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INTRODUCTION 

Ever since the advent of computers, there have been 

at t em p t s t o w r i t e th eo r em - pr o v i ng pr o g r ams f o r v a r i o us 

reasons. One of the first theorem-proving programs was 

w r i t t en i n 1 9 5 6 by A 11 en N ew e 11 , J • C • Sh aw, and H. A. Simon 

for the RAND Corporation and Carnegie Institute of 

Technology. Th e program, Logic Theorist , was d es i g n ed to 

translate propositional calculus using Whitehead and 

Russell's Principia Mathematica. 

subs tit u ti on and rep 1 ac em en t • ( 1) 

Its methods were mostly 

The f o 11 owing year, the trio d ev is ed the Gen er al 

Program Solver, which was, to some extent, an exp anded form 

of Logic Theorist, except that it used means-ends analysis 

i n o rd er t o r educ e th e po s s i b 1 e numb er o f m et hods of 

deriving a solution.(2) The third major program of the 

f i f t i es w as H er b er t G el er n t er ' s G eo m et r y Th eo r em - Pr o vi ng 

Machine. Written in 1959 at the IBM Research Center, its 

goal was to solve high school geometry problems.(3) 

(1) Barr and Feigenbaum, The Handbook of Artificial Intelligence, 
Volume I, pp. 109-110. 

(2) Ibid., pp. 112-113. 
(3) Ibid., p. 119. 
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Since those days, much work has progressed in automatic 

theorem-proving, but little of it has actually surfaced in 

the form of "program listings." The reason for this secrecy 

i s th at th eo r em - pr o vi ng i s a v er y comp et i t i v e ar ea of 

computer science, for theorem-proving goes far beyond the 

usual contexts of symbolic logic. A th eor em-proving program 

could be used for many other special chores, including 

m at h em at i c s ( as s um i ng th at m at h em at i c s i s s ep ar at e f r om 

symbolic logic). How ev er , a f a r g r eat er c o n s eq u enc e of 

having a theorem-prover is that it could be used to test 

pro gr am correctness ; it could poss i b 1 y be us ed to s e e if a 

given algorithm worked properly, if a given program had 

end 1 es s 1 o op s , o r ev en i f a g iv en s et of c o d e w as th e mo s t 

efficient implement at ion of an algorithm on a particular 

c om put er s y s t em • So, one can see the long-range goals of 

companies to develop theorem-provers; a program written 

abs t r ac t 1 y enough co u 1 d b e a pp 1 i ed t o n ear 1 y ev er y po s s i b 1 e 

situation. 

Much progress has been made in theorem-proving 

techniques in the past twenty years by the 

previously-mentioned pioneers, as well as by Chang and Lee, 

Boy er and Moore, and W.W. B 1 ed s o e , t o n am e a f ew • However, 

many of their efforts have materialized in the form of 

" exp er t s y s t ems " ( exp er t s y s t ems i mi t at e hum an a c t i o n s 
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r at h er th an at t em p t t o ex hi bi t c r eat i vi t y ) • These pro gr ams 

recognize types of pro bl ems and th en move to the appropriate 

met hod of proof. Thus, to some extent they lack the 

abstractness of some of the earlier programs; in their favor 

is the fact that they can handle most of the present types 

of proof, including proof by contradiction and proof by 

induction. 

At this point, I should mention that, originally, the 

ultimate goals of these people were to write 

t h eo r em - pr o v er s ; t o d a y , th e g o al s t end t ow a rd w r i t i n g 

theorem-proving assistants. Th e d i s t i n c t i o n i s imp o r t ant • 

A th eo r em-prov er is s elf - s u ff i c i en t ; it is g iv en th e i nit i al 

data and the conclusion, to which it adds all of the 

n ec ess ary steps. On th e o th er h and , w hi 1 e a th eo r em - pr o vi ng 

assistant can exhaustively perform insertions, replacements, 

and implications, it still has the flexibility of the human 

As an -- it can be given help in the middle of a problem. 

example, a self-contained program may be able to do 

induction, but it must decide on what it should induct; an 

as s i s t ant pr o g r am c an b e g iv en th e i n du c t i o n p ar t 

s ep ar at el y. 
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My goal is to write a theorem-proving assistant that 

c an , t o s om e ext en t , t ak e a hypo th es i s ( th at wo r ks o n 

IF-THEN rules) and make some progress toward a realizable 

go al. However, since I need a more concrete problem set, I 

have restricted my goal to writing a program that might, 

when given minimal help by the user, be able to pass 

Mathematics 301, "Fundamental Concepts of Mathematics," with 

flying colors. So , th i s pr o gr am sh o u 1 d b e ab 1 e t o p er f o rm 

some tasks with symbolic logic, as well as prove that, if 

x<y, then y)x. 
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PROVER -- An Elementary Theorem-Proving Program 

PROVE R i s th e t i t 1 e of my th eo r em - pr o v er , o r , mo r e 

accurately, my theorem-proving assistant. It was d ev el op ed 

over the 1982-1983 school year in order to satisfy the 

requirements of my Honors Thesis. For my programming 

1 angu age, I had two choices: LISP and BAS IC. LISP is the 

favorite among the designers of most th eor em-proving 

p r o g r ams ; how ev er , s i n c e I am mo s t f 1 u en t i n BAS IC , I w r o t e 

PROVER in the latter language. A b en ef i c i al side- effect of 

this decision is that PROVER will run on a home computer as 

it is now written, without modifications. Th e 1 is ting , 

explanation of sections, variable lists, and minimal 

directions are in the back of this report. For now, let me 

demonstrate some of the proofs which PROVER can and cannot 

do. 

PROVER is very good at following straightforward 

IF-THEN rules to their logical conclusion. For instance, if 

one enters: 

VAR xyz 
IF x=y y=z THEN x=z 
GIVEN a=b 
GIVEN b=c 
IS a=c 

( 

I 
I 

\ 
\ 

for an explanation of capitalized 
words, refer to the documentation 
i n th e b ac k of th i s r ep o r t 

PROVER wi 11 respond in an affirmative manner. Li k ew i s e , i f 

one enters: 
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VAR xyzuv 
IFF x)y THEN x=y+u 
IFF x<y THEN y=x+u 
IF x=y THEN y=x 
GIVEN a)b 
IS b( a 

PROVER will again respond YES! to your question. If you 

w o u 1 d 1 i k e t o s e e a 1 i s t of d educ t i o n s th at i t h as f o rm ed , 

you m a y en t er TELL t o s e e th em • 

We have now seen some kinds of proofs that PROVER can 

perform. Are there any others? Aside from the "obvious" 

kinds, yes and no. Yes, it can also perform two more types 

of proof proof by contradiction and proof by induction. 

However, at this point, the fact that PROVER is a 

theorem-proving assistant, and not a theorem-prover, plays a 

c r u c i al r o 1 e • In order to prove by contradiction, one must 

enter the theorem "backwards" -- i.e., one must assume the 

cont r ap o sit iv e also • In th e c as e of pr o o f by i n du c t i o n , o n e 

must enter the "l" case and prove that it is in the set, and 

t h en h e mu s t en t er th e " n" c as e and p r o v e t h at " n + 1 " i s i n 

the set. So , PROVE R i s c a p ab 1 e o f t h es e t as k s , bu t i t i s 

not really performing them on its own -- it needs expert 

h el p f r om th e us er • 
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PROVER can, as I noted above, detect contradictions. 

However, when it says that is has a contradiction, it does 

not n ec es s a r i 1 y m e an th at you h av e a pr o o f by co n t r ad i c t i o n ; 

it means that the rules and the givens collide to give a 

deduction contrary to another deduction (I should state here 

that givens and deductions are treated by PROVER in the same 

way, so I shall use the terms interchangeably). If your 

m et hod of proof i s proof by cont r ad i ct i o n , th en you h av e 

succeeded som ewh ere; otherwise, you have prob ably entered a 

rule and/or a given incorrectly. 

I am amazed at how many methods of proof PROVER seems 

to be unable to do. PROVER has no replacement command, as 

i n , " Rep 1 ac e al 1 ( ( x) ) w i th ( x) . " For th i s r e as on , i t of t en 

gets trapped in terminology. 0 n e s u ch ex amp 1 e i s 

associativity. One cannot simply say, "Get rid of all the 

parent hes es." One must give a rul e to f o 11 ow. 

Unfortunately, there are so many special cases for the 

associativity rules that it is easier to simply manually 

r em o v e th e u n n ec es s a r y p ar en th es es • Wh i 1 e this method is 

not particularly appealing, no better way has yet been 

suggested (remember: since this program is meant to also 

p er f o rm v a r i o us pr o o f s i n f i el d s o th er th an m at h em at i c s , I 

cannot assume that the parentheses mean "do this first" as 

t h ey d o i n m at h em at i c s ) • 
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Ano th er p r ob 1 em w i th PROVER i s th at i t c an no t p er f o rm 

commutativity easily. F o r ex amp 1 e , i f x > y and u > v , th en 

x=y+ql and u=v+q2. But then x+u=y+ql+v+q2. The pro gr am has 

no way of telling that ql and q2 should just be moved to the 

end of the statement to make x+u=y+v+ql+q2, thus giving 

x+u)y+v. 0 n e m a y , how ev er , " s i n g 1 e s t e p " th e p r o g r am 

t hr o ugh , us i n g , f o r ex amp 1 e , a c o n v en t i o n t h at " a 11 

variables are listed in alphabetical order" and changing the 

givens as appropriate. 
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CONCLUSION 

I am, to some extent, impressed by what my program can 

prove. It prob ably seems quite trivial to the casual 

observer, but b eli eve me, it is not easy to implement such a 

pr oc es s. Still, I am even more surprised by what PROVER 

cannot do; I never thought I would have such a hard time 

just b ec aus e of some par enth es es! When writing a pro gr am 

like this, one learns about the special cases and the 

restrictions that one must force on the user of the program. 

Wh i 1 e th i s pro gr am may b e ab 1 e t o prov e 1 i t t 1 e mo r e 

t h an i f x < y th en y > x , s t i 11 , f ew s tu d en t s i n Math em at i c s 3 0 1 

proved th at theorem. While my program may be overshadowed 

by the achievements of others over the past thirty years, 

and deservedly so, one must st art som ewh ere. I set out to 

do what looked like a simple task, and I ended up, to some 

extent, showing why others have not done this simple task. 

I suppose that success in a project like this is partly in 

understanding the parts that are unsuccessful. 
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PROVER -- The Documentation 

PROVE R i s a pr o gr am d es i g n ed t o run i n mo s t di al ec t s of 

BAS IC. The commands are as follows: 

AUTOMATIC: Turns automatic proving mode on and off. When 

the mode is on, PROVER will prove one "single step" and then 

t r y to pr o v e an o th er • Wh en th e mo d e i s of f , PROVE R wi 11 

prove one "sing 1 e step" and th en wi 11 stop. 

COMMAND: Gives the user a list of commands and the formats. 

DELETE: Deletes the rules and/or givens. 

ask ed f o r b o th c as es o n th e n ext 1 i n e. 

END: Terminates proving session. 

Th e r ang e wi 11 b e 

G IVE N : Ad d s w h at f o 11 ow s t o th e " g i v en" 1 i s t • Note: if the 

first three letters are "NOT", then PROVER assumes the 

n eg at i o n o f th e r es t o f th e 1 i n e • 

IF: Adds a rule. See GIVEN. 

IFF: Adds a rule and its converse. See GIVEN, IF. 



IS: Check to see if what follows is a valid deduction. 

NEW: Clears workspace. 

over from scratch. 

This has the s am e ef f ec t as st art i ng 

NUMBER: This gives the number of rules, the number of 

deductions, and the various modes that are on. 

TELL: Gives a list of the rules, deductions, and variables. 

VARIABLE: Enters what follows as a variable list. 

Note: All commands may be shortened to three (3) characters. 



To a large extent, I use the following variables as 
d es c r i b ed b el ow : 

Arrays: 

C $ [ ] 
F [ ] 
G [ ] 
G $ [ ] 
I [ ] 
I$ [ ] 
R [ ] 
s $ [ ] 
T $ [ ] 
w [ ] 
z $ [ ] 

Letter equivalences for variables 
False/Trues for Rule (see G[]) 
Truth of Givens (-!=Undefined , O=T, l=F) 
G iv ens / D educ t i o n s 
If-parts that could work (O=No, l=Yes) 
If-parts (ANDed tog ether) of Rules 
Rule Place (+=Variable, -=Simplified assignment) 
Sim p 1 i f i ed V er s i o n of Ru 1 e 
Then-parts of Rules 
Where we are in IF composition 
Pr i n t i n g Ar r a y ( e as y t o p r i n t , s a y , 2 0 at o n c e) 

Scalars: 

C 
D,DO 
D 1, D2 
E 
F 

:Count (number of If-Parts in rule) 
:Number of Givens/Deductions 
:Givens/Deductions to be deleted 
:Truth of hypothesis 
: Truth of d eduction b ei ng t est ed 

P,PO,Pl:Position in string 
R,RO :Number of Rules 
R 1 , R2 : Rul es to be d el et ed 
S , SO : P 1 ac e i n S $ [ ] 
T : To t al dim ens i o n s i z e f o r arr a y s 
V :Number of variables (never used) 
WO :Column for W[] 
Y :Are we through (-l=Yes, O=No) 
I , J , I O : F o r - N ex t V a r i ab 1 es ( I O i s o u t s i d e I 1 , et c • ) 

Strings: 

E $ End st ate to be d educed 
1$ Left three 1 ett ers of a string 
M$ Middle (or right) part of a string 
R$ Rule 
S $ S amp 1 e string so f ar 
T$ Then-part of Rule 
V$ Variable list 
X$ Input string 
Y$ Oft en a subs ti tut e for X$ 
Z$ Anything 



The line numbers are arranged as follows: 

1- 29 
30- 99 

100- 199 
200- 299 
300- 399 
400- 499 
500- 599 
600- 699 
700- 799 
800- 899 
900- 999 

1000-1099 
1100-1299 
1300-1499 
1500-1599 
1600-1699 
1700-1999 
2000-2299 
2300-2599 
2600-2699 
2700-2799 
2800-2899 

In i t i al i z at i o n 
Ent er command and interpret 
NUMBER Comm and 
IF/IFF Command 
TELL Command 
GIVEN Comm and 
DE LE TE Comm and 
VARIABLE Command 
AUTOMATIC Command 
(not in use) 
COM MAND (Help ! ) 
Proof Initialization 
Pul 1 apart rule 
See which IF's might apply 
Find upper IF 
See if T/F conditions hold 
Piece together Givens 
S e e i f t r i al f i t s 
S e e i f i t i s al r e ad y d educ ed 
Ad d t r i al as a d educ t i o n 
D ec r em en t count er s and t r y ag ai n 
Test for automatic mode 



I sh al 1 now s ay a f ew qui ck words about PROVER. First, 

PROVER performs its proofs by trying out possible 

combinations of the givens to see if they fit the rules. It 

us es the 1 as t r u 1 es , th en the 1 as t givens • Because of this, 

the most-used rules and givens should be entered last for 

optimum efficiency. PROVER will work without them in that 

order, but it wi 11 run s om ewh at s 1 ow er. 

If you ask PROVER a question it cannot answer, it may 

r u n q u i t e aw h i 1 e : at 1 e as t , i t w i 11 r u n u n t i 1 ( 1 ) i t h as 

gotten every possible deduction from the givens and rules or 

( 2 ) i t h as run out of s p ac e. Thi s i s a pr ob 1 em I c an no t 

solve; it assumes that there is an answer. Aft er all, you 

could be asking for a 1OO-line proof from it, so it should 

not s top af t er th e f i rs t f ew d educ ti on s • 

One more item: PROVER cannot easily handle existence 

quantifiers. 

give a=b+u. 

F o r x > y , i t w i 11 g i v e x = y +u ; f o r a> b , i t w i 11 

Thus, I must restrict the user somewhat: one 

may enter rules in the program with this type of condition, 

but b ew are. No two u's (in this case) are necessarily the 

same. With this in mind, the user is cautioned to check the 

p r o g r am ' s r es u 1 t s • Its purpose is to off er suggestions and 

possible methods of proofs. It i s th e duty of th e us er to 

check for existence quantifiers. 



With no further ado, I present PROVER. 



( RELEASE "10.1) BASIC - V LINK-READY COMPIL ER 

REM TIS THE DIMENSION SIZE 
T=lOO 

0 DIM 1$(100) ,T$(100) ,G$(100) ,G(lOO) ,Z$(210) ,S$(50) ,R(lOO) 
1 DIM I ( 100) , F ( 1 0) , W ( 1 0) , C $ ( 2 6) 
0 R=O 
1 D=O 
2 A=O 
3 FOR I=l TOT 
4 1$(1)="" 
5 T$(1)="" 
6 G$(1)="" 
7 G(I)=-1 
8 NEXT I 
9 V$="" 
0 PRINT 
5 PRINT "ENTER COMMAND" 
0 INPUT X$ 
5 PRINT 
0 L$=LEFT(X$,3) 
0 IF L$="IS " THEN 1000 
1 IF L$="NUM" THEN 100 
2 IF L$="IF" THEN 200 
3 IF L$="TEL" THEN 300 
4 IF L$="GIV" THEN 400 
5 IF L$="DEL" THEN 500 
6 IF L$="VAR" THEN 600 
7 IF L$="AUT" THEN 700 
9 IF L$="COM" THEN 900 
0 IF L$="NEW" THEN 20 
1 IF L$="IFF" THEN 200 
9 IF L$="END" THEN 9999 
0 PRINT "INVALID COMMAND (ENTER 'COMMAND' FOR A LIST OF VALID COMMANDS)" 
0 GOTO 40 
00 PRINT "THERE ARE";R;"RULES AND";D;"DEDUCTIONS" 
01 P$="OFFON" 
02 PRINT "AUTOMATIC MODE IS NOW ";MID(P$,A*3+1,3) 
10 GOTO 30 
00 IF R(T THEN 230 
10 PRINT "NO ROOM FOR MORE RULES" 
20 GOTO 30 
30 R=R+l 
40 P=INSTR(O,X$," THEN") 
50 T$(R)=RIGHT(X$,P+6) 

.60 IF L$="IFF" THEN 290 

.70 I$(R)=MID(X$,4,P-4) 

.80 GOTO 35 
:90 I$(R)=MID(X$,5,P-5) 
:91 X$="IF "+T$(R)+" THEN "+I$(R) 
;j 2

3 
L$ =LEFT ( X$, 3) 

·~ GOTO 200 
-00 Z$(1)="THESE ARE THE RULES:" 
,01 Z$(2)="" 



( RELEASE "10.1) BASIC - V LINK-READY COMPILER 

10 
20 
30 
40 
41 
42 
49 
50 
60 
70 
71 
72 
80 
81 
82 
83 
90 
00 
10 
20 
30 
40 
50 
60 
70 
80 
81 
85 
90 
91 
95 
00 
01 
10 
20 
30 
40 
41 
42 
43 
49 
50 
60 
70 
71 
72 
73 

, 79 

1~ 
,00 
I 10 

FOR I=l TOR 
Z$(I+2)="IF "+1$(1)+" THEN "+T$(I) 
NEXT I 
Z$(R+3)="" 
Z$(R+4)="THESE ARE THE GIVENS/DEDUCTIONS:" 
Z $ ( R + 5 ) = '"' 
P$="TRUE FALSE" 
FOR I=l TOD 
Z$(I+R+5)=MID(P$,G(I)*6+1,6)+G$(I) 
NEXT I 
Z$(R+D+6)="" 
Z$(R+D+7)="THESE ARE THE VARIABLES: "+V$ 
FOR I=l TO R+D+7 
PRINT Z$(I) 
Z$(I)="" 
NEXT I 
GOTO 30 
IF D(T THEN 430 
PRINT "NO ROOM FOR MORE GIVENS" 
GOTO 30 
D=D+l 
P=INSTR(O,X$," ") 
M$=RIGHT(X$,P+l) 
L$=LEFT(M$,3) 
IF L$="NOT" THEN 490 
G$(D)=M$ 
G(D)=O 
GOTO 30 
G$(D)=RIGHT(M$,4) 
G(D)=l 
GOTO 30 
PRINT "ENTER FIRST, LAST RULE; FIRST, LAST GIVEN TO DELETE." 
PRINT "ENTER '1,0' FOR NO DELETION"; 
INPUT Rl,R2,Dl,D2 
IF Rl)R2 THEN 550 
R=R+Rl-R2-1 
FOR I=Rl TOR 
RO=I+R2-Rl+l 
I$ (I)= I$ (RO) 
T$(I)=T$(RO) 
NEXT I 
IF Dl)D2 THEN 580 
D=D+Dl-D2-l 
FOR I=Dl TO D 
DO=I+D2-Dl+l 
G$(I)=G$(DO) 
G(I)=G(DO) 
NEXT I 
PRINT "DELETIONS COMPLETED" 
GOTO 30 
P=INSTR(O,X$," ") 
IF P)O THEN 640 



( RELEASE "10.1) BASIC - V LINK-READY COMPILER 

20 PRINT "THE PROPER FORMAT IS 'VARIABLE XYZ'" 
30 GOTO 30 
40 V$=RIGHT(X$,P+l) 
50 V=LEN(V$) 
60 GOTO 30 
'.)Q P=INSTR(O,X$," ") 
10 IF P=O THEN 790 
20 M$=RIGHT(X$,P+l) 
30 IF M$="ON" THEN 770 
40 IF M$<>"OFF" THEN 790 
50 A=O 
60 GOTO 780 
70 A=l 
30 PRINT "AUTOMATIC MODE IS NOW ";M$;"." 
81 GOTO 30 
90 PRINT "THE PROPER FORMAT IS 'AUTO ON' OR 'AUTO OFF'" 
91 GOTO 30 
JO PRINT "THE COMMANDS ARE:" 
05 PRINT 
10 PRINT "AUTOMATIC ON/OFF: ADJUSTS AUTOMATIC MODE" 
15 PRINT "COMMAND: GIVES YOU THIS LIST" 
20 PRINT "DELETE: DELETES RULES AND/OR GIVENS/DEDUCTIONS" 
25 PRINT "END: TERMINATES PROGRAM" 
30 PRINT "GIVEN XXX: ADDS XXX TO THE LIST OF GIVENS/DEDUCTIONS" 
35 PRINT "IF XXX THEN YYY: ADDS THIS RULE (AND'S SHOULD BE SPACED)" 
lO PRINT "IFF XXX THEN YYY: ENTERS IF XXX THEN YYY AND IF YYY THEN XXX" 
l5 PRINT "IS XXX: CHECKS TO SEE IF XXX IS A VALID DEDUCTION" 
50 PRINT "NEW: CLEARS WORKSPACE (LIKE STARTING ALL OVER)" 
55 PRINT "NUMBER: GIVES NUMBER OF RULES AND GIVENS/DEDUCTIONS" 
60 PRINT "TELL: TELLS THE RULES AND GIVENS/DEDUCTIONS" 
65 PRINT "VARIABLE XXX: ENTERS XXX AS THE LIST OF VARIABLES" 
90 PRINT 
91 PRINT "ALL COMMANDS MAY BE SHORTENED TO THREE (3) LETTERS" 
92 GOTO 30 
000 REM DEDUCTION MACHINE. LINES 1000-2999 ARE 
010 REM COPYRIGHT (C) 1983 WILLIAM W. BERGHEL. 
D20 REM 
050 REM E$ IS WHAT WE'RE TRYING TO GET 
060 E$=RIGHT(X$,4) 
070 PRINT "OBJECT: ";E$ 
072 E=O 
074 IF LEFT(E$,3)<>"NOT" THEN 1080 
076 E$=RIGHT(X$,7) 
078 E=l 
080 D2=0 
090 Y=O 
100 REM 
101 REM FIRST, PULL APART THE RULE INTO USEABLE FORM 
-~
1
. ·00 2

3 
REM 

ib D l=D 
105 FOR IO=R TO 1 STEP -1 
110 R$=I$(IO) 



: RELEASE "10.1) BASIC - V LINK-READY COMPILER 

L 11 
L 1 2 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
140 
150 
160 
170 
180 
185 
190 
200 
210 
220 
230 
235 
240 
245 
250 
260 
270 
290 
291 
292 
293 
295 
296 
297 
300 
310 
320 
330 

~~ 
360 
370 

Pl=l 
C=l 
F(C)=O 
M$=MID(R$,Pl,3) 
IF M$<>"NOT" THEN 1120 
F(C)=l 
L$=LEFT(R$,Pl-l) 
M$=RIGHT(R$,P1+3) 
R$=L$+M$ 
P=INSTR(Pl,R$," ") 
IF P=O THEN 1125 
C=C+l 
Pl=P+l 
GOTO 1113 
SO=O 
S=l 
FOR 11=1 TO 50 
S $ ( I 1 ) = '"' 
NEXT 11 
FOR Il=l TO LEN(R$) 
R(Il)=O 
M$=MID(R$,Il,1) 
P=INSTR(O,V$,M$) 
IF P=O THEN 1210 
R(Il)=P 
IF S)SO THEN 1240 
S=S+l 
GOTO 1240 
S$=S$(S) 
S$(S)=S$+M$ 
R(Il)=-S 
SO=S 
NEXT 11 
S=SO 
REM 
REM TRY THE TRUTH OF THE THEN-PART OF THE RULE 
REM 
T$=T$(IO) 
IF LEFT(T$,3)="NOT" THEN 1295 
F=O 
GOTO 1300 
F=l 
Z$=T$ 
T$=RIGHT(Z$,4) 
REM 
REM NOW, SEE WHICH IF'S COULD WORK 
REM 
FOR 11=1 TO D 
I(Il)=l 
X$=G$(Il) 
FOR 12=1 TO S 
IF INSTR(O,X$,S$(12)))0 THEN 1400 
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380 NEXT 12 
390 I(Il)=O 
'.J.00 NEXT 11 
500 REM 
510 REM SET UP THE PROOF PART 
511 REM 
520 DO=Dl 
530 IF I(DO))O THEN 1570 
540 DO=D0-1 
550 IF DO(l THEN 2800 
560 GOTO 1530 
570 FOR 11=1 TO C 
580 W(Il)=DO 
590 NEXT 11 
:iOO REM 
:ilO REM FIRST SEE IF THE CONDITIONS (T/F) HOLD 
520 REM 
:, 30 
540 
550 
700 
710 · 
7 2 0 
730 
740 
750 
760 
770 
780 
JOO 
010 
820 
:)30 
040 
050 
051 
052 
053 
060 
070 
080 
090 
100 
110 
120 
130 
140 
150 

-~~6 
180 
190 

FOR 11=1 TO C 
IF G(W(Il))()F(Il) THEN 2700 
NEXT 11 
REM 
REM SECOND PIECE TOGETHER THE GIVENS 
REM 
X$=G$(W(l)) 
FOR 11=2 TO C 
Y$=X$+" "+G$(W(Il)) 
X$=Y$ 
NEXT 11 
PRINT "D=";D;" R=";IO;" DL=";D2;" TR: ";X$; 
REM 
REM THIS IS THE BIGGIE ! !! ! ! 
REM TASK: SEE IF X$ FITS R$, AND IF SO, THEN HOW? 
REM 
REM 
PO=l 
FOR 11=1 TO 26 
C$(Il)="" 
NEXT 11 
FOR Il=l TO S 
P=INSTR(PO,X$,S$(Il)) 
IF P=O THEN 2700 
M$=MID(X$,PO,P-PO) 
IF R(l)=-Il THEN 2180 
FOR 12=2 TO LEN(R$) 
IF R(I2)=-Il THEN 2140 
NEXT 12 
IF LEN(C$(R(I2-l))))O THEN 2170 
C$(R(I2-l))=M$ 
GOTO 2180 
IF C$(R(I2-l))()M$ THEN 2700 
PO=P+LEN(S$(Il)) 
IF PO)LEN(X$) THEN 2260 
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~00 
~04 
ms 
~10 
~20 
~30 
~40 
~so 
~60 
no 
mo 
300 
310 
311 
320 
330 
340 
350 
360 
370 
380 
385 
390 
400 
410 
411 
420 
430 
440 
450 
460 
470 
480 
490 
495 
500 
510 
520 
600 
610 
620 
621 
62 2 
623 
624 
625 
626 
627 

~~ 
630 
631 

NEXT 11 
Pl=LEN(R$) 
IF R(Pl)<O THEN 2700 
M$=RIGHT(X$,PO) 
IF LEN(C$(R(Pl))))O THEN 2250 
C$(R(Pl))=M$ 
GOTO 2260 
IF C$(R(Pl))()M$ THEN 2700 
REM 
REM IT FITS !! ! 
REM 
REM 
REM FIGURE OUT WHAT IT GOES TO 
REM 
Z$="" 
FOR 11=1 TO LEN(T$) 
M$=MID(T$,Il,l) 
P=INSTR(O,V$,M$) 
IF P)O THEN 2385 
Y$=Z$+M$ 
GOTO 2400 
IF LEN(C$(P))=O THEN 2370 
Y$=Z$+C$(P) 
Z$=Y$ 
NEXT 11 
PRINT TAB(SO);"DED: ";Z$; 
REM 
REM SEE IF IT MATCHES ANYTHING 
REM 
FOR 11=1 TOD 
IF Z$()G$(Il) THEN 2520 
REM IT'S ALREADY IN THE LIST!!! 
REM FORGET IT IF THE TRUTH-PART MATCHES 
IF G(Il)=F THEN 2700 
PRINT:PRINT 
PRINT "WE HAVE A CONTRADICTION!" 
GOTO 30 
NEXT 11 
REM 
REM WE HAVE A BRAND NEW DEDUCTION! 
REM 
REM 
REM SEE IF IT MATCHES WHAT WE WANT 
REM 
IF Z$()E$ THEN 2640 
IF F()E THEN 2630 
REM IT DOES!!! 
PRINT:PRINT:PRINT "YES!" 
Y=-1 
GOTO 2640 
PRINT:PRINT:PRINT "NO!" 
Y=-1 
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,40 IF D(T THEN 2670 
,41 REM BUT NOT ENOUGH ROOM! 
,45 IF Y=-1 THEN 30 
,49 PRINT: PRINT 
,50 PRINT "I DON'T KNOW; I RAN OUT OF SPACE!" 
,60 GOTO 30 
, 70 D=D+l 
,80 G$(D)=Z$ 
,90 G(D)=F 
1 95 IF Y=-1 THEN 30 
'00 REM 
' 10 REM DECREMENT COUNTERS 
' 20 REM 
·21 PRINT 
'30 WO=C 
' 40 W(WO)=W(W0)-1 
'50 IF W(WO)<l THEN 2780 
'60 IF I(W(WO))=O THEN 2740 
'65 FOR 11=1 TO C 
'70 IF W(Il))D2 THEN 1600 
'75 NEXT 11 
'80 W(WO)=DO 
' 90 WO=W0-1 
99 IF WO)O THEN 2740 

;QQ NEXT IO 
:Q5 REM IF WE'RE IN AUTOMATIC MODE, THEN CONTINUE; ELSE, QUIT 
,07 D2=Dl 
;10 IF A=O THEN 2840 
,20 IF D)Dl THEN 1100 
130 PRINT "I DON'T KNOW; CERTAINLY NOT FROM WHAT YOU GAVE ME." 
;3 5 GOTO 30 
,40 PRINT "I DON'T KNOW; I DID NOT HAVE TIME TO SEE." 
145 PRINT "IF YOU LET ME CONTINUE, I'LL TRY TO FIND OUT." 
150 GOTO 30 
t99 END 



SAMPLE RUN 

Th e f o 11 ow i ng i s a s amp 1 e run • Th e CAP ITAL S a r e w h at 
the program types; the lower case letters are the user 
entries but would be in capital letters in an actual run. 
Before every command PROVER types ENTER COMMAND, followed by 
a question mark. I shall abbreviate this by using only a 
question mark. 

Dur i ng th e pr o c es s of pr o v i ng th e th eo r em , PROVE R 
p r i n t s f o u r t o f i v e i t ems : D , R , D L , TR , and m a y b e DE D • D 
i s th e numb er of d educ ti o n s al r e ad y pr es en t , R i s th e r u 1 e 
we are trying to fit, DL is the deduction limit (no test 
case will be tried if all of its if-parts are below this 
1 i mi t ) , TR i s t h e t r i al s t r i n g , and DE D , i f p r es en t , i s t h e 
d educ t ion th at f i ts th e r u 1 es • 

prov er 
?variables xyz 
?if x=y y=z then x=z 
?given a=b 
?giv b=c 
? is a=c 

OBJECT: A=C 
D= 2 R= 1 DL= 0 
D= 2 R= 1 DL= 0 
D= 2 R= 1 DL= 0 

YES! 

? tel 

THESE ARE THE RULES: 

IF X=Y Y=Z THEN X=Z 

TR: B=C B=C 
TR: B=C A=B 
TR: A=B B=C 

THESE ARE THE GIVENS/DEDUCTIONS: 

TRUE A=B 
TRUE B=C 
TRUE A=C 

THESE ARE THE VARIABLES: XYZ 

?new 
?var xyzuv 
?iff x>y then x=y+u 

DED: A=C 



?iff x<y then y=x+u 
?if x=y then y=x 
? g iv a) b 
? tell 

THESE ARE THE RULES: 

IF X)Y THEN X=Y+U 
IF X=Y+U THEN X)Y 
IF X<Y THEN Y=X+U 
IF Y=X+U THEN X<Y 
IF X=Y THEN Y=X 

THESE ARE THE GIVENS/DEDUCTIONS: 

TRUE A)B 

THESE ARE THE VARIABLES: XYZUV 

? is b< a 

OBJECT: B(A 
D= 1 R= 1 DL= 0 TR: A)B DED: A=B+U 
I DON'T KNOW; I DID NOT HAVE TIME TO SEE. 
IF YOU LET ME CONTINUE, I'LL TRY TO FIND OUT. 

? is b< a 

OBJECT: B(A 
D= 2 R= 5 
D= 3 R= 4 

YES! 

? tell 

DL= 0 
DL= 0 

THESE ARE THE RULES: 

IF X)Y THEN X=Y+U 
IF X=Y+U THEN X)Y 
IF X(Y THEN Y=X+U 
IF Y=X+U THEN X(Y 
IF X=Y THEN Y=X 

TR: A=B+U 
TR: A=B+U 

THESE ARE THE GIVENS/DEDUCTIONS: 

DED: B+U=A 
DED: B(A 

TRUE A)B 
TRUE A=B+U 
TRUE B+U=A {note the unnecessary step -- wwb} 



TRUE B<A 

THESE ARE THE VARIABLES: XYZUV 

? d el 

ENTER FIRST, LAST RULE; FIRST, LAST GIVEN TO DELETE. 
ENTER '1,0' FOR NO DELETION?l,0,2,4 
DELETIONS COMPLETED 

?auto on 

AUTOMATIC MODE IS NOW ON. 

?num 

THERE ARE 5 RULES AND 1 DEDUCTIONS 
AUTOMATIC MODE IS NOW ON 

? is b< a 

OBJECT: B<A 
D= 1 R= 1 DL= 0 TR: A)B 
D= 2 R= 5 DL= 1 TR: A=B+U 
D= 3 R= 4 DL= 1 TR: A=B+U 

YES! 

? end 

DED: A=B+U 
DED: B+U=A 
DED: B<A 
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