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Preface 

The immediate aim of this paper is to systematically 

investigate dynamical systems governed by a certain class of 

difference equations. The results obtained do not, however, 

constitute an isolated piece in a sprawling typology of dynamical 

systems. Instead, the phenomena encountered in our setting are 

often, with appropriate modifications, characteristic of all 

dynamical systems. Exploring these analogies is a secondary aim 

of this paper. 

The type of dynamical system that forms the basis of our 

inquiry is without question the best "window" upon dynamical 

phenomena in general. The study of dynamical systems involving, 

say, differential equations requires a higher degree of 

mathematical sophistication, and is at the same time more 

cluttered. Certain phenomena present in the simplest (one­

dimensional) systems involving difference equations have no 

parallels in continuous dynamical systems involving less than three 

coupled differential equations. 1 •
2 

1 May, 466-7. 

2Holden, New Scientist, 13. 

0 
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Part I: Dynamics 

1. Dynamics and Intuition 

The elegant body of mathematical theory 
pertaining to linear systems ... and its 
successful application to many 
fundamentally linear problems in the 
physical sciences, tends to dominate even 
moderately advanced University courses in 
mathematics and theoretical physics. The 
mathematical intuition so developed ill 
equips the student to confront the bizarre 
behavior exhibited by the simplest 
non-linear systems, such as Xn+1=aXn ( 1-Xn) . 
Yet such non-linear systems are surely the 
rule, and not the exception, outside the 
physical sciences. 1 

Until the emergence of chaos theory in the last twenty years 

there was a tendency to ignore non-linear dynamical models. 

Scientists in all fields tended to "habitually set the hard non­

linear systems aside. " 2 The spontaneous result of this bias was a 

blindness to complexity. The linear mathematics that they refused 

to relinquish left no room for it. 

In the absence of non-linear elements, the dynamical models 

of scientists inevitably prescribed simple equilibrium as the 

limiting behavior. Animal populations were to methodically 

approach final equilibrium, the prevalence of diseases was to 

1 May, 467. 

2Gleick, 305-6. 
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stabilize, and so forth. In every science the script was the same. 

Erratic populations and recurrent epidemics were met with the 

intellectual equivalent of a shrug, and chalked up to "a multitude 

of independent components or ... to random external influences. " 3 

Only complexity could breed complexity it was reasoned. 

There was a widespread ignorance of the capacity of simple 

non-linear systems to generate this complex, even startling 

behavior. Linear models were so entrenched that applied scientists 

mistook linear mathematics for all of mathematics. Non-linear 

dynamics was implicitly assumed to be a mere cousin of linear 

dynamics, albeit a computationally perverse one. 4 

Scientists were completely oblivious to the radical differ­

ences between linear and non-linear dynamical systems. The tool 

that would rescue science from its bewilderment in the face of 

complexity lay in a state of disuse, and scientific inertia 

threatened to keep it there permanently. Its recognition would 

require a pioneer willing to see complexity stemming from 

simplicity. 

The breakthroughs eventually came. Lorenz (1961) in 

meteorology, Robert May (1971) in population biology5
, and others 

finally set off the "chaotic revolution" after years of darkness. 

At an ever accelerating speed, researchers began to reexamine data 

that had in the past been dismissed "by saying there's noise, or ... 

3Gleick, 303. 

4Gleick, 303-17. 

5Gleick, 11-23 and 69-77. 



that the experiment is bad6
," as possible manifestations of non­

linear dynamics. Today, the inclination to ignore the possibility 

of patterns of "limiting behavior" more complex than simple 

equilibrium or periodicity has virtually disappeared among 

scientists. Unfortunately, this paradigm shift hasn't reached much 

beyond the fraternity of practicing scientists. As Robert May 

points out, even today's college students are generally unaware of 

the beauty and richness of non-linear dynamics. 

It is hoped that, in part, this paper will reveal the dramatic 

contrast between linear and non-linear dynamics. To this end, a 

fair amount of space is devoted to examining linear first order 

difference equations (Part II) before entering into the treatment 

of non-linear first order difference equations (Part III). The 

utter simplicity of the linear case will serve as a springboard for 

appreciating the menagerie of periodic, nearly periodic, and 

chaotic (seemingly random) behavior found in the simple non-linear 

system. 

6James Yorke as quoted in Gleick, 68. 
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2. The Terminology of Dynamics 

Dynamics is the study of the evolution of systems over time. 

The "system" under consideration can be as intricate as the case 

of a multi-step chemical process with numerous reagents, or as 

simple as the population of a single animal species. 

A dynamical system is completely characterized by two things. 

The first is a domain, a phase space, which encompasses all the 

possible states of the system. The state of a chemical reaction 

could, for instance, be represented by a vector of n real positive 

variables capturing the concentrations of then chemicals involved. 

The phase space would then be a "quadrant" of Rn. The second half 

of a dynamical system is the rule(s) of motion, or the "evolution 

equation(s) ." These rules are functions that guide the changes in 

state of the system over time. 1 While these rules may be 

differential equations instantaneously relating position in phase 

space to velocity in phase space, they may also be more manageable 

difference equations. 

Parts II and III. 

It is the latter that will concern us in 

Moreover, our focus will be on a very restricted class of 

difference equations in a one-dimensional setting. Our phase space 

will be R, the real line, and our "rules of motion" will be 

difference equations of the form xn+i=f (xn) where f is an analytic 

1Perci val, 1. 
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function whose range is contained in its domain. (That the state 

of the system at time n+l depends solely upon the state of the 

system at time n is a first order condition. 2
) Higher order 

systems3
, or multi-dimensional systems are of interest in their own 

right but are not discussed here. 

Our concern, then, will be with the behavior of the sequence 

of iterates (x0 , f(x0 ), f(f(x0 )), f (f(f(x0 ))), ••• ) 
4 for all possible 

seed values x 0 , i.e., for all of R. We will seek to identify 

regions of R called basins of attraction in which every seed value 

x 0 leads to a common attractor as n approaches infinity, and 

furthermore to characterize these attractors. 5 

These attractors range from simple equilibrium points to limit 

cycles of period p to the vastly more complex strange attractors. 6 

Where the attractor is strange the behavior of the iterates of x 0 

under f is said to be chaotic as they appear to be randomly 

generated. In reality there is an order underlying this seeming 

randomness--the strange attractor has a fractal 7 geometric form, 

and this form merely escapes the conventionally trained eye. 8 

By way of example, consider the real line R (xis in radians) 

2Goldberg, 54. 

30ne example of a 2nd-order system would be the Fibonnaci 
sequence Xn+z=f (Xn+l I Xn) . 

4Hereafter we will denote f(f(f(x))) as f 3 (x) and so on. 

5Devaney, 2-3. 

6Moo n , 2 1-2 3 . 

7See Appendix A. 

8Crutchfield, 51. 
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under the "motion equation" xn+1=cos (xn) . In this dynamical system, 

no matter what x0 in R is used as a seed value, the iterates of x 

will converge to the single solution of x=f(x)=cos(x). The one 

basin of attraction is all of R, and the attractor is the single 

fixed point x•~.739085133215. This fixed point x' is referred to 

as attractive since there is an interval (here: R) around x' in 

which all points converge to x' under iteration. In other 

dynamical systems we find repellant fixed points which repel all 

nearby points. The slightest perturbation from a repellant 

equilibrium will drive the system further from equilibrium. The 

former are called stable equilibria, and the latter unstable. 9 

Dynamical systems with attractors are said to be dissipative. 

They are the mathematical analog of physical systems that have an 

internal friction which ensures that arbitrary volumes in phase 

space contract with the passage of time as transients decay. 10 All 

motion that persists in the long run "in a n-dimensional 

dissipative system must be on a structure that has a dimension less 

than n: this structure is an attractor and occupies a subspace X 

of phase space. 1111 In our one-dimensional setting it might seem 

that there is little variety to be had in attractors of dimension 

less than one--just limit cycles of p points and simple equilibria 

seem possible. Such is not the case. Non-linear first-order 

9Devaney, 24-7. 

10Holden, A. V. and M. A. Muhamad, "A Graphical Zoo of Strange 
and Peculiar Attractors," 15-6: in Chaos, ed. A. V. Holden. 

11 • Holden, A. V. and M.A. Muhamad, "A Graphical Zoo of Strange 
and Peculiar Attractors," 16: in Chaos, ed. by A. V. Holden. 
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difference equations such as the quadratic we explore in part III 

can give rise to strange attractors of non-integral dimension 

between O and 1. These strange attractors are qualitatively 

distinct from anything generated with linear "evolution equations"; 

indeed, as we will see in Part II, the only attractors in linear 

dynamical systems are single attractive fixed points. 
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3. Discrete versus Continuous Models 

It should be noted that in adopting difference equations like 

Xn+1=aXn+b as our "equations of motion," we have chopped time up into 

discrete bi ts. There are times t 1 , t 2 , t 3 , etc. in such a 

mathematical system, but no t 315 or t1r . Such discrete models are 

sometimes directly pertinent to real world phenomena, but in other 

cases they do violence to genuinely continuous, flowing phenomena. 

The population dynamics of a species with a brief annual breeding 

season lends itself well to discrete models, while the trajectory 

of a projectile would be caricatured by such treatment. 

Often discrete models are applied to essentially continuous 

phenomena in the hope that rough approximations of the true 

behavior will be generated. Economists often employ difference 

equations in their models, for instance, even though they are aware 

that economic activity does not occur in discontinuous bursts. 1 

These approximations may be successful in certain contexts, but the 

potential for introducing gross error exists. A certain continuous 

dynamic model when translated into a perfectly analogous discrete 

model may mean the difference between simple equilibrium and chaos. 

Robert Devaney provides us with the following example. 

Suppose Pt is the population of an animal species at time t, and L 

is the maximum population that the food supply can support in full. 

1Baumol, 151-2 and 279-82. 
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Under a continuous model of population change such as 

dP/dt = kP(l-P), 

no matter what the "seed" population, Pt tends to Las t➔oo. If 

1. Pt<L then dP/dt>O; 

2. Pt=L then dP/dt=O; 

3. Pt>L then dP/dt<O. 

Graphically, if P0 exceeds L, then the pattern of adjustment 

to equilibrium is seen in Figure I.1. 
()0,1;\c.-t ,oi, 4 

'Po 

L -···-

7 -h"' e 
Varying the parameter k will change the curvature of the approach 

to equilibrium, but leaves the picture qualitatively unchanged. 2 

The analogous discrete dynamical system (called the "logistic 

map" for historical reasons): 

3 , 4 

gives rise to behavior which is radically different for certain k. 

In Devaney's words, "the dynamics of this system are still not yet 

completely understood. 115 The sequence Pn does converge to a simple 

equilibrium for certain k, albeit in the manner of Figure I.2. 

2Devaney, 3-6. 

3Here L has been replaced by 1 for technical reasons--we can 
think of Pt now representing a fraction of maximal population. 

4The logistic equation will serve as a prototypical quadratic 
difference equation in Part III. 

5Devaney, 6. 

9 
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For other values of k, however, Pn may tend to more complicated 

attractors such as a 2-cycle (k=3.1), a 3-cycle (k=3.84), or even 

to a strange attractor (k=4). A 2-cycle attractor, for instance, 

would cause the pattern seen in Figure I.3. 6 

pofJ.c,-\io- A 
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The bottom line is that one dimensional, continuous dynamical 

systems can have attractors no more complicated than simple 

equilibrium, while one dimensional, discrete systems can give rise 

to attractive p-cycles or even chaos. 

Clearly there are hazards involved with the Procrustean use 

of discrete models for continuous phenomena, and vice versa. The 

prominence today of chaos theory has made many scientists wary of 

such errors, but some modern economists, for instance, still employ 

discrete models as a matter of convenience ( economic data are 

collected at regular intervals), rather than by deliberate choice 

after close scrutiny of the nature of the phenomena being modelled. 

6Percival, 199-202. 

10 
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4. Determinism and Prediction 

When one writes down a function as an "equation of motion" 

for a dynamical system one has created a deterministic system. No 

matter where in phase space xk is, there is exactly one xk+1 produced 

by applying some map f to xk. Thus, given any point in phase space 

as an seed value, the entire future trajectory is determined. The 

seed value x 0 yields to precisely one x 11 which in turn generates 

a unique x2 and so forth. 1 

How can a strictly deterministic system be reconciled with 

the chaotic behavior manifested in certain cases? The answer lies 

in sensitive dependence on initial conditions (SD on IC) which is 

a property of certain non-linear dynamical systems. While an exact 

x 0 gives an exact x 1 and so forth, a seed value "close" to x 0 does 

not necessarily give a value "close" to x 1 • In fact small errors 

can be quickly amplified--a phenomenon often referred to as the 

Butterfly Effect. 2 This stands in complete contrast to the 

conventional view that small errors necessarily lead to small 

errors. 3 The physicist Maxwell put it thusly in 1873: 

... from the same antecedents follow the 
same consequents .... But it is not much use 

1Ekeland, 2 0-1. 

2The Butterfly Effect states that a butterfly's decision to 
flap its wings in South America may lead to a storm a month later 
in Texas; see Gleick, 11-31. 

3Ekeland, 64-7. 
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in a world like this, in which the same 
antecedents never again concur, and nothing 
ever happens twice .... The physical axiom 
that has a similar aspect is that "from 
like antecedents follow like consequents." 
But here we have passed from sameness to 
likeness .... There are certain classes of 
phenomena ... in which a small error in the 
data only introduces a small error in the 
result ... The course of these events is 
stable. There are other classes of 
phenomena which are more complicated, and 
in which cases of instability may occur. 4 

These "other" classes involve non-linearities in the laws governing 

evolution over time. 

The impact of the Butterfly Effect upon prediction is 

profound. Even if a real world phenomena could be captured 

perfectly by a dynamical model which involved SD on IC, long-range 

prediction would still be impossible. The most minute error in 

measurement of the state of the system at t=O will cause cascading 

errors as time progresses. Long-range prediction is damned from 

the outset (in systems exhibiting SD on IC) by the fact that all 

measurements are approximations--Heisenberg ensures this. 5 As 

Ekeland notes, 

If the experimenter reproduces exactly the 
same initial conditions, he will observe 
exactly the same trajectory: this is what 
it means for a system to be deterministic. 
But in practice, the initial conditions can 
never be reproduced exactly. There has to 
be some discrepancy ... unnoticed at the 
beginning ... (which) will be amplified with 
time, resulting in the long run in a 
completely different situation. The system 

4Quoted in Ekeland, 67. 

5Gleick, 18-21. 
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thus exhibits some degree of randomness: 
the ( seemingly) same initial conditions may 
lead to significantly different 
evolutions. 6 

Due to this "randomness," prediction must take an attenuated form, 

contenting itself with probabilistic statements. 

Some scientists in the field of chaos have seized upon the 

word random, and have begun to make declarations about free will 

and so forth. 7 This is truly a case of the tail wagging the dog. 

The modus operandi of such people is to investigate the behavior 

of an arbitrary mathematical construct, then to spell out the 

implications of the model for reality. Even so, such backwards 

reasoning should lead to the conclusion that "reality is 

deterministic because my model is deterministic." It is mere 

hubris which causes them to confuse "deterministic" with 

"determinable by man", and leads them to talk about free will. 

Chaos is not metaphysics. If there is a philosophic lesson to be 

learned, it is that if indeed the universe is deterministic, and 

involves phenomena which are SD on IC, then we as human observers 

are epistemologically barred from seeing the path of evolution in 

full. We may be able to predict tomorrow's weather, or even that 

of next week, but under no circumstances will we be able to predict 

the weather arbitrarily far into the future. 

In the dynamical models we consider in Parts II and III, that 

is, one dimensional systems with both linear and non-linear maps, 

6Ekeland, 66-7. 

7Ford as quoted in Gleick, 306. Also Crutchfield, 57. 
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the future is always deterministic. The future is contained in the 

present to paraphrase Ekeland. 8 The past, however is not always 

determined by the present state of affairs. In cases where the map 

f is 1-1, i.e., f- 1 exists such that 

the past is unambiguously determined. Included here are all the 

linear maps of Part II--with f- 1 we may look backward in time as 

easily as forward with f. When f is not 1-1 the past is not 

determined by the state of the present. The history of (xn) is 

ambiguous and best called prehistory. All the quadratics in Part 

III fall in this category. If x 0=9 and Xn+i= (xn) 2 then all we can 

deduce about x_ 1 is that it may be -3 or 3. Of course, in this case 

-3 is a dead end, but in general quadratic evolution equations like 

the logistic equation create an infinite tree of possible 

historical paths. Some entries in the tree may be equivalent, but 

nonetheless it is apparent that even in the x 0=9, Xn+i= (xn) 2 model 

there are an infinite array of possible histories. In any case the 

past is hidden whenever a non-linearity in the evolution equations 

causes multiple points to be mapped to the same point. 9 ' 
10 

8Ekeland, 16. 

9For a few special points the past may be determinate in such 
cases: X0=0 implies that Xnegative n=0 just as Xpositive n=0 in the 
"squaring" system above. 

10Not all non-linear difference equations are not 1-1: 
Xn+i= (Xn) 3 for example. 
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5. Arnold's Cat and the Taffy Pull Paradigm 

The key to understanding chaotic behavior 
lies in understanding a simple stretching 
and folding operation, which takes place 
in phase space. 1 

The effective randomness of dynamical systems which were 

chaotic required a new paradigm. It had to account for the 

"deterministic but random" behavior of systems which defied human 

prediction through sensitivity to initial conditions. 

The new paradigm found its image in the actions of a baker 

who stretches and folds dough over and over again. For historical 

reasons, a cat (Arnold's Cat--Arnold being a Russian dynamicist) 

usually appears on the dough to give substance to the procedure. 2 

After only a few stretches and folds, "Arnold's cat (is) ... turned 

into mincemeat," 3 as we see in Figure I.4. 4 

l -::::, 

Parts of Arnold's cat originally right next to each other are now 

1Crutchfield, 51 as quoted by Dewdney, 109. 

2Ekeland, 48-58. 

3Ekeland, 50. 

4Diagram I.4 is a reproduction of one in Ekeland, 51. 
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scattered by this deterministic process until total disorder seems 

to reign. 5 •
6 

In linear dynamical systems such as we consider in Part II 

there is no "stretching and folding" process--only stretching. 

The mathematical analog of "stretching and folding" does occur in 

certain nonlinear systems, however. For clarity we will examine 

a particular evolution equation, namely the logistic map fk 

with parameter k=4 to illustrate this. 

Graphically the logistic map (with k=4) appears as in Figure 

I. 5. For the present discussion we will worry only about the 

interval [0,1], noting that [0,1] is mapped onto [0,1] by f 4 • 

1- r 4, /: 

'f 

C I 

It is clear that for any x in [0,1] except x=.5 there are exactly 

two values y and z which are mapped onto x. In fact [ 0, . 5 J is 

mapped onto [ 0, 1 J as is [ . 5, 1 J : the lower half of the unit 

interval is stretched to fit over [0,1], as is the upper half of 

the unit interval. But this is to say that the unit interval is 

5Ekeland, 52. 

6Conrad, M., "What is the Use of Chaos," 3: in Chaos, ed. A. 
V. Holden. Conrad suggests that a rotating taffy puller is perhaps 
even a better image for the "stretching and folding" operation. 
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stretched and folded. If we continue the process depicted in I. 6 

we see that, qualitatively, 
I .. l fi3v'< 

C I: :; ) C I f C 
) 

0 
0 0 0 

-1, ~ 
0 0 0 0 

t;;o t_,\ t=;J... ::. 

the unit interval is indeed stretched and folded in a manner 

analogous to the "baker's shift." In each case the curve C is a 

distorted unit interval which indicates how arbitrarily close 

points in [ O, 1] become torn apart from one another as time 

progresses. 7 An imperceptible error in measurement of x 0 , the 

initial condition, asserts itself as seeming randomness as time 

passes. 

7Gleick, 50-2. 

11 
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6. Discrete Dynamical Systems and Computers 

Discrete dynamical systems lend themselves to exploration by 

computer. It is very helpful in generating conjectures to actually 

set up an iterative procedure to trace the orbits of points in 

phase space and merely observe. Pure abstraction which dominates 

nearly all of mathematics is here supplemented with methods that 

are literally experimental. 1 As Hofstadter notes in his essay 

Chaos and Strange Attractors, "not all mathematicians approve" 2 of 

this. 

In practice, the behavior of a dynamical system with seed 

value x 0 is tracked by a simple procedure like the following: 

INPUT X0 

LOOP M TIMES over 
X=F(X) 

LOOP P TIMES over 
X=F(X) 
DISPLAY X 

where the M is sufficiently large to weed out the transients 

associated with the seed x 0 , and bring the orbit infinitesimally 

near the attractor, if indeed there is one. By iterating P more 

times and displaying xn on each pass we are then able to "see" the 

attractor (P must be chosen large enough to flesh out the 

1Hofstadter, 364-6. 

2Hofstadter, 366. 
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attractor.) 3 If xn=xk for all n>k then the attractor is a one-

cycle; if xn+q=xn for all n>k then the attractor is a q-cycle. If 

no pattern is apparent then one has chaos. 

As a final note, it should be mentioned that a digital 

computer will introduce round-off error at each step of the 

iterative process outlined above. This poses no problem when the 

attractor is a simple equilibrium or a q-cycle. In those cases 

there is no sensitivity to initial conditions. When there is a 

chaotic (i.e., fractal) attractor, however, the accompanying SD on 

IC magnifies the computer round-off error into a significant 

factor. The result is that the fine, 

the fractal attractor is completely 

self-similar structure of 

obscured. One sees only 

randomness, and must translate this as chaos. 

3Dewdney, 108-9. 
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Part II: Linear First-Order Difference Equations 

To set up a contrast for Part III we look at the simple 

dynamics on R produced by linear first-order difference 

equations, i.e., equations of the form 

where a,b are both in R, and af0. 1 These dynamics are 

straightforward and will be exhaustively treated in a few pages. 

All of Part III, on the contrary, will cover only the rudiments 

of the dynamics of quadratic first-order difference equations. 

To begin, we ask which points in Rare fixed under the 

mapping f(x)=ax+b. We solve f(x)=x. Since f(x)=ax+b we have 

ax+b=x or 

x=b/ ( 1-a) . 

Thus we find that precisely one point in R, namely x1ixed=b/ ( 1-a) , 

is fixed under the mapping f, unless a=l. If a=l then our 

difference equation is of the form 

and clearly all points in Rare fixed under f if b=0, and no 

point whatsoever is fixed if bf0. 

1If a=0 then we do not have a first order difference 
equation, merely a trivial dynamical system wherein Xn=b for all 
nEN. 
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Next we examine first-order linear mappings for cyclical 

points of order p where p>l. Are there any elements of R which 

are not fixed (i.e., f(x)fx), yet 

f ( f ( . . . f ( X) . . . ) ) =X 
'----.,- J 

cs 

Our first step is to look for x in R which are cyclical of order 

2, but not fixed. We solve f(f(x))=x or f 2 (x)=x. Hence we have 

a(ax+b)+b=x or 

x= l-q 

Recall that xf=b/(1-a) · is only a trivial 2-cycle as it is a fixed 

point. 2 Obviously, unless a=-1 the term (l+a)/(l+a) disappears 

leaving us with no non-trivial solution. If a=-1 then our 

evolution equation is of the form 

and every point in R is 2-cyclic, satisfying f(f(x))=x: in 

addition one of these points is fixed. Figure II.1 illustrates 

the workings of the map Xn+1=-Xn+b where b=0. 3 

Each point x in R is mapped to its mirror image x' (the "mirror" 

is b=0), which in turn is mapped back to x. 

Thus in one very special case (a=-1) our linear evolution 

2A fixed point, also called a 1-cycle, is trivially a p­
cyclic point of any order p. 

3Other b give qualitatively identical pictures. 
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equation creates the 2-cycles of Figure 1. Every x in R is 

trapped on a 2-cycle from the very outset--there is no attracting 

and no repelling involved. 

This is the high water mark of one dimensional first-order 

linear dynamics. There are no other limit cycles to be found. 

We prove below that such dynamical systems possess no (non­

trivial) p-cycles for p>2. 

To show this we first define homeomorphism. A homeomorphism 

of Risa function f: R➔R such that f is 1-1, onto, continuous, 

and f- 1 is also continuous. 4 Clearly our linear evolution 

equations satisfy these conditions. Now we prove that a 

homeomorphism of R has no (non-trivial) cyclic points of period 

greater than two. 

Theorem 1 A homeomorphism f:R➔R has no (non-trivial) points 

of period three or greater. 

Proof Since f is 1-1 and continuous, f must be either 

strictly decreasing, or strictly increasing. 

Suppose f is strictly increasing (x<y implies f(x)<f(y)), 

and further suppose that f(x0 )=x1>x0 • It follows that 

x 0<x1<x2< ... <xn. Clearly fn(x0 ) will never return to x 0 under these 

conditions. If we assume that f(x 0 )=x1<x0 then again fn(x 0 ) never 

returns to x 0 as x 0>x1>x2> ... >xn. The only remaining case is that 

where f(x0 )=x0 in which case we have a simple 1-cycle. 

4Devaney, 9. 
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Now take f to be strictly decreasing (x<y implies 

f(x)>f(y)). As above, if f(x0 )=x0 then x 0 is of period 1 and we 

x2 >x0 as shown in Figure II.2. Under these conditions all xk for 

k>2 lie between x 0 and x 1 and thus fn (x0 ) never returns to x 0 • 

This statement is justified because if x 0<y<x1 it follows that 

f (Xo) =X1>f (y) >Xz=f (X1) >Xo. 

Xi,_.,= f(iJ 

I • 

·f f 
xo x~ X, 

If x 2=x0 then x 0 is of period 2. 
- >~ 

"' Finally if x2<x0 , then, 

since x<y implies f(f(x))<f(f(y)), we see that the subsequence 

(x1 , x 3 , x 5 , ••• ) is increasing and the subsequence (x2 , x 4 , x 6 , ••• ) 

is decreasing. But this means that fn(x0 ) never returns to x 0 as 

The other case where x 1<x0 proceeds similarly. 

Now we turn to the question of whether the fixed points of 

Xn+1=aXn+b are attractive or repellent equilibria or neither. 

Immediately, we dispense of the pathological cases where lal=l. 

If a=-1 then nothing can be added to the analysis above. If a=l 

and b=O then every point in Risa fixed point and its own 

trivial attractor. The time path of any seed value x 0 is simply 

(x0 , x 0 , x 0 , ••• ). If a=l and bfO then the dynamics are as shown 

in Figure II.3. 
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This picture introduces the "45-degree diagram" that will play an 

important role in Part III. 5 •
6 It is evident from the figure that 

(xn) ➔±oo depending upon the sign of b. An algebraic proof of this 

merely requires that we recognize (xn) as an arithmetic sequence. 

This leaves us with only the well behaved cases where afl. 

Here there is always a unique fixed point xf=b/(1-a). 

There are two distinct dynamical behaviors to be found. If 

:a:>1 then xf is repellant, while if :a:<1 then xf is an 

attractive equilibria. The basin of influence is all of R in 

both cases. Figures II.4 a,b,c,d show the dynamical behavior of 

(xn) for arbitrary seed values given different values of a, 

respectively 

_Fi~ JI.½a... 
q,)f 

l>a>O, O>a>-1, and a<-1. 

I,~.,,_~ n. Yb 
0<-a.<. I 

/ 

/ 

5This diagram plots xn+i versus xn to allow a visualization of 
the time path of (xn); the 45 ° line is used to translate points 
from one axis to the other. 

6Diagram employed in Gleick, 176. 
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If la l >1 then xf is repellant and li1t1n➔co l (xn) l =oo for all X 0 €R 

other than xf. If lal<l then xf is an attractive fixed point, 

The time path of (xn) can be described succinctly in 

algebraic terms for those unconvinced by the diagrams above. We 

can literally solve for xn in terms of x 0 and n due to the simple 

linear nature of the evolution equation: 

and by induction, 

if we ignore the pathological case 
where a=l. 7 

Given this equation it becomes apparent that if lal<l .then 

as n➔oo the highlighted terms become infinitesimal and (xn) 

approaches xf=b/ ( 1-a) . Similarly if la l >1 then li1t1n➔co l (xn) l =oo. 

With this we have exhausted the dynamical possibilities of the 

family of linear one dimensional first-order difference 

7Goldberg, 63. 
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equations. Their simplicity makes for a striking contrast with 

the rich dynamical behavior of the non-linear families 8 that we 

deal with in Part III. 9 •
10 

8The logistic family and the family Xn+i= (Xn) 
2-a. 

9Goldberg, 63-87 investigates the material of Part II from a 
different angle which the reader may find helpful. 

10The reader is referred to Appendix Bon Catastrophe Theory 
to see how that applies to the above analysis. 
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Part III: Quadratic First-Order Difference Equations 

1. Introduction 

In this section we examine non-linear dynamics through the 

logistic family of maps Xn+1=fk (Xn) =k (Xn) ( 1-Xn) , or where more 

convenient, through the family of mappings Xn+1=fa (Xn) = (Xn) 2-a. 1 

All of the dynamical properties exhibited by one are also present 

in the other--moreover there is a whole class s of non-linear 

evolution equations which possess 

qualitatively identical to that of our 

If there exists a "k" such that the 

dynamical properties 

prototypical quadratics. 

logistic map yields an 

attractive 3-cycle then there exists a corresponding parameter 

value "a" such that Xn+i=(Xn) 2-a exhibits an attractive 3-cycle, for 

instance. 

The conditions that must be met by an evolution equation for 

it to fall into this class s are minimal. There must be an 

interval I in R which is mapped into itself by the continuous 

function f such that f has a unique maximum--to the left of which 

f is strictly increasing, and to the right of which f is strictly 

decreasing. 2 These conditions are met by the logistic function in 

the interval [0,1] when 0<k<4 as shown in Figure III.1. 

1The two families of functions are fk=kx(l-x) and fa=x2-a. 

2Preston, 1-2. 

";;) I 
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() (1-x) 

½ 

Families of iterative functions as di verse as 

f(o)-::..o 

Fc1) o 

X =rX o-rx> n+l n and 

Xn+1=rsin (1rXn) satisfy these conditions for certain ranges of the 

parameter r, and exhibit behavior topologically equivalent to that 

generated by the logistic family for 0<k<4. 3 

These facts are established in Devaney' s Introduction to 

Chaotic Dynamical Systems in parts I.6 and I.7 on symbolic dynamics 

and topological conjugacy. They are outside the scope of this 

paper, but we shall use them as needed. 

In Figure III.2 is a bifurcation diagram for the family of 

evolution equations Xn+i=(Xn) 2-a. 4
'

5 On the horizontal axis is the 

parameter "a" which is crucial to the behavior of the iterates of 

(xn), and on the vertical axis are plotted the points of 

accumulation of (xn) . 6 There is vast array of behavior visible 

3As might be expected, a family of maps like Xn+i= (Xn) 2-a 
satisfies the obverse of our conditions (a unique minimum rather 
than a unique maximum, etc.) and also exhibits dynamical behavior 
that is topologically identical to that of the logistic family. 

4Diagram produced by Dana Borger, NSF. 

5See Appendix c for a further description of bifurcation 
diagrams. 

6The range of "a" displayed in the bifurcation diagram is 
[1/4,2] because this is the range of interesting dynamics for this 
family. 
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including a region of "a" which causes xn to converge to a single 

value (Region A), a region with an attractive 3-cycle (Region B), 

and even areas of seeming randomness such as Region C. We will 

only begin to explore the complexities of this diagram in the pages 

to follow. 

With the presentation of the bifurcation diagram the statement 

about the topological equivalence of the families of iterative 

equations can be strengthened. The bifurcation diagram of the 

logistic family can be stretched and contracted to look just like 

that for Xn+i= (Xn) 2-a or any other family in S. This surprising fact 

is supported by a second bifurcation diagram (Figure III.3), this 

one for the logistic family. 

0 
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Transition from cyclic to chaotic behavior . Tt"le graph shows points tha t ari se during 20 000 
iterations 1n computing va lues of population for some in1t1al va lue As the groW1h parameter r in­
creases from 3 to re the population osc illates among 2. 4 , 8, . . 2'. . . va lues . At re the infinity of 
lines becomes an in finity of bands . the va lues of the population osc illate 1n a regular fash ion 
among the bands , but take on random va lues w1th 1n each band As r increases above re . the 
bands merge . until tor va lues of r above r 2 there 1s on ly a single band of va lues that the popula­
tion assumes chaot ically. The thin white stripes such as the reg ion labeled C3 represent penods 
in which the population assumes regu lar va lues for much of the time and is only 1nterm1nently 
chaot ic While the scale 1n figure 4 1s highly nonlinear . the scale here is linear . Figure 5 
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2. The Region of Interest 

The task of examining a family of non-linear dynamical 

equations on all of R is not as ominous as it may sound. Only a 

small region of parameter values "b" 1 give interesting behavior. 

The remaining areas can be handled in short order. Similarly, for 

all but a small region of seed values, (xn) simply spins madly off 

The family of maps Xn+i= (Xn) 2-a for instance has "interesting" 

dynamical behavior only when -l/4<a<2. If a<-1/4 then regardless 

of x 0 , liIDn➔<Xl (xn) =oo. 2 Figure III. 4 below indicates the behavior of 

arbitrary x 0 under iteration when a<-1/4. 

✓,,'\ 
/ 

Ix 

This can be proven with little effort. 

Theorem 2 If a<-1/ 4, then liIDn➔<Xl (xn) =oo for all 

1We employ "b" as a generic function parameter. 

2There are no fixed points as f(x)=x has no real solutions for 
a<-1/4. 
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Proof We show that (xn) is increasing, and that (xn) is unbounded 

above. To show increasing we note that 

Xn+l -Xn = ( ( Xn) 
2-a) -Xn = ( ( Xn) 

2
-Xn) -a > -1/ 4 -a > 0 

since a<-1/ 4. But then xn+1>xn for all nEN. 3 To show unbounded we 

observe that if (xn) were to converge to a point p, it would 

necessarily be the case that (xn+i) converges to fa (p) >p since 

f (xn) =xn+i · This gives an immediate contradiction since (xn) and 

( Xn+l) must have the same 1 imi t. 4 

unbounded we are done. 

With (xn) both increasing and 

In a similar manner, if a>2 then "almost all" x 0 cause (xn) to 

diverge to infinity. This cryptic statement must remain unproven 

until the end of this section. 

We turn for a moment to a consideration of the ranges of x 0 

that produce interesting dynamics. For each map fa with -1/4<a<2 

the range of interest is 

-R= -(l+J[1+ 4a]) < x 0 < (l+J[1+4_a ]j =R 5 

We call this interval J. If x 0 is in J, then the sequence (xn) is 

forever trapped in J; if not, (xn) diverges to infinity. We prove 

Theorem 3 

3Note that the minimum of f(x)=x2-x is -1/4. 

4This brief proof of unboundedness is due to Devaney, 32. 

5 "R" is the larger root of f (x) =x2-a=x; "r" is the smaller 
root. 
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Proof Again we show (xn) to be increasing and unbounded. We 

proceed by induction to show increasing. Let lx0 l=R+c where c is 

positive. Clearly x 1 is positive and exceeds x 0 for a>-1/4 since 

By similar means it can be shown that x 2>x1>0. 

With this established we show that xk>xk_ 1>0 implies xk+1>xk. 

Thus (xn) is increasing. To show unboundedness we repeat the 

argument given in the proof of Theorem 2. 

With this we have a well defined block of "a" and "x0 " values 

that produce interesting dynamical behavior--Figure III.5 shows 

this region for the family xn+i= (xn) 2-a. Note that since J depends 

upon "a" the region is not square. 
X 

lRl=(l+J[1+4a]) 

For the logistic family there is a corresponding picture 

stretching from k=O to k=4 with one major difference. The interval 

J of seed values that are trapped under iteration is always the 

unit interval [O,l]. 

rectangle. 

Thus the "region of interest" is a simple 

3· 

.Jir. 
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To complete our treatment of the "region of interest" we 

examine the logistic mapping shown in Figure III.6 for k>O. 

Figvr JIL {, 

" (11.---;---....... ----~ 

f(\) 0 

f-Co)= o 

o I X 

with a maximum at x=l/2 of height k/4. Clearly, so long as O<k<4 

the unit interval is mapped into itself. 6 

The value k=4 for the logistic family plays the same role that 

a=2 does for the x 0 +1= (x0 ) 
2-a family. Due to the simplicity of the 

logistic family in this context, we will address the earlier 

statement that "almost all x 0 cause divergence to infinity if a>2" 

by looking at k>4 for the logistic. 

If k>4 then Figure III.7 applies. 

P-(x) 

¾ 

y 
---1 

H 
X 

f-(1 - 0 

Ho)-o 

There is an interval in [ O, 1 J in Figure III.7 which is mapped 

under fk outside of [ O, 1 J never to return. The two disjoint 

intervals I 1 and I 2 are each mapped ("stretched") onto all of the 

6Devaney, 3 3 . 
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unit interval [0,1]. With another iteration the process of Figure 

III.7 is repeated for each of f(I 1}=[0,l] and f(I 2 }=[0,l]. The 

centers of I 1 and I 2 are both mapped outside of [0,1] where they 

proceed to head off to infinity. The continuation of this process 

indefinitely leaves only a Cantor Dust7 of points inside the unit 

interval which forever remain there. "Almost all" points will 

eventually jump outside the unit interval and spin off to -oo. 

The balance of Part III will examine the "region of interest" 

for the logistic family, or where more convenient, its cousin, the 

7 d' See Appen lX A. 
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3. Bifurcations and Universality 

At the lowest parameter values shown in the bifurcation 

diagrams (Figures III. 2 and III. 3) there is simple convergence 

exhibited by (xn). Then as the parameters ("k" or "a") increase, 

there is a trend toward increasing complexity until the chaotic 

regime is reached where no pattern whatsoever is discernible. 

With this in mind we begin at the extreme left of Figure III.2 

where a is at its lowest value, namely, -1/4. What happens when 

"a" passes the value -1/ 4 that causes (xn) to converge under 

iteration where before it had not? The answer is to be found in 

the tangent bifurcation depicted in Figure III.8. 

,c__..---- p➔• of- tc. ',,,:rY\C:r 

~;: -~ 

The parabola representing f (x) =x2-a finally descends enough to 

intersect y=x when a~-1/4, giving real solutions to fa(x)=x. At 

a=-1/4, the two curves are tangent and fa(x)=x has the double root 

x=l/2. Arbitrary x 0 in (-1/2, 1/2) converge to the fixed point 

x=l/2 as shown in Figure III.9. 
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1\ 
. 9 

0 

For all a in the range [-1/4, 3/4] the equation fa(x)=x has 

two real solutions, one attractive and one repellant. 1 The larger 

solution "R" is repellant because l fa' (R) l >l, while the smaller 

root "r" is attractive since I fa' (r) l <l. 2 '
3 

Diagrams III.l0a and III.lob illustrate the vast difference 

between iterative behavior near a fixed point where ifa' (x) l>l, and 

behavior near a fixed point where lfa' (x) l<l. 

_FiJv, =rr[_ lOC( ~--- III" IOt 

/E/ )()I< I 11/ { x)[ 1 I 

' 
Xo I 

I cf I I X-o 

I I 
Xf Xf c) 

1For this range of "a" there are no real solutions to higher 
degree equations fan(x)=x aside from the two trivial solutions which 
also satisfy fa(x)=x. 

2On the importance of the slope of f at Xnxed in determining 
attracting and repelling behavior the reader is referred to section 
II, especially Figure II.4. 

3Where, as at a=-1/ 4, l f' (Xnxea) l =l, the determination of 
attractive/repellant status is tedious and will not concern us. 
It so happens that all tangency bifurcations for Xn+i= (Xn) 2-a will 
be attractive, as we see for a=-1/4. 

y-x 
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Picard's Theorem formalizes what is shown in Figure III.lOa. If 

f: [a,b] ➔ [a,b] is continuous and differentiable on [a,b] such that 

l f' (x) l~L<l for all x in [a,b] and x 0 is in [a,b], then the 

sequence (xn) defined by Xn+1=f (xn) converges to the solution of 

f(x)=x in [a,b]. This is proven in standard real analysis texts. 

In a similar vein, if 1

1 

f' (x) 1

1 

_>L>l at x then there is some fixed 

interval [a,b] around xfixed such that (xn) will eventually be 

repelled out of [a, b] for all x 0 in [a, b], except x 0=xrixed of course. 

As "a" passes 3/ 4, l fa' (r) l becomes larger than one, and "r" 

joins "R" as a repellant equilibrium. At the precise moment that 

"r" becomes unstable, however, an attractive 2-cycle appears. When 

a~3/4, the fourth degree equation fa(fa(x))=x, which previously had 

only the two trivial roots "r" and "R," develops two additional 

real roots. These two new roots (xa and xb) are, algebraicly, 

4 

-I+ 

Since they are stable so long as lf
21

(x) l=l4x3-4axl is less than 1, 

they remain attractive from a=3/ 4 until a=5/ 4. The value of 

I 2' I 
1 f (x) 1 at both xa and xb begins at 1 at a=3/4, then decreases past 

o till finally reaching -1 at a=S/4. 

Before moving on, it is easily established that the value of 

lfn'(x) l is the same at all n points of an n-cycle. We show that 

if (c1 , c 2 , c 3 , ••• cn) is an-cycle under f, then 

4We factor (x2-a) 2-a to obtain (x2-x-a) (x2+x-(a-1)). The 
expression (x2+x-(a-1)) yields our two new roots. 
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By use of the chain rule for derivatives 

e· (x) =f 1 ( fn-l (x)) *f 1 ( fn-Z (x)) * ... *f 1 ( f (x)) *f 1 (x) 

But then fn' ( ci) =f' ( c 1 ) *f' ( c 2 ) * ... *f' ( en) by mere rearrangement for 

all ci in then-cycle and we are done. An immediate corollary of 

this is that each branch of a 2k-cycle splits at precisely the same 

moment. 

The process seen above where an attractive 1-cycle split into 

an attractive 2-cycle is called a pitchfork bifurcation5
• It is 

repeated endlessly. At a=5/4 an attractive 4-cycle appears, to be 

followed by an 8-cycle, then a 16 and so on. 6 These bifurcations 

come at ever shorter intervals and accumulate at a~l.41 for our 

It should be emphasized that this 

bifurcation process is characteristic of all the families ins, 

i.e., of all "stretching and folding" type maps. 

The bifurcation phenomenon is not only a qualitative 

regularity, however, but also universal in a quantitative sense. 

The physicist Mitchell Feigenbaum was the first to notice this in 

the mid-70's. 

Feigenbaum found that the (attractive) 2n-cycle regions became 

narrower in a very predictable manner for various families in S. 

In fact, he found that the range of the parameter b yielding an 

attractive 2k-cycle approaches (roughly) 4.669 times that of the 

5In contradistinction to a tangency bifurcation where an 
attractive cycle appears preceded by nothing. 

6Closed form computations of 
bifurcations occur quickly become 
e (x) =x is of degree 2n. 

the "a" 
impossible 

values 
as the 

at which 
equation 
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succeeding 2k+1-cycle as k increases. 7 
• 

8 

As a corollary of this universal convergence, there is an 

accumulation point for the 2n-cycles called 2~ for all families in 

S that defines the border between orderly 2n-cycles and the chaotic 

regime. 

For the family Xn+i= (Xn) 2-a we have the following data to 

support the above statements: 

n range width ratio of band widths 

1 - . 25 to .75 1.00 ] 
2 

2 .75 to 1.25 .50 l-
4.24 

4 1.25 to 1. 368 . 118 -L 
4.53 

8 1. 368 to 1. 394 .026 
1 4.727 

16 1. 394 to 1.3995 . 0055.J 

Beyond this point the data I have contains too much error to be of 

use, but clearly these results point to Feigenbaum's Number. 9 

7Feigenbaum, 50-1: the constant 4.669 ... is called 
Feigenbaum's Number. 

8Feigenbaum did not rigorously prove this--that came in 1979 
by Oscar Lanford; Gleick, 183. 

9This data was generated by Terry Estes and Dana Borger, NSF. 
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4. Windows 

To this point we have looked at the procession of period 

doubling that occurs after the advent of a 1-cycle at the extreme 

left of the bifurcation diagram ( at a=-1/ 4 for Xn+i= (Xn) 2-a) . There 

are other non-chaotic regions, however, that abruptly appear in the 

chaotic regime and also exhibit period doubling. These "n-windows" 

of order amongst chaos appear at irregular intervals--casual 

inspection of Figure III.2 reveals several such regions. 

Each such n-window comes into being when the parameter "b" 

reaches a critical value such that y=fbn(x) finally intersects y=x 

(simultaneously at n different points). Just as the 1-cycle began 

with a tangent bifurcation, so does each n-window embedded in the 

chaotic regime. The only difference is that each window begins 

with an n-cycle (nfl), instead of a 1-cycle. 

As b increases beyond bcriticai, the process of period doubling 

occurs as outlined in section III.3. Since the window began at its 

extreme left as an n-cycle, though, the sequence of periodicities 

is n, 2n, 4n, 8n, ... rather than 1, 2, 4, 8 .... 

Figure III. 11 is a closeup of the 3-window for Xn+i= (Xn) 2-a. 

A close examination of one of the three arms of this picture 

reveals that the arm replicates the entire bifurcation diagram. 

In other words the bifurcation diagram is self-similar or f~actal. 

One interesting result regarding these windows is that there exists 

a window of all orders p where pis prime. I can only prove this 
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in the context of the Xn+i= (Xn) 2-a, but relying on the notion of 

topological conjugacy1 it is clear that such a result applies to 

all classes of mappings ins. 

Theorem 4 For every prime p there is an attractive p-cycle in the 

region 1/2<a<2 under the iterative function Xn+1=(Xn) 2-a. 

Proof We show that there exists an attractive n-cycle (n>l) with 

o as a member somewhere in the range 1/2<a<2. Clearly if o is an 

element of an n-cycle, then-cycle is attractive as: 

e• (X)=f I ce-l(X)) *f I ce-z(X)) *• • • *f 1 (f (X)) *f' (X) 

fn I ( 0) = e e e e • • e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e * 2 x= 2 ( 0) = 0 

Now consider the equation fan(0)=0 for all n>l. Let Pn(a) be the 

polynomial in "a" 2 that corresponds to f/(0). We show that Pn(a)=0 

has at least one root in the region 1/2<a<2, and thus that there 

is an "a" producing a stable n-cycle in 1/2<a<2. Our procedure 

will be to prove Pn(l/2)<0 and Pn(2)>0 by induction for all n>l, 

which together imply that Pn(a)=0 for some real "a" in 1/2<a<2. 

1. Pn ( 1/2) <0: 

For n=2 we have f 2 (0)=p2 (a)=a2-a 

and so p 2 (1/2)=1/4-1/2=-1/4. 

Now assume -1/2< Pk(l/2) <0. Thus we have 

0< Pk(l/2) 2 <1/4. 

Subtracting 1/2 gives 

-1/2< Pk(l/2) 2-1/2 <-1/4<0, or 

-1/2< Pk+l <0 as needed. 

1See III.1. 

2We note here that 

44 
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2. Pn ( 2) =2: 

For n=2 we have 2 2 f (O)=p2 (a)=a -a 

and so p 2 (2)=4-2=2. 
Now assume Pk(2)=2. Hence 

Pk+i= (Pk ( 2) ) 2-2=4-2=2 as needed. 

With this proven, we employ the Intermediate Value Theorem to 

obtain that there is an attractive n-cycle in 1/2<a<2. 

Now it is possible that these attractive n-cycles which we 

have found are degenerate. A degenerate n-cycle is also a q-cycle 

for q less than n (a 3-cycle is also a degenerate 9-cycle for 

instance). Clearly we are not satisfied at this point. If so, we 

would have contented ourself with noting that there is a 1-cycle 

at a=O which is a degenerate n-cycle for all ncN. 

So long as n is prime the only possibility for degeneracy is 

that of the n-cycle being a 1-cycle. 3 But for our n-cycle 

( containing O) to be a 1-cycle it must be that f ( O) =pi( a) =-a=O 

which occurs only if a=O. But our n-cycle is in the range 1/2<a<2. 

With this we are done. We are assured, for all primes p, a 

non-degenerate p-cycle which is attractive. An interesting 

corollary is that there are an infinite number of windows in the 

chaotic regime. 

3For a proof of this see Appendix D. 
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5. Intermittency 

Just before a window arises in the chaotic regime an odd 

phenomena known as 11 intermittency11 occurs. For our family of maps 

Xn+i= (Xn) 2-a, for instance, the parameter 11 a II reaches the critical 

value necessary to create an attractive 3-cycle at 1.75: for 11 a 11 

values just less than 1.75, (xn) has bursts of chaotic behavior 

mixed with apparent convergence to a 3-cycle. 1
'
2 This intermittent 

behavior just prior to a tangency bifurcation3 is easily explained 

diagrammatically. For 11 b II just less than bcritical we have the 

situation depicted in Figure rrr~12. 
F,/x) 

The map fbP(x) is nearly but not quite tangent4 to y=x, and thus (xn) 

1Cvitanovic, 30. 

2Bai-Lin, 45-7. 

3A tangency bifurcation occurs, and a window of period n 
appears, when fn(x) finally becomes tangent to y=x, yielding an 
attractive n-cycle. 

4Nearly tangent at n different points, only one of which is 
shown in Figure 1. 
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will act chaotic until chancing to land near q, in which case (xn) 

will seem to converge to a p-cycle for a few iterations. Soon (xn) 

escapes from the influence of q and returns to chaotic behavior 

beginning the process all over again. 

The closer "b" is to bcriticai, the more prolonged will be the 

orderly bursts. 5 On a detailed bifurcation diagram this is visible 

in the form of increasingly high concentrations of iterates around 

the n points of near-tangency as the "b" approaches a critical 

value. A good picture of this is found in Figure III.11 which is 

a segment of a detailed bifurcation diagram showing "a" near 1.75, 

the critical value for the 3-cycle window. 

5Cvi tanovic, 31. 
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6. The Chaotic Regime 

For most k-values between the accumulation point 200 of the 

2n-cycles (k=3.57) 1 and k=4, the dynamical behavior of (xn) under 

the logistic map is chaotic. The exceptions are the k-values that 

correspond to the various windows in the chaotic regime. 

The chaotic behavior for various kin the chaotic regime that 

actually produce chaos is not uniform. At k=4, for instance (xn) 

distributes itself evenly over the whole interval [0,1] for almost 

all x 0 € [ 0, 1 J. 2 '
3 For k slightly less than 4, the sequence (xn) is 

still evenly distributed, but it is restricted to the interval 

[ k ( 1 - k/ 4 ) , k/ 4 J • 4 The reason for this is seen in Figure III.13. 

1 May, 464. 

2Kadanoff, 49. 

M 0,)(11'-tll .,. IX 
F6J- Cl-><) 

X 

f2(1) 0 
(o)= O 

3The exceptions are those isolated points which are repellant 
n-cycles--there is still a solution to f (x) =x in the chaotic 
regime, for instance, though it has long been repellant. 

4Kadanoff, 50. 
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All xn for n>O are necessarily less than k/4 as k/4 is the maximum 

of the logistic map with parameter k. The other bound is more 

difficult to establish and is left unproven. 

Ask decreases from 4, the band constraining the chaotic (xn) 

contracts but no qualitative changes occur (ignoring "windows"). 
::::, JJI. 

At the point k 2 ' in Figure III.14 (next page), however, a 

qualitative change does occur. The random-like band splits into 

two branches. The sequence (xn) now alternates between the two 

branches, but appears to be randomly distributed, i.e. chaotic, in 

each. If xk is in the lower branch then xk+1 will be in the upper 

branch and vice versa, but this is the only apparent regularity. 

At k 4 ' the two chaotic branches split into four, and (xn) now 

visits each of these four branches in an orderly pattern, but 

remains chaotic inside each one. As k continues to decrease toward 

3.57 5 the number of bands continues to double, with each of these 

bands becoming increasingly narrow islands of chaos. This doubling 

process mirrors the pitchfork bifurcations (2n-cycles) that lead 

up to 3.57.~. from the left, and in fact, the point of accumulation 

of the 2n-chaotic branches is also 2m~3.57. 6 

5The beginning of the chaotic regime is at k~3.57=2m. 

6Kadanoff, 50. 
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Appendix A: Fractals 

Strange attractors are of fractal form. A fractal object has 
a peculiar geometry: it is self-similar at all scales. Any 
particular piece of a fractal, when viewed closely, resembles the 
entire structure. 1 '

2 

A typical fractal is the Cantor Middle Thirds set formed by 
the following process. Take the unit interval I 0 

-------4 
0 Y: 

and remove the middle third. Call this I 1 ; now remove the middle 
third of each interval in I 1 to arrive at I 2 • 

1----f IJ. 
O ~ ~ 1/3 o/J J.i f/ 

The limit of In as n tends to infinity is the fractal Cantor Middle 
Thirds set. 

1Holden, New Scientist, 14. 

2The reader is referred to the writings of Benoit Mandelbrot 
for further information on fractals. 

50 
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Appendix B: Catastrophe Theory 

Catastrophe Theory is the systematic study of discontinuities 
in phenomena. In the dynamical system Xn+1=aXn+b we established 
(Part II) that lal<l causes (xn) to converge while if lal>l the 
sequence (xn) diverges. Catastrophe Theory concerns itself with 
characterizing radical qualitative transitions ("ca ta strophes") 
such as that occurring at I a I =l. 1

'
2 

Similarly there are catastrophes to be found in the 
bifurcation diagrams of Part III. As we "tune" the parameter k of 
the logistic family past 3. 00, for instance, we see a abrupt 
transition from an attractive 1-cycle to an attractive 2-cycle: 
another form of "catastrophe" would be the advent of a p-window in 
the chaotic regime. 

1Saunders, 1-13. 

2Ekeland, 79-89. 

S( 
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Appendix C: Bifurcation Diagrams 

The bifurcation diagram for a class of iterative equations 
such as Xn+i= (Xn) 2-a shows the limiting behavior of the sequence (xn) 
over a range of interesting parameter values "a". 

In the case of Xn+i= (Xn) -a the range of interesting dynamics 
is "a" between -1/4 and 2. Outside this interval the dynamics are 
trivial as outlined in section III.2. 

Once the interval of interest is determined, the bifurcation 
diagram is easily generated. In the above case, for instance, a 
hundred or a thousand "a" values are picked at regular intervals 
between -1/4 and 2, and the attractor for each "a" value 
determined. 1 These attractors are then plotted in succession to 
give a picture like that in Figures III.2 and III.3. Appendix E 
is a Pascal program that produces such diagrams. 2 

1See I.6 for this procedure. 

2Program written by Dana Borger, NSF. 
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Appendix D: Degeneracy 

Theorem A point x that is p-cyclic where pis prime is, if 
degenerate, necessarily a 1-cycle. 

Proof If p=2 then we are immediately done. We proceed by 
contradiction for p>2. Assume xis p-cyclic and q-cyclic for q 
between 1 and p, but not 1-cyclic. Then since p and q are 
relatively prime: 

ap-bq=l for some positive integers a,b. 

Hence, ap=bq+l. But this means that 

Hence, Xl+pa=Xpa. 

contradiction. 
But this means that x is of period one, a 
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