
evaporation occurs), the site can still change state via diffusion. If the unchanged cell is occupied,
the program checks the cell in the up-field direction to determine its state. If this neighboring cell is
occupied, no diffusion occurs. If it is not occupied, the program determines whether diffusion occurs
by comparing the random value R to our diffusion probability λ. If R ≤ λ, diffusion occurs, and the
program changes the states of the unchanged cell and the neighboring cell in the up-field direction.
If the unchanged cell is unoccupied, the program checks the cell in the down-field direction to
determine its state. If this neighboring cell is unoccupied, no diffusion occurs. If it is occupied, the
program determines whether diffusion occurs by comparing the random value R to our diffusion
probability λ. If R ≤ λ, diffusion occurs, and the program changes the states of the unchanged cell
and the neighboring cell in the down-field direction.3

Figure 3.16 and 3.17 show steady state particle coverage densities for simulated particle
assembly following the CSAE-TL and CSAE-NN transition rates using a variety of λ values. Each
simulation was completed on a 100 × 100 grid over 1000 time steps. In Chapter 4, we compare

3
Note that this description is appropriate for a simulation of negatively charged particles. All instances of “up-

field” and “down-field” would switch for a simulation of positively charged particles.
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these results to our modeling results (Figures 3.14 and 3.15).

Figure 3.16: The simulated µ response (points) overlaid with the model-predicted µ response
(curves) for CSAE-TL. Here, particles assemble under a parallel field.

Figure 3.17: The simulated β response (points) overlaid with the model-predicted β response
(curves) for CSAE-NN. Here, particles assemble under a parallel field.
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3.4 Oscillating Electric Fields

3.4.1 Overview of Oscillating Fields

Thus far, our treatment of electric field-driven DSAM has been limited to the use of constant
fields produced by a capacitor attached to a direct current (DC) power source. However, assem-
bling particles can also experience oscillating fields, easily produced by attaching a capacitor to an
alternating current (AC) power source. For brevity and to remind the reader of their experimental
origins, we refer to constant fields as “DC fields” and oscillating fields as “AC fields” throughout
the following sections.

We touch on the consequences of assembly under AC fields briefly in [53]. In this case, the
strength and orientation of the field changes over time. Thus, assembling nanoparticles will oscillate
back and forth as the field changes direction. We can apply AC fields to a system under assembly
in any orientation. Furthermore, we can also superimpose AC fields and DC fields. For the sake of
simplicity, our mathematical and experimental treatment focuses on four main scenarios:

1. Perpendicular AC Field

2. Parallel AC Field

3. Perpendicular AC Field; Parallel DC Field

4. Parallel AC Field; Perpendicular DC Field

Scenarios (3) and (4) are especially important because there is reason to believe that the initial
kinetic energy imparted to assembling nanoparticles by a small AC field can aid in a DSAM process
that is primarily driven by a DC field.

3.4.2 CSAE Modeling Techniques and Results

Like with our CSAE models for DSAM under DC fields, we produce models for our selected
AC field cases by constructing transition rates, converting them to partial differential equations,
and applying the mean field approximation. This provides differential equations describing the
particle coverage density ρ over time. We can solve these equations numerically for all times. In
the steady state, we can also use algebraic manipulation (CSAE-TL) or Taylor series expansions
(CSAE-NN) to solve for the approximate steady state particle coverage density ρs without the use
of numerical solving tools.

To introduce an oscillating field, our transition rates must include a new coefficient, equivalent
in nature to the evaporation (γ), deposition (µ, α, and β), and diffusion (λ) coefficients we have
already discussed. As a reminder, each coefficient represents the probability that a nanoparticle
will attach/detach from location on a grid representing the slide surface. However, this AC-field
coefficient must be able to vary its strength in the same way that the voltage of the AC power
source varies. For a sinusoidal power source, we have

χcos(ωt+ φ), (3.31)

where χ is the maximum value of the AC-field coefficient (scaled to the amplitude of the power
source), ω is the angular frequency of the sinusoidal source, and φ is the phase shift of the sinusoidal

59



source. When the AC-field is not oriented perfectly perpendicular or parallel to the slide surface,
this coefficient resolves into two components, which we call χγcos(ωt + φ) for the perpendicular

component and χλcos(ωt+ φ) for the parallel component.4 For clarity throughout our derivations,
we use χγ and χλ explicitly.

For scenario (1), in which we only apply a perpendicular AC field, the transition rate for
CSAE-NN5 is

c(ni → (1− ni)) = niγ + (1− ni)αβ
η + niχγcos(ωt+ φ). (3.32)

This equation assumes that the field only oscillates the state of a site that is already occupied.
More complicated models could also consider oscillations of non-occupied sites. As a differential
equation, this transition rate becomes

∂〈ni〉
∂t

= −〈ni〉γ + 〈(1− ni)αβ
η〉+ 〈ni〉χγcos(ωt+ φ). (3.33)

The mean field approximation then produces

∂ρ

∂t
= −ργ + (1− ρ)αβzρ + ρχγcos(ωt+ φ). (3.34)

Figure 3.18 shows a numerical solution for this equation across a wide range of times. We see that

Figure 3.18: Numerical solution to the CSAE-NN model for particles assembling under a perpen-
dicular AC field. (γ = β = 0.5, α = 1, z = 4, χγ = 0.3.)

4
We select γ for the perpendicular field case because the coefficient behaves like a time-varying evaporation

coefficient and λ for the parallel field case because the coefficient behaves like a time-varying diffusion coefficient.
5
The CSAE-TL model for this case is constructed by simply replacing the NN deposition term with the TL

deposition term (see Equation (2.1)).
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the system rapidly approaches steady state, just like in the no-field and DC field cases. However,
because of the presence of the perpendicular AC field, the particle coverage density oscillates
sinusoidally around an average steady state particle coverage density (in this case, 〈ρs〉 ≈ 40%).
These are the results we expect, for, as the AC field oscillates, particles alternate between being
driven into and away from the face of the slide, altering the coverage density periodically even in
the steady state regime.

Scenario (2) describes the application of a parallel AC field. The CSAE-NN transition rate
is

c(ni → (1− ni)) = niγ + (1− ni)αβ
η + ni(1− ni−1)(1− ni+1)χλcos(ωt+ φ). (3.35)

Like in the perpendicular case, we only permit oscillations of sites that are occupied. Furthermore,
the two neighboring sites (ni−1 and ni+1) must also be unoccupied. If ni−1 and ni+1 were occupied,
the electrostatic repulsion produced by the particles in these sites would inhibit oscillation. As a
differential equation, this transition rate becomes

∂〈ni〉
∂t

= −〈ni〉γ + 〈(1− ni)αβ
η〉+ 〈ni〉(1− 〈ni−1〉)(1− 〈ni+1〉)χλcos(ωt+ φ). (3.36)

After applying the mean field approximation, we have

∂ρ

∂t
= −ργ + (1− ρ)αβzρ + ρ(1− ρ)2χλcos(ωt+ φ). (3.37)

Figure 3.19 is a representative numerical solution of this equation. These results are similar to the

Figure 3.19: Numerical solution to the CSAE-NN model for particles assembling under a parallel
AC field. (γ = β = 0.5, α = 1, z = 4, χλ = 0.3.)

results we obtained for the perpendicular AC field: the system rapidly approaches steady state,
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at which point the AC field forces the system to oscillate about an average steady state particle
coverage density (in this case, like in Figure 3.18, 〈ρs〉 ≈ 40%). The main distinction between the
parallel and perpendicular case is the amplitude of the coverage density oscillations. Even when we
examine scenarios where χγ = χλ, the amplitude is always smaller in the parallel field case. This is
because, under a parallel field, particle coverage density can only increase or decrease as particles
diffuse onto or off the slide at its edges. Under a perpendicular field, particles can be driven onto
or away from the slide at any point, greatly increasing the degree to which the coverage density
can change in steady state.

Scenario (3) includes both a perpendicular AC field and a parallel DC field. We construct
the transition rate as follows:

c(ni → (1− ni)) = niγ + (1− ni)αβ
η + ni(1− ni±1)λ+ niχγcos(ωt+ φ). (3.38)

Here, ni(1− ni±1)λ represents the parallel DC field, which is only active for an occupied site with
an unoccupied neighbor in the up-field direction. niχγcos(ωt + φ) represents the AC field and is
only active for an occupied site. As a differential equation, we have

∂〈ni〉
∂t

= −〈ni〉γ + 〈(1− ni)αβ
η〉+ 〈ni〉(1− 〈ni±1〉)λ+ 〈ni〉χγcos(ωt+ φ). (3.39)

The mean field approximation then gives us

∂ρ

∂t
= −ργ + (1− ρ)αβzρ + ρ(1− ρ)λ+ ρχγcos(ωt+ φ). (3.40)

Figure 3.20 is a representative numerical solution of this model. These results are very similar

Figure 3.20: Numerical solution to the CSAE-NN model for particles assembling under a perpen-
dicular AC field and a parallel DC field. (γ = β = λ = 0.5, α = 1, z = 4, χγ = 0.3.)
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to Scenario (1) (see Figure 3.18), except that the presence of the parallel DC field increases the
average steady state particle coverage density value.

Finally, scenario (4) proposes a parallel AC field superimposed with a perpendicular DC field.
The required transition rate is

c(ni → (1− ni)) = (1− ni)γ1 + niγ2 + (1− ni)αβ
η + ni(1− ni−1)(1− ni+1)χλcos(ωt+ φ).

(3.41)

The terms (1− ni)γ1 + niγ2 describe the perpendicular DC field, with the orientation determined
by whether γ1 or γ2 is non-zero. The term ni(1−ni−1)(1−ni+1)χλcos(ωt+φ) describes the parallel
AC field. As a differential equation, we have

∂〈ni〉
∂t

= (1− 〈ni〉)γ1 − 〈ni〉γ2 + 〈(1− ni)αβ
η〉+ 〈ni〉(1− 〈ni−1〉)(1− 〈ni+1〉)χλcos(ωt+ φ).

(3.42)

The mean field approximation then produces

∂ρ

∂t
= (1− ρ)γ1 − ργ2 + (1− ρ)αβzρ + ρ(1− ρ)2χλcos(ωt+ φ). (3.43)

Figure 3.21 and 3.22 are numerical solutions for this equation when γ1 = 0 and γ2 = 0, respectively.
Figure 3.21 shows behavior identical to Figure 3.19 since the perpendicular DC field, which is driving
particles away from the slide, has the same effect as evaporation. However, Figure 3.22 shows that,
when a parallel AC field is combined with a perpendicular DC field (driving particles into the slide)
that is strong enough to achieve ρs = 100%, oscillations about 〈ρs〉 fail to appear.
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Figure 3.21: Numerical solution to the CSAE-NN model for particles assembling under a parallel
AC field and a perpendicular DC field which encourages particle detachment. (γ1 = 0, γ2 = β = 0.5,
α = 1, z = 4, χλ = 0.3.)

Figure 3.22: Numerical solution to the CSAE-NN model for particles assembling under a parallel
AC field and a perpendicular DC field which encourages particle attachment. (γ2 = 0, γ1 = β = 0.5,
α = 1, z = 4, χλ = 0.3.)
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3.5 Experimental Techniques

Thus far, our efforts to produce bilayers under the influence of perpendicular and parallel
electric fields in the laboratory have focused on experiment design. In general, we use the same
steps outlined in Figure 2.1 and described in detail in Chapter 2.1: (1) we dip a clean slide into a
suspension of PDDA, (2) we rinse the PDDA-coated slide in DI water, (3) we dip the rinsed slide
into a suspension of SiO2 nanoparticles, (4) we rinse again in DI water, and (5) we dry under a
gentle flow of N2 gas. However, for the application of an electric field during deposition, we must
modify the staining jar holding the nanoparticles. By placing a sheet of copper tape on the two
faces parallel to the slide, we form a capacitor which delivers a uniform electric field perpendicular
to the slide face. By placing a sheet of copper tape on the two faces perpendicular to the slide,
we form a capacitor which delivers a uniform electric field parallel to the slide face. This is shown
schematically in Figures 3.3 and 3.12. Figure 3.23 shows one of our laboratory beakers, which
contains copper tape sheets on all sides. Thus, we can select a perpendicular or parallel field
arrangement by simply attaching our electrical connections to the appropriate pair of sides.

Figure 3.23: Our modified staining jar for the application of electric fields parallel and perpendic-
ular to the surface of a slide during nanoparticle assembly. The capacitor plates are constructed
from copper tape. Insulating tape prevents sparking between plates when two fields are applied
simultaneously.

The two strips of tape form a capacitor when attached to a DC power source. Just before
we dip the slide into the SiO2 suspension, we activate the DC power source, which we previously
set to the desired voltage level. Activating the DC power source just before deposition begins is
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important, for, if the capacitor is charged long before deposition, a gradient of SiO2 nanoparticles
can form within the suspension. Such a gradient would obscure our results.

Currently, we are investigating the electric field strength needed to affect the particles and
produce DSAM. As we discuss in Chapter 3.1, the strength of the electric field is given by

E =
V

d
. (3.44)

Thus, we can increase the electric field by either increasing the voltage V applied to the capacitor
or decreasing the separation d between the capacitor plates. We have made preparations to take
both approaches. To increase the applied voltage, we have acquired a BT-GP-10N30 power supply
from Advance Energy, which produces DC voltages between 0 and 10,000 V. With our standard
staining jar, which has a width of 39.3 mm, this supply can produce a uniform field between 0 and
254 kV/m. To decrease the plate separation, we have produced several specialty staining jars using
a 3D printer.

Applying AC electric fields during the assembly process is identical to applying a DC field.
However, instead of a DC power source, we connect a function generator (SRS DS335) to the ca-
pacitor plates. Most commercially available function generators do not produce a peak voltage with
enough strength to encourage particle oscillations. This problem can be rectified by introducing an
amplifier (Trek 2205), which increases the peak voltage of the function generator without altering
the angular frequency and shape of the signal. Like with deposition under DC fields, our efforts to
produce nanoparticles bilayers under the influence of an AC fields is currently in the experiment
design stage.
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Chapter 4

Discussion: Comparing CSAE Models
and Simulated Data

The utility of our CSAE models depends upon their ability to predict the coverage densities of
simulated and experimentally produced bilayer samples. Because our experimental work is ongoing,
we consider here only the fit of our models to simulated data. Furthermore, we focus primarily
on no-field and DC-field cases, as, to date, these have received the most attention. We conduct
our comparison using a graphical approach which relies upon residuals [54]. For any variable x (in
our case, µ for CSAE-TL models and β for CSAE-NN models), the residual ei is simply a vector
containing the differences between the simulated/experimental values yi and the values produced
by the model f(xi):

ei = yi − f(xi). (4.1)

By plotting the residual vector against xi on a scatter plot, we can examine the resulting shape to
determine the closeness of the model fit.

Figures 4.1 - 4.8 are the residual scatter plots for our models. A perfect model should produce
a residual of zero for every data point comparison. The residual scatter of a strong, predictive model
should demonstrate no structure; rather, the points should be distributed stochastically around
zero. Finally, the residual of a poor model shows a non-stochastic mathematical structure. This
structure indicates the model has failed to capture some aspect of the examined variable’s behavior.
Visual inspection of the residual scatter plots of our models shows that the CSAE-TL models for
no electric field and perpendicular electric fields have strong predictive capabilities across all values
of µ. There is a slight positive trend (i.e., stochastic behavior appears to be centered slightly above
zero); however, the order of magnitude (10−4 - 10−3) makes this discrepancy insignificant. Our
CSAE-TL model for parallel fields and CSAE-NN models demonstrate a distinct structure. This
suggests that the mean field approximation has failed to capture every aspect of the behavior of
µ (for CSAE-TL) of β (for CSAE-NN). We expect this behavior because, according to [55], mean
field theory is only capable of capturing the qualitative behavior of a many-particle, multi-state
system. A full treatment, which includes interactions between particles, is necessary to develop
an quantitatively accurate model. In the case of particle assembly, analytical models of this type
are impossible. Thus, we must be satisfied with models of the type we have developed, which,
as shown in Figures 2.14, 2.16, 3.8 - 3.11, and 3.16 - 3.17, can predict the general trend of the
data (e.g., whether it is increasing or decreasing; the response of secondary variables like γ, γ1, γ2,
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and λ; etc.). For calculations of particle coverage density that do not require high precision, this
qualitative agreement suggests that our models are useful, especially when simulation techniques
are not available or are prohibitively time consuming.

Further visual inspection of Figures 2.14, 2.16, 3.8 - 3.11, and 3.16 - 3.17 seems to suggest
that our CSAE models conform more closely with simulated data for higher values of µ and β
(i.e., for µ, β ≥ 0.6). To test this hypothesis, we generate new residual scatters for µ, β ≥ 0.6
only (Figures 4.9 - 4.16). These plots show a slight improvement in the performance of our models
at higher values of µ and β. While purely stochastic behavior fails to appear, especially in the
CSAE-NN models, the order of magnitude of the residuals falls. Therefore, we can confidently say
that our models, while still qualitative in nature, perform better when µ, β ≥ 0.6.

There are a number of potential improvements that could be made to our models. First,
including higher order terms in the Taylor series expansions of our CSAE-NN models has the
potential to produce mathematical descriptions that better capture the response of ρs to β. Second,
we could consider a more sophisticated version of mean field theory, such as the Bethe approximation
[55]. The most accurate description of a many-particle, multi-state system allows each particle to
interact with every other particle in the system. This is especially true of ISAM models since
every particle experiences a different electrostatic force from every other particle in the system
during assembly. Mathematical treatments that include every interaction are typically unsolvable.
Simple mean field theories, such as the one we have employed, assume that each individual particle
experiences an effective field produced by the other particles instead of individual interactions
(see Appendix A for more detail). While this description is mathematically tenable, it eliminates
a significant amount of physical information because interactions between individual particle are
not considered. The Bethe approximation attempts to find a middle ground between these two
approaches. Each particle interacts directly with its z nearest neighbors, forming a particle cluster.
The remainder of the particles then form an effective field. While still taking advantage of the mean
field’s ability to produce solvable mathematics, the Bethe approximation captures more detail,
which could drastically improve the predictive abilities of our models.
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Figure 4.1: Residuals for CSAE-TL (No Field). (Red: γ = 0.1; Green: γ = 0.5; Blue: γ = 0.9.)

Figure 4.2: Residuals for CSAE-NN (No Field). (Red: γ = 0.1; Green: γ = 0.5; Blue: γ = 0.9.)

69



Figure 4.3: Residuals for CSAE-TL (⊥ Field). (Red: γ2 = 0.1; Green: γ2 = 0.5; Blue: γ2 = 0.9.)

Figure 4.4: Residuals for CSAE-NN (⊥ Field). (Red: γ2 = 0.1; Green: γ2 = 0.5; Blue: γ2 = 0.9.)

70



Figure 4.5: Residuals for CSAE-TL (⊥ Field). (Red: γ1 = 0.1; Green: γ1 = 0.5; Blue: γ1 = 0.9.)

Figure 4.6: Residuals for CSAE-NN (⊥ Field). (Red: γ1 = 0.1; Green: γ1 = 0.5; Blue: γ1 = 0.9.)
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Figure 4.7: Residuals for CSAE-TL (‖ Field). (Red: λ = 0.1; Green: λ = 0.5; Blue: λ = 0.9.)

Figure 4.8: Residuals for CSAE-NN (‖ Field). (Red: λ = 0.1; Green: λ = 0.5; Blue: λ = 0.9.)
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Figure 4.9: Residuals for CSAE-TL (No Field). (Red: γ = 0.1; Green: γ = 0.5; Blue: γ = 0.9.)

Figure 4.10: Residuals for CSAE-NN (No Field). (Red: γ = 0.1; Green: γ = 0.5; Blue: γ = 0.9.)
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Figure 4.11: Residuals for CSAE-TL (⊥ Field). (Red: γ2 = 0.1; Green: γ2 = 0.5; Blue: γ2 = 0.9.)

Figure 4.12: Residuals for CSAE-NN (⊥ Field). (Red: γ2 = 0.1; Green: γ2 = 0.5; Blue: γ2 = 0.9.)

74



Figure 4.13: Residuals for CSAE-TL (⊥ Field). (Red: γ1 = 0.1; Green: γ1 = 0.5; Blue: γ1 = 0.9.)

Figure 4.14: Residuals for CSAE-NN (⊥ Field). (Red: γ1 = 0.1; Green: γ1 = 0.5; Blue: γ1 = 0.9.)

75



Figure 4.15: Residuals for CSAE-TL (‖ Field). (Red: λ = 0.1; Green: λ = 0.5; Blue: λ = 0.9.)

Figure 4.16: Residuals for CSAE-NN (‖ Field). (Red: λ = 0.1; Green: λ = 0.5; Blue: λ = 0.9.
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Chapter 5

Ising Model Approach to ISAM

While CSAE models are particularly useful in modeling and simulating the ionic self-assembly
of charged nanoparticles, there are many other mathematical frameworks capable of describing two-
state systems. Another useful framework is the Ising model, originally developed by Heinrich Lenz
[56] and solved by Ernst Ising [57] in an attempt to describe how phase transitions in ferromagnets
emerge from a collection of individual magnetic spins. From equilibrium statistical physics, we know
that the probability density of any system exchanging heat with a heat reservoir of temperature T
is described by the canonical distribution:

Peq(s) =
e−H(s)/kBT

Z
, (5.1)

where H(s) is the Hamiltonian of the system, kB is Boltzmann’s constant, and Z is the partition
function, which normalizes the probability distribution. Lenz and Ising suggested that, for a system
comprised of N interacting two-state particles in an external field B, the Hamiltonian is given by

H = −J
∑

i,j∈NN
sisj −B

N∑
i=1

si. (5.2)

In this equation, si = −1, 1 represents the state of particle i ∈ [1, N ]. In the case of ferromagnetism,
the two possible states would be spin-up (1 ∼ ↑) and spin-down (-1 ∼ ↓); however, any two state
system is possible, as we will see in our model, where si will come to represent the occupation
state of site i on a square lattice. J is a coupling constant, which describes how two particles
within the system, si and sj , interact with one another.1 The coupling constant is applied to all

pairs of nearest neighbors by the first sum. Finally, B is the strength of the external field.2 For
ferromagnetism, the field is a magnetic field; however, other fields, such as electric fields, can also
be used. The second sum ensures that each particle in the system feels the effects of the external
field.

In time independent (i.e., equilibrium) systems, the properties of this model can be in-
vestigated by simple substitution into Equation (5.1). However, for time dependent (i.e., non-
equilibrium) systems, such as ISAM, the master equation approach of R J Glauber [58] is neces-
sary. Glauber begins with a master equation which ensures that the configurational properties of

1
Generally speaking, J could be variable, indicating that different pairs of particles have different mutual interac-

tions. This behavior is not necessary in our model; therefore, we assume J is constant.
2
Like J , B could be variable. However, for our purposes, a constant B will suffice.
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transitioning particles are conserved:

dP (s, t)

dt
=
∑
s
′

{c(s′ → s)P (s′, t)− c(s→ s′)P (s, t)}. (5.3)

Here, we see a system in which the probability of a particle existing in state s at time t depends upon
the transfer of probability into state s from state s′ (gain), as well as the transfer of probability from
state s into state s′ (loss). In spin systems, a transfer from state s to state s′ would be represented
by a spin flip. In ISAM, such a transfer is represented by a particle attachment site transitioning
from occupied to unoccupied (or vice versa) due to evaporation or deposition.

At equilibrium, Equation (5.3) becomes

0 =
∑
s
′

{c(s′ → s)Peq(s
′, t)− c(s→ s′)Peq(s, t)}. (5.4)

Glauber’s approach requires the selection of transition rates which satisfy the detailed balance
condition:

c(s′ → s)Peq(s
′) = c(s→ s′)Peq(s). (5.5)

If we substitute the canonical distribution (Equation (5.1)) into the detailed balance condition
(Equation (5.5)), we find that

c(s′ → s)

c(s→ s′)
= e∆H/kBT , (5.6)

where ∆H = H(s′) − H(s) is the change in energy which occurs any time a particle transitions
from one state to the other.

We now work to translate the CSAE-NN model into a the mathematics of the Ising model,
following the method outlined in [41, 59]. As a reminder to the reader, CSAE models imagine
the flat surface upon which nanoparticle monolayers form as a square lattice. Each site i can be
either occupied by a particle (ni = 1) or unoccupied (ni = 0). Empty sites can received particles
(a c(0→ 1) transition) at a rate αβη, where η =

∑
j∈NN nj , via the deposition process. Occupied

sites can lose particles (a c(1→ 0) transition) at a rate γ. This produces the transition rate

c(ni → (1− ni)) = γni + (1− ni)αβ
η. (5.7)

We can express the site states ni = 0, 1 from our CSAE models in terms of the spin states
si = −1, 1 from the Ising model via

ni =
1 + si

2
. (5.8)

Our transition rate is now

c(si) =
1 + si

2
γ +

1− si
2

αβ
∑

j∈NN

1+sj
2 . (5.9)

If we define K ≡ J
kBT

and h ≡ B
kBT

, the detailed balance condition becomes

c(s)

c(s′)
=
Peq(s

′)

Peq(s)
=
e−Ksi

∑
NN sj−hsi

eKsi
∑

NN sj+hsi
. (5.10)
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s is any any of the 2N possible configurations of the N spins contained within the system. Mean-
while, s′ describes the same state with exactly one of its spins flipped. From this point, we seek
K and h values appropriate to our particle assembly scenario. With these values in hand, we will
know both J and B from Equation (5.2), giving us the Ising model description of ISAM.

We begin our search for K and h by supposing that each particle has z = 2 nearest neighbors.
This describes a one-dimensional system which we will later extend into a full two-dimensional grid
(z = 4). In this case, Equation (5.9) becomes

c(si) =
1 + si

2
γ +

1− si
2

αβ

(
1+

si−1+si+1
2

)
. (5.11)

Substituting into the detailed balance equation (Equation (5.10)) yields

1+si
2 γ + 1−si

2 αβ

(
1+

si−1+si+1
2

)
1−si

2 γ + 1+si
2 αβ

(
1+

si−1+si+1
2

) =
e−Ksi

∑
NN sj−hsi

eKsi
∑

NN sj+hsi
(5.12)

1+si
2 γ + 1−si

2 αβ

(
1+

si−1+si+1
2

)
1−si

2 γ + 1+si
2 αβ

(
1+

si−1+si+1
2

) =
e−Ksi(si−1+si+1)−hsi

eKsi(si−1+si+1)+hsi
. (5.13)

We can write this equation eight times, once for each case of the set (si, si+1, si−1):

↑↑↑
↓↑↑
↑↓↑
↑↑↓
↑↓↓
↓↓↑
↓↑↓
↓↓↓ .

The resulting system of eight independent equations provides enough information to find

K =
1

4
ln(β) (5.14)

and

h =
1

2
ln

(
αβ

γ

)
. (5.15)

Generalizing these results to a system with z nearest neighbors gives us

K =
1

4
ln(β) (5.16)

and

h =
1

4
ln

(
α2βz

γ2

)
. (5.17)
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Using z = 4 and the results in Equations (5.16) and (5.17), the Hamiltonian for the ISAM grid is

H = −kBT
4

[
ln(β)

∑
i,j∈NN

sisj + ln

(
α2β4

γ2

) N∑
i=1

si

]
. (5.18)

If we define the magnetization of this system as M ≡ 〈si〉, as is normal in an Ising model description
of a collection of spins, we finally find that the particle coverage density is given by

ρ =
1 +M

2
. (5.19)

For nanoparticle assembly under perpendicular electric fields, we begin with the transition
rate

c(ni → (1− ni)) = (1− ni)γ1 + niγ2 + (1− ni)αβ
η. (5.20)

To find the transition rate in terms of spin value si, we substitute in Equation (5.8). This yields

c(si) =
1− si

2
γ1 +

1 + si
2

γ2 +
1− si

2
αβ

∑
j∈NN

1+sj
2 . (5.21)

When z = 2, this transition rate produces the following detailed balance equation:

1−si
2 γ1 + 1+si

2 γ2 + 1−si
2 αβ

(
1+

si−1+si+1
2

)
1+si

2 γ1 + 1−si
2 γ2 + 1+si

2 αβ

(
1+

si−1+si+1
2

) =
e−Ksi(si−1+si+1)−hsi

eKsi(si−1+si+1)+hsi
. (5.22)

The eight possible combinations of (si−1, si, si+1) produce a system of eight equations, which we
solve to find

K =
1

4
ln

(
γ1 + αβ2

γ1 + αβ

)
(5.23)

and

h =
1

2
ln

(
γ1 + αβ

γ2

)
. (5.24)

Generalized for any z, K and h become

K =
1

2z
ln

(
γ1 + αβz

γ1 + αβz/2

)
(5.25)

and

h =
1

2
ln

(
γ1 + αβz/2

γ2

)
. (5.26)

Notice that when γ1 = 0 and γ2 = γ (the no-field case) Equations (5.23) - (5.26) reduce to our
previous results (Equations (5.14) - (5.17)), as expected. Using z = 4 and the results of Equations
(5.25) and (5.26), the Hamiltonian for DSAM under perpendicular electric fields is

H = −kBT
2

[
1

4
ln

(
γ1 + αβ4

γ1 + αβ2

) ∑
i,j∈NN

sisj + ln

(
γ1 + αβ2

γ2

) N∑
i=1

si

]
. (5.27)
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For nanoparticle assembly under parallel electric fields, we begin with the transition rate

c(si) = niγ + (1− ni)αβ
η + ni(1− ni±1)λ. (5.28)

In terms of spin states, this transition rate becomes

c(si) =
1 + si

2
γ +

1− si
2

αβ
∑

j∈NN

1+sj
2 +

(1 + si)(1− si±1)

4
λ. (5.29)

For the remainder of our treatment, we will assume that the parallel field is oriented so as to
encourage particle diffusion in the positive direction. Thus, si±1 becomes si+1.3 The transition
rate is now

c(si) =
1 + si

2
γ +

1− si
2

αβ
∑

j∈NN

1+sj
2 +

(1 + si)(1− si+1)

4
λ. (5.30)

When z = 2, this transition rate produces the following detailed balance equation:

1+si
2 γ + 1−si

2 αβ

(
1+

si−1+si+1
2

)
+

(1+si)(1−si+1)
4 λ

1−si
2 γ + 1+si

2 αβ

(
1+

si−1+si+1
2

)
+

(1−si)(1−si+1)
4 λ

=
e−Ksi(si−1+si+1)−hsi

eKsi(si−1+si+1)+hsi
. (5.31)

Using the eight possible combinations of (si−1, si, si+1), we produce a system of eight equations
with solutions

K =
1

4
ln(β) (5.32)

and

h =
1

2
ln

(
αβ

γ + λ

)
. (5.33)

For a generalized z, K and h become

K =
1

4
ln(β) (5.34)

and

h =
1

2
ln

(
αβz/2

γ + λ

)
. (5.35)

For λ = 0 (the no-field case), Equations (5.34) and (5.35) become Equations (5.16) and (5.17), as
expected. Using z = 4 and the results of Equations (5.34) and (5.35), the Hamiltonian for DSAM
under a parallel electric field is

H = −kBT
2

[
1

2
ln(β)

∑
i,j∈NN

sisj + ln

(
αβ2

γ + λ

) N∑
i=1

si

]
. (5.36)

3
If the field were oriented so as to encourage particle diffusion in the negative direction, si±1 would become si−1.
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Chapter 6

Conclusion

In this thesis, we presented modeling, simulation, and experimental techniques for the pro-
duction of thin films of SiO2 nanoparticles. We examined cases in which particles assembled under
no external field (ionic self-assembly of monolayers, or ISAM). We also explored thin films formed
under the influence of perpendicular and parallel DC and AC fields (directed self-assembly of mono-
layers, or DSAM).

Our modeling approach focused on two types of cooperative sequential adsorption with evap-
oration (CSAE) models, which imagine the deposition surface as a discrete grid with occupied and
unoccupied sites. The total lattice model (CSAE-TL) limited particle deposition according to the
total number of particles deposited. The nearest neighbors model (CSAE-NN) limited particle de-
position according to the total number of nearest neighbors interacting with a particular site. Both
models were converted to a differential equation predicting the time dependency of the deposition
surface’s particle coverage density. Numerical solutions to these differential equations predicted
that assembling systems would rapidly approach steady state.

Our simulation approach used the Monte Carlo method to alter the state of each site on an
(m×n) grid. At each site, the program would select a random number and compare it to the result
of the applicable transition rate (CSAE-TL or CSAE-NN). The results of this comparison would
determine whether the site’s state should change or remain the same. Like our models, simulations
of ISAM and DSAM predicted a rapid approach to steady state. Residual analysis demonstrated
strong quantitative agreement between our CSAE-TL models for the no field case and perpendicular
field case and our simulations. Our CSAE-TL model for the parallel field case and our CSAE-NN
models failed to agree quantitatively with our simulations. However, they agreed qualitatively,
indicating that CSAE modeling via the mean field approximation is useful when high precision
is not required or when simulation tools are unavailable. Future work could include using more
accurate versions of mean field theory, including the Bethe approximation, to improve agreement
between our models and simulations. Approaches of this nature generally require use of the Ising
model, which we have also described for the reader in the context of thin film production.

Our experiments show that, under no electric field, the particle coverage density of a thin
film can be controlled via the concentration of the nanoparticle suspension used during the ISAM
process. When scaled properly, our theoretical models match experimental results for this investi-
gation. Additionally, our investigation of the time dependence of particle coverage density shows
that the assembling system does, in fact, rapidly approach steady state, just as predicted by our
models and simulations. Furthermore, the increase in particle coverage density during that rapid
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approach can be divided into two stages, a Langmuir-type adsorption and a smooth transition to
steady state. Experimental investigations of the influence of external fields on nanoparticle assem-
bly have progressed through the experiment design stage and are ongoing. We anticipate, in light
of the predictions of our models and simulations, that electric fields can be used to control particle
coverage density. Future experimental work will include efforts to confirm this prediction.
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Appendix A

Mean Field Theory

The development of our CSAE models depends heavily upon the use of mean field theory.
Throughout Chapters 2 and 3, we use mean field theory’s assertion of a lack of correlation be-
tween deposition sites. This allows us to approximate the average correlation between neighboring
particles as the product of the mean individual site occupations:

〈ninj〉 = 〈ni〉〈nj〉. (A.1)

Ultimately, this approximation makes it possible to express our original differential equations in
terms of the particle coverage density ρ. Here we consider mean field theory more generally and in
its original context: the Ising model.

As discussed in [60], mean field theory depends upon the Bogolyubov inequality, which is
derived as follows. First, we assume we have a system with a classical Hamiltonian H. We now
decompose this Hamiltonian into two parts:

H = H0 +H1. (A.2)

While the Hamiltonian can be broken into any two parts, the approximation requires that we
include all the physical information that can be solved exactly in H0. Similarly, we should include
the more difficult parts of the Hamiltonian in H1. The partition function of H is given by

Z =
∑
{s}

e−βH(s) (A.3)

while the partition function of H0 is given by

Z0 =
∑
{s}

e−βH0(s). (A.4)

If we decompose H correctly, we should be able to find Z0 analytically. Dividing Equation (A.3)
by (A.4) yields

Z

Z0
=

∑
{s} e

−β(H0+H1)∑
{s} e

−βH0
=
∑
{s}

p0(s)e−βH1(s) = 〈e−βH1〉0. (A.5)
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Thus, by expressing the ratio of Z and Z0 in terms of the probability distribution p0(s) associated

with H0, we find that Z/Z0 is the expectation value of e−βH1 with respect to p0(s). The convexity
inequality states that any function f(x) with f ′ > 0 and f ′′ > 0 obeys

f(〈x〉p) ≤ 〈f(x)〉p. (A.6)

p refers to the probability density p(x) that we use to calculate the expectation value. Applying
the convexity inequality gives us

〈e−βH1〉0 ≥ e
−β〈H1〉0 (A.7)

Z

Z0
≥ e−β〈H1〉0 . (A.8)

Taking the logarithm of this function and using G = −kBT lnZ, the definition of Gibbs free energy,
finally gives us the Bogolyubov inequality:

G ≤ G0 + 〈H1〉0. (A.9)

When splitting our Hamiltonian, we use a control parameter λ. The mean field approximation
arises when we minimize the Gibbs free energy with respect to this parameter. We begin with

H(λ)
0 = −λ

∑
i

si (A.10)

and

H(λ)
1 = −J

∑
{i,j}

sisj + (λ−H)
∑
i

si. (A.11)

Since we consider a two state ising model, si = ±1. This means that the partition function for H(λ)
0

becomes

Z0 =
(
e−βλ + eβλ

)N
(A.12)

= (2cosh(βλ))N (A.13)

where N is the number of particles in the system. The Gibbs free energy associated with H(λ)
0 is

G0 = −kBT ln(Z0) (A.14)

= −NkBT ln(2cosh(βλ)). (A.15)

The expectation values of the spins with respect to H(λ)
0 are independent of one another. This

means that

〈si〉0 = tanh(βλ) (A.16)

for all values of index i. Independence also produces the following result for the expectation value

of H(λ)
1 : 〈

H(λ)
1

〉
= −1

2
NJztanh2(βλ) +N(λ−H)tanh(βλ), (A.17)
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where z is the number of nearest neighbors. Plugging Equations (A.15) and (A.17) into Equation
(A.9) tells us that we should minimize

G(λ) = N

[
− β−1ln(2cosh(βλ))− 1

2
Jztanh2(βλ) + (λ−H)tanh(βλ)

]
. (A.18)

Computing dG/dλ = 0 produces

λmin −H = Jztanh(βλmin), (A.19)

where λmin is the value of λ at which the Gibbs free energy is minimized. The minimized free
energy is

G = −NkbT ln(2cosh(βλmin)) +
N(λmin −H)2

2zJ
. (A.20)

The magnetization of the system is given by

m = − 1

N

dG

dH
(A.21)

= − 1

N

(
∂G

∂H
+
∂G

∂λ

∂λ

∂H

)
λmin

(A.22)

Since the free energy is minimized, ∂G
∂λ = 0 and λ = λmin. We now have

m =
λmin −H

Jz
. (A.23)

Substituting in Equation (A.19) finally yields

m = tanh
[
β(Jzm+H)

]
. (A.24)

According to [55], this is an example of a self-consistent equation for m. In other words, the mean
field that produces 〈m〉 depends upon 〈m〉.

When H = 0, which represents a system in which there is no external magnetic field1, Equation
(A.24) becomes

m = tanh(βJzm). (A.25)

Stable solutions to this transcendental equation exist only when the system is above a critical
temperature Tc given by

Tc =
Jz

kB
. (A.26)

When T is close to Tc, m is necessarily small. This allows us to Taylor expand (tanhx ≈ x−x3/3+· · ·
when x << 1) Equation (A.25) to find

m = βJzm− 1

3
(βJzm)3 + · · · . (A.27)

1
Each spin still experiences the mean magnetic field produced by all the other spins.
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The solutions are

m(T > Tc) = 0 (A.28)

and

m(T < Tc) = ± 31/2

(βJz)3/2
(βJz − 1)1/2. (A.29)

Mean field theory’s predictions for critical temperature (Tmf) often vary from exact values /
best known-estimates (Tc). Table A.1 demonstrates this idea for lattices with differing numbers of
spatial dimensions (d) and nearest neighbors (z).

Lattice Type d z Tmf/Tc

Square 2 4 1.763

Hexagonal 2 6 1.684

Diamond 3 4 1.479

Simple Cubic 3 6 1.330

Body-Centered Cubic 3 8 1.260

Face-Centered Cubic 3 12 1.225

Table A.1: Comparison of critical temperature values produced by mean field theory Tmf and
best-known estimates Tc for several different lattice types. (Reproduced from [55].)

The often large discrepancy between Tmf and the actual Tc arises for two main reasons. First,
mean field theory depends only on the number of nearest neighbors z and not on the dimensionality
d of the system. Both parameters must be included in an accurate treatment of spin systems.
Second, mean field theory ignores correlations between spins. However, mean field theory still
produces results that are qualitatively correct. For this reason, it is an important tool in the
analysis of many-particle, multi-state systems, especially those that do not have exact solutions.
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Appendix B

Python Tools

B.1 odeint

odeint is a function from scipy.integrate which allows users to find numerical solutions to
first-order ordinary differential equations (ODEs) [61]. The function uses the initial configuration
of a system to iteratively calculate succeeding configurations. This process outputs a graph of the
dependent variable versus the independent variable. For most physical systems, the independent
variable is time, allowing the user to determine the state of a system described by a first-order
ODE at any time. While odeint can only process first-order equations, it can accept systems of
ODEs. Thus, we can use Python to consider higher-order equations by simply expressing them as
systems of first-order equations.

odeint is imported using

from s c ipy . i n t e g r a t e import ode int

and called using

y = ode int (F , y0 , t )

F is a Python function F(y, t) which accepts a one-dimensional array (y) that describes the current
state of the system and a scalar (t) which describes the current value of the independent variable.
y0 is a one-dimensional array that describes the initial state of the system (initial value of y). t
is the array of independent variable values, the first of which corresponds to y0. Each subsequent
value in t corresponds to subsequent states of the system, which are successively stored in y. Below
we include a sample program from [61], which is designed to find a numerical solution of the position
of a simple harmonic oscillator:

#s o l v e o d e . py
”””ODE s o l v e r f o r harmonic o s c i l l a t o r . ”””

import numpy as np
import matp lo t l i b . pyplot as p l t
from s c ipy . i n t e g r a t e import ode int

# Define O s c i l l a t o r Function
def F(y , t ) :
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”””
Return d e r i v a t i v e s o f second - order ODE y ’ ’ = - y .
”””

dy = [ 0 , 0 ] #Create a l i s t to s t o r e d e r i v a t i v e s .
dy [ 0 ] = y [ 1 ] #Store f i r s t d e r i v a t i v e o f y ( t ) .
dy [ 1 ] = -y [ 0 ] #Store second d e r i v a t i v e o f y ( t ) .

return dy

#Create array o f time v a l u e s to s tudy
t min = 0
t max = 10
dt = 0 .1
t= np . arange ( t min , t max , dt )

#Set i n i t i a l c o n d i t i o n s
y0 = ( 1 . 0 , 0 . 0 )

p l t . f i g u r e ( ) #Create f i g u r e ; add p l o t s l a t e r .
y = ode int (F , y0 , t ) #C a l l o d e i n t . Pass i t the funct ion , the

i n i t i a l con d i t ion s , and the time array .
p l t . p l o t ( t , y [ : , 0 ] , l i n ew id th =2) #Plot the r e s u l t i n g numerical

s o l u t i o n .
p l t . t i t l e ( ” Numerical So lu t i on o f SHO” )
p l t . x l a b e l ( ” t ” )
p l t . y l a b e l ( ”y” )

The sample program passes the function describing the harmonic oscillator (a system of first-
order ODEs), the initial conditions, and the time array to odeint. odeint then returns an array,
stored in y, which contains the numerical solutions to both equations in the system. The program
concludes by plotting the solution to the first equation against time, as Figure B.1 demonstrates.
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Figure B.1: Numerical solution for the position of a simple harmonic oscillator produced by sample
program solve ode.py.

B.2 ArtistAnimation

ArtistAnimation is a function from matplotlib.animation which allows users to combine
a series of images or figures into an animated video [62]. Each image becomes a frame. These
frames, when cycled successively, form a video file. ArtistAnimation is imported using

import matp lo t l i b . animation as animation

and called using

im ani = animation . Art istAnimation ( f i g , ims , i n t e r v a l =100 ,
r e p e a t d e l a y =3000 , b l i t=True )

fig is the figure object used to display each image. ims is the array holding the information needed
to produce each image. interval=100 provides the delay between frames in milliseconds. If not
included, this parameter defaults to 200. repeat delay=3000 specifies the number of milliseconds
the video pauses before repeating. If not specified, this parameter defaults to None. Finally,
blit=True turns on blitting, an image optimization tool. If not specified, it takes on a value of
False. Below we include a sample function from [63] which uses ArtistAnimation to create a
video from images stored in a directory:
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def c r ea te v ideo f rom mode l images ( ) :
”””
f u n c t i o n l o a d s the images o f the model and conca tenates them to a

v ideo f i l e
”””
images path = glob . g lob ( ” . / model ∗ . png” )
print ( ”number o f image f i l e s to p roce s s : %s ” % len ( images path ) )

f i g = p l t . f i g u r e ( )
ims = [ ]
for i in range ( len ( images path ) ) :

print ( i )
img=mpimg . imread ( images path [ i ] )
lum img = img [ : , : , 0 ]
ims . append ( ( p l t . pcolormesh ( lum img [ 6 0 : 5 0 0 , 1 8 0 : 6 4 0 ] , cmap=’ gray

’ ) , ) )
print ( ” loaded a l l images ” )

im ani = animation . Art istAnimation ( f i g , ims , i n t e r v a l =100 ,
r e p e a t d e l a y =3000 , b l i t=True )

print ( ” c rea ted the video ” )
im ani . save ( ’ . / model vid . mp4 ’ )
print ( ”done , the v ideo i s ready ! ” )

The sample program collects a series of images into an array named ims. It then uses the
ArtistAnimation function to create a video which shows these stored images in rapid succession,
producing an animation effect.
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Appendix C

Code Samples

C.1 CSAE-TL Numerical Solutions

# Author : Matthew O. Withers

import numpy as np
from s c ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t

# Def ines the CSAE-TL model mean f i e l d equat ion wi th e l e c t r i c f i e l d
def m o d e l d i f f u s i o n ( rho , t ) :

gamma = 0.5
mu = 0.5
lamb = 0 .7

drhodt = -gamma∗ rho + mu∗(1 - rho ) ∗∗2 + lamb ∗( rho - rho ∗∗2)
return drhodt

#Def ines the CSAE-TL model mean f i e l d equat ion wi thout e l e c t r i c f i e l d
def m o d e l n o d i f f u s i o n ( rho , t ) :

gamma = 0.5
mu = 0.5
drhodt = -gamma∗ rho + mu∗(1 - rho ) ∗∗2
return drhodt

# Def ines the i n i t i a l p a r t i c l e d e n s i t y
rho0 = 0

# Def ines the s o l u t i o n time range
t = np . l i n s p a c e (0 ,100 , num = 200)

# S o l v e s both mean f i e l d e q u a t i o n s
r h o d i f f u s i o n = ode int ( mode l d i f f u s i on , rho0 , t )
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r h o n o d i f f u s i o n = ode int ( mode l no d i f f u s i on , rho0 , t )

# P l o t s both s o l u t i o n s
p l t . p l o t ( t , r h o d i f f u s i o n ∗100 , l a b e l =‘ D i f f u s i o n ( lamb = 0 . 7 ) ’ )
p l t . p l o t ( t , r h o n o d i f f u s i o n ∗100 , l a b e l =‘No D i f f u s i o n ( lamb = 0 . 0 ) ’ )
p l t . x l a b e l ( ‘ Time Steps ( t ) ’ )
p l t . y l a b e l ( ‘ P a r t i c l e Coverage Density ( rho ( t ) ) [%] ’ )
p l t . l egend ( )
p l t . t i t l e ( ‘ P a r t i c l e Coverage Density over Time (TL Model ) ’ )
p l t . show ( )

# Exports (Time , Coverage Density ) f o r the e l e c t r i c f i e l d equat ion to a
CSV f i l e

e x c e l 1 = np . column stack ( ( t , r h o d i f f u s i o n ) )
np . save txt ( ‘ m e a n f i e l d t l d i f f u s i o n o u t p u t . csv ’ , exce l 1 , d e l i m i t e r = ‘ , ’ )

e x c e l 2 = np . column stack ( ( t , r h o n o d i f f u s i o n ) )
np . save txt ( ‘ m e a n f i e l d t l n o d i f f u s i o n o u t p u t . csv ’ , exce l 2 , d e l i m i t e r = ‘ , ’

)

C.2 CSAE-NN Numerical Solutions

# Author : Matthew O. Withers

import numpy as np
from s c ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t

# Def ines the CSAE-NN model mean f i e l d equat ion wi th e l e c t r i c f i e l d
def m o d e l d i f f u s i o n ( rho , t ) :

gamma = 0.5
alpha = 0 .5
beta = 0 .5
z = 4
lamb = 0 .7

drhodt = -gamma∗ rho + (1 - rho ) ∗ alpha ∗beta ∗∗( z∗ rho ) + lamb∗( rho - rho
∗∗2)

return drhodt

#Def ines the CSAE-NN model mean f i e l d equat ion wi thout e l e c t r i c f i e l d
def m o d e l n o d i f f u s i o n ( rho , t ) :

gamma = 0.5
alpha = 0 .5
beta = 1
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z = 4
drhodt = -gamma∗ rho + (1 - rho ) ∗ alpha ∗beta ∗∗( z∗ rho )
return drhodt

# Def ines the i n i t i a l p a r t i c l e d e n s i t y
rho0 = 0

# Def ines the s o l u t i o n time range
t = np . l i n s p a c e (0 ,100 ,100)

# S o l v e s both mean f i e l d e q u a t i o n s
r h o d i f f u s i o n = ode int ( mode l d i f f u s i on , rho0 , t )
r h o n o d i f f u s i o n = ode int ( mode l no d i f f u s i on , rho0 , t )

# P l o t s both s o l u t i o n s
p l t . p l o t ( t , r h o d i f f u s i o n ∗100 , l a b e l =‘ D i f f u s i o n ( lamb = 0 . 7 ) ’ )
p l t . p l o t ( t , r h o n o d i f f u s i o n ∗100 , l a b e l =‘No D i f f u s i o n ( lamb = 0 . 0 ) ’ )
p l t . x l a b e l ( ‘ Time Steps ( t ) ’ )
p l t . y l a b e l ( ‘ P a r t i c l e Coverage Density ( rho ( t ) ) [%] ’ )
p l t . l egend ( )
p l t . t i t l e ( ‘ P a r t i c l e Coverage Density over Time (NN Model ) ’ )
p l t . show ( )

# Exports (Time , Coverage Density ) f o r the e l e c t r i c f i e l d equat ion to a
CSV f i l e

e x c e l 1 = np . column stack ( ( t , r h o d i f f u s i o n ) )
np . save txt ( ‘ m e a n f i e l d n n d i f f u s i o n o u t p u t . csv ’ , exce l 1 , d e l i m i t e r = ‘ , ’ )

e x c e l 2 = np . column stack ( ( t , r h o n o d i f f u s i o n ) )
np . save txt ( ‘ m e a n f i e l d n n n o d i f f u s i o n o u t p u t . csv ’ , exce l 2 , d e l i m i t e r = ‘ , ’

)

C.3 CSAE-TL Simulations

# Author : Matthew O. Withers

import numpy as np
import matp lo t l i b . pyplot as p l t
import random

# Def ines the s l i d e s i z e , number o f t r i a l s , and number o f time s t e p s
per s i m u l a t i o n

# Note : The program c u r r e n t l y hand les on ly square s l i d e s and 1 t r i a l
Grid Length = 10
Grid Width = 10
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t r i a l s = 1
t imes teps = 100

# Def ines model c o e f f i c i e n t s
mu = 0.5
gamma = 0.5
lamb = 0 .7

# Def ines s t o r a g e arrays
dens i ty = np . z e r o s ( t imes teps )
time = np . z e r o s ( t imes teps )
color map = [ ]

# Creates the i n i t i a l g r i d ( matrix ) ; a l l s i t e s = 0
d = np . z e r o s ( ( Grid Length , Grid Width ) )
d d i s p l a y = np . z e ro s ( ( Grid Length , Grid Width ) )

# Def ines the boundar ies o f the s l i d e ( c o m p l e t e l y surrounded by
p a r t i c l e s )

for i in range ( Grid Length ) :
for j in range ( Grid Width ) :

d [ i ,0 ]=1
d [ i , Grid Width -1]=1
d [ 0 , j ]=1
d [ Grid Length - 1 , j ]=1

# Main s i m u l a t i o n loop
for c u r r e n t t r i a l in range ( t r i a l s ) :

for cur r ent t ime in range ( t imes teps ) :

occupied = 0
d prev ious = d

# Cacu la tes the number o f p a r t i c l e s on the s l i d e
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :
i f i != 0 and i != Grid Length - 1 and j != 0 and j !=

Grid Length - 1 :
i f d prev ious [ i , j ] == 1 :

occupied = occupied + 1

# C a l c u l a t e s and s t o r e s the coverage d e n s i t y and time
dens i ty [ cu r r en t t ime ] = occupied /( ( Grid Length - 2 ) ∗( Grid Width

- 2 ) )
time [ cu r r en t t ime ] = cur r en t t ime
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# Eva lua tes each s i t e
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :

# Grabs a random seed v a l u e
s imulat ion number = random . uniform (0 , 1 )

# Limits e v a l u a t i o n to a c t i v e s l i d e area ( no edges )
i f i != 0 and i != ( Grid Length - 1) and j != 0 and j

!= ( Grid Length - 1) :

# Determines the d e p o s i t i o n / evapora t ion p r o b a b i l i t y
p r o b a b i l i t y = gamma∗ d prev ious [ i , j ] + mu∗(1 -

d prev ious [ i , j ] ) ∗(1 - occupied /( ( Grid Length - 2 ) ∗(
Grid Width - 2 ) ) )

# Determines the d i f f u s i o n p r o b a b i l i t y ( both
r e c e i v i n g and donat ing )

d i f f u s i o n d o n a t e p r o b a b i l i t y = lamb∗ d prev ious [ i , j
]∗ ( 1 - d prev ious [ i , j - 1 ] )

d i f f u s i o n r e c e i v e p r o b a b i l i t y = lamb∗ d prev ious [ i , j
+1]∗(1 - d prev ious [ i , j ] )

# Compares random seed v a l u e to p r o b a b i l i t i e s to
determine new s t a t e o f s i t e

i f d prev ious [ i , j ] == 0 and s imulat ion number <=
p r o b a b i l i t y :
d [ i , j ] = 1

e l i f d prev ious [ i , j ] == 1 and s imulat ion number <=
p r o b a b i l i t y :
d [ i , j ] = 0

else :
i f d [ i , j ] == 0 and d [ i , j +1] == 1 and

s imulat ion number <=
d i f f u s i o n r e c e i v e p r o b a b i l i t y :
d [ i , j ] = 1
d [ i , j +1] = 0

e l i f d [ i , j ] == 1 and d [ i , j - 1 ] == 0 and
s imulat ion number <=
d i f f u s i o n d o n a t e p r o b a b i l i t y :
d [ i , j ] = 0
d [ i , j - 1 ] = 1

else :
d [ i , j ] = d prev ious [ i , j ]
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# Resets the g r i d boundar ies
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :
d [ i ,0 ]=1
d [ i , Grid Width -1]=1
d [ 0 , j ]=1
d [ Grid Length - 1 , j ]=1

# Prepares the f i n a l matrix f o r d i s p l a y
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :
i f d [ i , j ] == 0 :

d d i s p l a y [ i , j ] = 1
i f d [ i , j ] == 1 :

d d i s p l a y [ i , j ] = 0

# P l o t s an image o f the f i n a l s l i d e s t a t e
p l t . f i g u r e (1 )
color map = p l t . imshow ( d d i s p l a y )
color map . set cmap ( ‘ ‘ B lues r ” )
p l t . g r i d ( )
p l t . x t i c k s (np . arange ( - 0 . 5 , Grid Width - 0 . 5 , 1) )
p l t . y t i c k s (np . arange ( - 0 . 5 , Grid Length - 0 . 5 , 1) )

# Plot s the p a r t i c l e coverage dens i ty over time
p l t . f i g u r e (2 )
p l t . p l o t ( time , dens i ty ∗100)
p l t . t i t l e ( ‘ P a r t i c l e Coverage Density over Time (TL Simulat ion ) ’ )
p l t . x l a b e l ( ‘ Time Steps ( t ) ’ )
p l t . y l a b e l ( ‘ P a r t i c l e Coverage Density ( ( t ) ) [% ] ’ )

# Disp lays p l o t s
p l t . show ( )

# Exports coverage dens i ty vs . time data to a CSV f i l e
e x c e l = np . column stack ( ( time , dens i ty ) )
np . save txt ( ‘ Simulation TL Output . csv ’ , exce l , d e l i m i t e r = ‘ , ’ )

C.4 CSAE-NN Simulations

# Author : Matthew O. Withers

import numpy as np
import matp lo t l i b . pyplot as p l t
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import random

# Def ines the s l i d e s i z e , number o f t r i a l s , and number o f time s t e p s
per s i m u l a t i o n

# Note : The program c u r r e n t l y hand les on ly square s l i d e s and 1 t r i a l
Grid Length = 10
Grid Width = 10
t r i a l s = 1
t imes teps = 100

# Def ines model c o e f f i c i e n t s
alpha = 0 .5
beta = 0 .5
gamma = 0.5
lamb = 0 .7

# Def ines s t o r a g e arrays
dens i ty = np . z e r o s ( t imes teps )
time = np . z e r o s ( t imes teps )
color map = [ ]

# Creates the i n i t i a l g r i d ( matrix ) ; a l l s i t e s = 0
d = np . z e r o s ( ( Grid Length , Grid Width ) )
d d i s p l a y = np . z e ro s ( ( Grid Length , Grid Width ) )

# Def ines the boundar ies o f the s l i d e ( c o m p l e t e l y surrounded by
p a r t i c l e s )

for i in range ( Grid Length ) :
for j in range ( Grid Width ) :

d [ i ,0 ]=1
d [ i , Grid Width -1]=1
d [ 0 , j ]=1
d [ Grid Length - 1 , j ]=1

# Main s i m u l a t i o n loop
for c u r r e n t t r i a l in range ( t r i a l s ) :

for cur r ent t ime in range ( t imes teps ) :

occupied = 0
d prev ious = d

# Cacu la tes the number o f p a r t i c l e s on the s l i d e
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :
i f i != 0 and i != Grid Length - 1 and j != 0 and j !=
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Grid Length - 1 :
i f d prev ious [ i , j ] == 1 :

occupied = occupied + 1

# C a l c u l a t e s and s t o r e s the coverage d e n s i t y and time
dens i ty [ cu r r en t t ime ] = occupied /( ( Grid Length - 2 ) ∗( Grid Width

- 2 ) )
time [ cu r r en t t ime ] = cur r en t t ime

# Eva lua tes each s i t e
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :

# Grabs a random seed v a l u e
s imulat ion number = random . uniform (0 , 1 )

# Limits e v a l u a t i o n to a c t i v e s l i d e area ( no edges )
i f i != 0 and i != ( Grid Length - 1) and j != 0 and j

!= ( Grid Length - 1) :

# Determines the number o f n e a r e s t n e i g h b o r s f o r
the s i t e

eta = 0
i f d prev ious [ i +1, j ] == 1 :

eta = eta+1
i f d prev ious [ i - 1 , j ] == 1 :

eta = eta+1
i f d prev ious [ i , j +1] == 1 :

eta = eta+1
i f d prev ious [ i , j - 1 ] == 1 :

eta = eta+1

# Determines the d e p o s i t i o n / evapora t ion p r o b a b i l i t y
p r o b a b i l i t y = gamma∗ d prev ious [ i , j ] + (1 - d prev ious

[ i , j ] ) ∗ alpha ∗beta ∗∗ eta

# Determines the d i f f u s i o n p r o b a b i l i t y ( both
r e c e i v i n g and donat ing )

d i f f u s i o n d o n a t e p r o b a b i l i t y = lamb∗ d prev ious [ i , j
]∗ ( 1 - d prev ious [ i , j - 1 ] )

d i f f u s i o n r e c e i v e p r o b a b i l i t y = lamb∗ d prev ious [ i , j
+1]∗(1 - d prev ious [ i , j ] )

# Compares random seed v a l u e to p r o b a b i l i t i e s to
determine new s t a t e o f s i t e
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i f d prev ious [ i , j ] == 0 and s imulat ion number <=
p r o b a b i l i t y :
d [ i , j ] = 1

e l i f d prev ious [ i , j ] == 1 and s imulat ion number <=
p r o b a b i l i t y :
d [ i , j ] = 0

else :
i f d [ i , j ] == 0 and d [ i , j +1] == 1 and

s imulat ion number <=
d i f f u s i o n r e c e i v e p r o b a b i l i t y :
d [ i , j ] = 1
d [ i , j +1] = 0

e l i f d [ i , j ] == 1 and d [ i , j - 1 ] == 0 and
s imulat ion number <=
d i f f u s i o n d o n a t e p r o b a b i l i t y :
d [ i , j ] = 0
d [ i , j - 1 ] = 1

else :
d [ i , j ] = d prev ious [ i , j ]

# Resets the g r i d boundar ies
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :
d [ i ,0 ]=1
d [ i , Grid Width -1]=1
d [ 0 , j ]=1
d [ Grid Length - 1 , j ]=1

# Prepares the f i n a l matrix f o r d i s p l a y
for i in range ( Grid Length ) :

for j in range ( Grid Width ) :
i f d [ i , j ] == 0 :

d d i s p l a y [ i , j ] = 1
i f d [ i , j ] == 1 :

d d i s p l a y [ i , j ] = 0

# P l o t s an image o f the f i n a l s l i d e s t a t e
p l t . f i g u r e (1 )
color map = p l t . imshow ( d d i s p l a y )
color map . set cmap ( ‘ ‘ B lues r ” )
p l t . g r i d ( )
p l t . x t i c k s (np . arange ( - 0 . 5 , Grid Width - 0 . 5 , 1) )
p l t . y t i c k s (np . arange ( - 0 . 5 , Grid Length - 0 . 5 , 1) )

# Plot s the p a r t i c l e coverage dens i ty over time
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p l t . f i g u r e (2 )
p l t . p l o t ( time , dens i ty )
p l t . t i t l e ( ‘ P a r t i c l e Coverage Density over Time (NN Simulat ion ) ’ )
p l t . x l a b e l ( ‘ Time Steps ( t ) ’ )
p l t . y l a b e l ( ‘ P a r t i c l e Coverage Density ( ( t ) ) [% ] ’ )

# Disp lays p l o t s
p l t . show ( )

# Exports coverage dens i ty vs . time data to a CSV f i l e
e x c e l = np . column stack ( ( time , dens i ty ) )
np . save txt ( ‘ Simulation NN Output . csv ’ , exce l , d e l i m i t e r = ‘ , ’ )

C.5 Simulation Video Output

# Author : Matthew O. Withers

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b
import random
import matp lo t l i b . animation as animation
matp lo t l i b . use ( ‘ ‘ Agg” )

# Def ine s the s l i d e s i z e , number o f t r i a l s , and number o f time s t ep s
per s imu la t i on

# Note : The program c u r r e n t l y handles only square s l i d e s and 1 t r i a l
Grid Length = 10
Grid Width = 10
t r i a l s = 1
t imes teps = 50

# Def ine s model c o e f f i c i e n t s
mu = 0.7
gamma = 0.2
lamb = 0 .8

# Def ine s s t o rage ar rays
dens i ty = np . z e r o s ( t imes teps )
time = np . z e r o s ( t imes teps )
color map = [ ]
ims = [ ]

# Creates the i n i t i a l g r i d ( matrix ) ; a l l s i t e s = 0
d = np . z e r o s ( ( Grid Length , Grid Width ) )
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d d i s p l a y = np . z e ro s ( ( Grid Length , Grid Width ) )

# Def ine s the boundar ies o f the s l i d e ( complete ly surrounded by
p a r t i c l e s )

f o r i in range ( Grid Length ) :
f o r j in range ( Grid Width ) :

d [ i ,0 ]=1
d [ i , Grid Width -1]=1
d [ 0 , j ]=1
d [ Grid Length - 1 , j ]=1

# Main s imu la t i on loop
f o r c u r r e n t t r i a l in range ( t r i a l s ) :

f o r cu r r en t t ime in range ( t imes teps ) :

occupied = 0
d prev ious = d

# Caculates the number o f p a r t i c l e s on the s l i d e
f o r i in range ( Grid Length ) :

f o r j in range ( Grid Width ) :
i f i != 0 and i != Grid Length - 1 and j != 0 and j !=

Grid Length - 1 :
i f d prev ious [ i , j ] == 1 :

occupied = occupied + 1

# Ca l cu l a t e s and s t o r e s the coverage dens i ty and time
dens i ty [ cu r r en t t ime ] = occupied /( ( Grid Length - 2 ) ∗( Grid Width

- 2 ) )
time [ cu r r en t t ime ] = cur r en t t ime

# Evaluates each s i t e
f o r i in range ( Grid Length ) :

f o r j in range ( Grid Width ) :

# Grabs a random seed value
s imulat ion number = random . uniform (0 , 1 )

# Limits eva lua t i on to a c t i v e s l i d e area ( no edges )
i f i != 0 and i != ( Grid Length - 1) and j != 0 and j

!= ( Grid Length - 1) :

# Determines the d e p o s i t i o n / evaporat ion p r o b a b i l i t y
p r o b a b i l i t y = gamma∗ d prev ious [ i , j ] + mu∗(1 -

d prev ious [ i , j ] ) ∗(1 - occupied /( ( Grid Length - 2 ) ∗(
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Grid Width - 2 ) ) )

# Determines the d i f f u s i o n p r o b a b i l i t y ( both
r e c e i v i n g and donating )

d i f f u s i o n d o n a t e p r o b a b i l i t y = lamb∗ d prev ious [ i , j
]∗ ( 1 - d prev ious [ i , j - 1 ] )

d i f f u s i o n r e c e i v e p r o b a b i l i t y = lamb∗ d prev ious [ i , j
+1]∗(1 - d prev ious [ i , j ] )

# Compares random seed value to p r o b a b i l i t i e s to
determine new s t a t e o f s i t e

i f d prev ious [ i , j ] == 0 and simulat ion number <=
p r o b a b i l i t y :
d [ i , j ] = 1

e l i f d prev ious [ i , j ] == 1 and simulat ion number <=
p r o b a b i l i t y :
d [ i , j ] = 0

e l s e :
i f d [ i , j ] == 0 and d [ i , j +1] == 1 and

simulat ion number <=
d i f f u s i o n r e c e i v e p r o b a b i l i t y :
d [ i , j ] = 1
d [ i , j +1] = 0

e l i f d [ i , j ] == 1 and d [ i , j - 1 ] == 0 and
simulat ion number <=
d i f f u s i o n d o n a t e p r o b a b i l i t y :
d [ i , j ] = 0
d [ i , j - 1 ] = 1

e l s e :
d [ i , j ] = d prev ious [ i , j ]

# Resets the g r id boundar ies
f o r i in range ( Grid Length ) :

f o r j in range ( Grid Width ) :
d [ i ,0 ]=1
d [ i , Grid Width -1]=1
d [ 0 , j ]=1
d [ Grid Length - 1 , j ]=1

# Prepares the cur rent matrix f o r d i s p l a y
f o r i in range ( Grid Length ) :

f o r j in range ( Grid Width ) :
i f d [ i , j ] == 0 :

d d i s p l a y [ i , j ] = 1
i f d [ i , j ] == 1 :
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d d i s p l a y [ i , j ] = 0

# Creates a f i g u r e r e f e r e n c e
f i g = p l t . f i g u r e (1 )

# Store s the cur rent matrix as an image in the animation array
im = p l t . imshow ( d d i sp lay , animated=True )
im . set cmap ( ‘ ‘ B lue s r ” )
p l t . g r i d ( )
p l t . x t i c k s (np . arange (0 , Grid Width , 0 . 5 ) )
p l t . y t i c k s (np . arange (0 , Grid Length , 0 . 5 ) )
ims . append ( [ im ] )

# Bui lds a animation out o f a l l images in the animation array
ani = animation . Art istAnimation ( f i g , ims , i n t e r v a l =50, b l i t=True ,

r e p e a t d e l a y =1000)

# Saves the animation as an MP4 f i l e
ani . save ( ‘ dynamic images . mp4 ’ )

# Plot s the coverage dens i ty vs . time
p l t . f i g u r e (2 )
p l t . p l o t ( time , dens i ty )

# Disp lays animation and graph
p l t . show ( )
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