——

PROVER

An Elementary Theorem—-Proving Program

(In partial fulfillment of requirements

for graduation with honors in mathematics.)

William W. Berghel

May 1983

v

The author
Wilson, for his
The author also
S. Johnson for

Mathematics 301.

Acknowl edg ement

wishes to thank his advisor, Dr. Robert L.
continuing support and help in this project.
wishes to express his thanks to Dr. Robert

the use of his course materials for

sl

INTRODUCTION

Ever since the advent of computers, there have been
attempts to write theorem-proving programs for various
reasons, One of the first theorem-proving programs was
written in 1956 by Allen Newell, J.C. Shaw, and H.A. Simon
for the RAND Corporation and Carnegie Institute of
Technology. The program, Logic Theorist, was designed to
translate propositional calculus using Whitehead and
Russell’s Principia Mathematica. 1Its methods were mostly

substitution and replacement.(1l)

The following year, the trio devised the General
Program Solver, which was, to some extent, an expanded form
of Logic Theorist, except that it used means—-ends analysis
in order to reduce the possible number of methods of
deriving a solution.(2) The third major program of the
fifties was Herbert Gelernter’s Geometry Theor em-Proving
Machine., Written in 1959 at the IBM Research Center, its

goal was to solve high school geometry problems.(3)

(1) Barr and Feigenbaum, The Handbook of Artificial Intelligence,

Volume I, pp. 109-110.
(2) 1bid., pp. 112-113.
(3) Ibid., p. 119.

v

Since those days, much work has progressed in automatic
theorem-proving, but little of it has actually surfaced in

the form of "program listings."

The reason for this secrecy
is that theorem-proving is a very competitive area of
comput er science, for theorem-proving goes far beyond the
usual contexts of symbolic logic. A theorem-proving program
could be used for many other special chores, including
mathematics (assuming that mathematics is separate from
symbolic logic). However, a far greater consequence of
having a theorem—-prover is that it could be used to test
program correctness; it could possibly be used to see if a
given algorithm worked properly, if a given program had
endless loops, or even if a given set of code was the most
efficient implementation of an algorithm on a particular
computer system. So, one can see the long-range goals of
companies to develop theorem-provers; a program written
abstractly enough could be applied to nearly every possible

situation.

Much progress has been made in theorem-proving
t echniques in the past twenty years by the
previously-mentioned pioneers, as well as by Chang and Lee,
Boyer and Moore, and W.W. Bledsoe, to name a few. However,
many of their efforts have materialized in the form of

"expert systems" (expert systems imitate human actions

g

rather than attempt to exhibit creativity). These programs
recognize types of problems and then move to the appropriate
method of proof. Thus, to some extent they lack the
abstractness of some of the earlier programs; in their favor
is the fact that they can handle most of the present types
of proof, including proof by contradiction and proof by

induction.

At this point, I should mention that, originally, the
ultimate goals of these people were to write
theorem-provers; today, the goals tend toward writing
theorem-proving assistants, The distinction is important.

A theorem-prover is self-sufficient; it is given the initial
data and the conclusion, to which it adds all of the
necessary steps. On the other hand, while a theorem-proving
assistant can exhaustively perform insertions, replacements,
and implications, it still has the flexibility of the human
—— it can be given help in the middle of a problem. As an
example, a self-contained program may be able to do
induction, but it must decide on what it should induct; an
assistant program can be given the induction part

separately.

My goal is to write a theorem-proving assistant that
can, to some extent, take a hypothesis (that works on
IF-THEN rules) and make some progress toward a realizable
goal. However, since I need a more concrete problem set, I
have restricted my goal to writing a program that might,
when given minimal help by the user, be able to pass
Mathematics 301, "Fundamental Concepts of Mathematics," with
flying colors. So, this program should be able to perform
some tasks with symbolic logic, as well as prove that, if

x<y, then y>x.

PROVER -- An Elementary Theor em—Proving Program

PROVER is the title of my theorem-prover, or, more
accurately, my theorem-proving assistant. It was developed
over the 1982-1983 school year in order to satisfy the
requirements of my Honors Thesis. For my programming
1l anguage, I had two choices: LISP and BASIC. LISP is the
favorite among the designers of most theorem-proving
programs; however, since I am most fluent in BASIC, I wrote
PROVER in the latter language. A beneficial side-effect of
this decision is that PROVER will run on a home computer as
it is now written, without modifications. The listing,
explanation of sections, variable lists, and minimal
directions are in the back of this report. For now, let me
demonstrate some of the proofs which PROVER can and cénnot

do.

PROVER is very good at following straightforward
IF-THEN rules to their logical conclusion. For instance, if

one enters:

VAR xyz /

IF x=y y=z THEN x=z / for an explanation of capitalized
GIVEN a=b (words, refer to the documentation
GIVEN b=c \ in the back of this report

IS a=c \

PROVER will respond in an affirmative manner. Likewise, if

one enters:

-]

VAR xyzuv
IFF x>y THEN x=y+u
IFF x<y THEN y=x+u
IF x=y THEN y=x
GIVEN a>b
IS b<a
PROVER will again respond YES! to your question. If you

would like to see a list of deductions that it has formed,

you may enter TELL to see then.

We have now seen some kinds of proofs that PROVER can
perform. Are there any others? Aside from the "obvious"
kinds, yes and no. Yes, it can also perform two more types
of proof -- proof by contradiction and proof by induction.
However, at this point, the fact that PROVER is a
theorem-proving assistant, and not a theorem-prover, plays a
crucial role. 1In order to prove by contradiction, one must
enter the theorem "backwards" -- i.e., one must assume the
contrapositive also. In the case of proof by induction, one
must enter the "1" case and prove that it is in the set, and
then he must enter the "n" case and prove that "n+1" is in
the set. So, PROVER is capable of these tasks, but it is

not really performing them on its own —-- it needs expert

help from the user.

PROVER can, as I noted above, detect contradictions.
However, when it says that is has a contradiction, it does
not necessarily mean that you have a proof by contradiction;
it means that the rules and the givens collide to give a
deduction contrary to another deduction (I should state here
that givens and deductions are treated by PROVER in the same
way, so I shall use the terms interchangeably). If your
method of proof is proof by contradiction, then you have
succeeded somewhere; otherwise, you have probably entered a

rule and/or a given incorrectly.

I am amazed at how many methods of proof PROVER s eems
to be unable to do. PROVER has no replacement command, as
in, "Replace all ((x)) with (x)." For this reason, it often
gets trapped in terminology. One such example is
associativity. One cannot simply say, "Get rid of all fhe

' One must give a rule to follow.

parentheses.'
Unfortunately, there are so many special cases for the
associativity rules that it is easier to simply manually
remove the unnecessary parentheses. While this method is
not particularly appealing, no better way has yet been
suggested (remember: since this program is meant to also
perform various proofs in fields other than mathematics, I

cannot assume that the parentheses mean "do this first" as

they do in mathematics).

-

Another problem with PROVER is that it cannot perform
commut ativity easily. For example, if x>y and udv, then
x=y+ql and u=v+q2. But then x+u=y+ql+v+q2. The program has
no way of telling that ql and q2 should just be moved to the
end of the statement to make x+u=y+v+ql+q2, thus giving
x+u>y+v. One may, however, "single step" the program
through, using, for example, a convention that "all
variables are listed in alphabetical order" and changing the

givens as appropriate.

10

-

CONCLUSION

I am, to some extent, impressed by what my program can
prove. It probably seems quite trivial to the casual
observer, but believe me, it is not easy to impl ement such a
process, Still, I am even more surprised by what PROVER
cannot do; I never thought I would have such a hard time
just because of some parentheses! When writing a program
like this, one 1learns about the special cases and the

restrictions that one must force on the user of the program.

While this program may be able to prove little more
than if x<y then y>x, still, few students in Mathematics 301
proved that theorem. While my program may be overshadowed
by the achievements of others over the past thirty years,
and deservedly so, one must start somewhere, I set out to
do what looked like a simple task, and I ended up, to some
ext ent, showing why others have not done this simple task.
I suppose that success in a project like this is partly in

und erstanding the parts that are unsuccessful.

11

PROVER -- The Documentation

PROVER is a program designed to rum in most dialects of

BASIC. The commands are as follows:

AUTOMATIC: Turns automatic proving mode on and off. When
the mode is on, PROVER will prove one "single step" and then
try to prove another. When the mode is off, PROVER will
prove one "single step" and then will stop.

COMMAND: Gives the user a list of commands and the formats.

DELETE: Deletes the rules and/or givens. The range will be

asked for both cases on the next line,

END: Terminates proving session.

GIVEN: Adds what follows to the "given" 1list. Note: if the

first three letters are "NOT", then PROVER assumes the

negation of the rest of the line.

IF: Adds a rule. See GIVEN.

IFF: Adds a rule and its converse., See GIVEN, IF.

.

IS: Check to see if what follows is a valid deduction.

NEW: Clears workspace. This has the same effect as starting

over from scratch,

NUMBER: This gives the number of rules, the number of

d eductions, and the various modes that are on.

TELL: Gives a list of the rules, deductions, and variables.

VARIABLE: Enters what follows as a variable list.

Note: All commands may be shortened to three (3) characters.

To a large extent, I use the following variables as
described below:

Arrays:

C$ [] : Letter equivalences for variables

F [] False/Trues for Rule (see G[])

G [] Truth of Givens (-1=Undefined , 0=T, 1=F)
GS [] Givens/Deductions

I [] : If-parts that could work (0=No, 1=Yes)

1z 11 If-parts (ANDed together) of Rules

R [] Rule Place (+=Variable, -=Simplified assignment)
ss$ [1 Simplified Version of Rule

TS [] Then-parts of Rules

W [] Where we are in IF composition

z$ [1 Printing Array (easy to print, say, 20 at once)
Scalars:

C :Count (number of If-Parts in rule)

D,DO :Number of Givens/Deductions

D1,D2 :Givens/Deductions to be deleted

E :Truth of hypothesis

F :Truth of deduction being tested
P,PO,Pl:Position in string

R,RO :Number of Rules

R1,R2 tRules to be del eted

5,S0 :Place in S$[]

T :Total dimension size for arrays

\ :Number of variables (never used)

WO :Column for W[]

Y tAr e we through (-1=Yes, 0=No)

I,J,I0 :For-Next Variables (IO is outside Il1, etc.)
Strings:

ES : End state to be deduced

LS : Left three letters of a string

M$: Middle (or right) part of a string
RS : Rule

S$: Sample string so far

TS : Then-part of Rule

VS : Variable list

X$: Input string

Y$: Often a substitute for X$
Z$: Anything

The line numbers are arranged as follows:

1- 29
30- 99
100- 199
200- 299
300- 399
400- 499
500- 599
600- 699
700- 799
800- 899
900- 999
1000-1099
1100-1299
1300-1499
1500-1599
1600-1699
1700-1999
2000-2299
2300-2599
2600-2699
2700-2799
2800-2899

Initialization

Enter command and interpret
NUMBER Command

IF/IFF Command

TELL Command

GIVEN Command

DELETE Command

VARIABLE Command

AUTOMATIC Command

(not in use)

COMMAND (Help!)

Proof Initialization

Pull apart rule

See which IF’s might apply
Find upper IF

See if T/F conditions hold
Piece together Givens

See if trial fits

See if it is already deduced
Add trial as a deduction

Decrement counters and try again

Test for automatic mode

il

I shall now say a few quick words about PROVER. First,
PROVER performs its proofs by trying out possible
combinations of the givens to see if they fit the rules. It
uses the last rules, then the last givens. Because of this,
the most-used rules and givens should be entered last for
optimum efficiency. PROVER will work without them in that

order, but it will run somewhat slower.

If you ask PROVER a question it cannot answer, it may
run quite awhile: at least, it will run until (1) it has
gotten every possible deduction from the givens and rules or
(2) it has run out of space. This is a problem I cannot
solve; it assumes that there is an answer. After all, you
could be asking for a 100-line proof from it, so it should

not stop after the first few deductions.

One more item: PROVER cannot easily handle existence
quantifiers. For x>y, it will give x=y+uj; for a>b, it will
give a=b+u. Thus, I must restrict the user somewhat: one
may enter rules in the program with this type of condition,
but beware. No two u’s (in this case) are necessarily the
same. With this in mind, the user is cautioned to check the
program’s results. 1Its purpose is to offer suggestions and
possible methods of proofs. It is the duty of the user to

check for existence quantifiers,

]

With no further ado,

I present PROVER.

(

R
T

COWVWHOUOUNOUPRPWNHOOUOUOWVWONOTUPPWNDHORO

RELEASE ~10.1) B ASTOC-YV LINK-READY COMPILER

EM T IS THE DIMENSION SIZE
=100
DIM I1$(100),T$(100),G6$(100),G(100),Z2$(210),8%$(50),R(100)
DIM I(100),F(10),W(10),C8$(26)
R=0
D=0
A=0
FOR I=1 TO T
Is(I)____HH
T$(I)=""
G$(I)=""
G(I)=-1
NEXT I
V$=""
PRINT
PRINT "ENTER COMMAND"
INPUT X$
PRINT
L$=LEFT(XS$,3)
IF L$="IS " THEN 1000
IF L$="NUM" THEN 100
IF L$="IF " THEN 200
IF L$="TEL" THEN 300
IF L$="GIV" THEN 400
IF L$="DEL" THEN 500
IF L$="VAR" THEN 600
IF L$="AUT" THEN 700
IF L$="COM" THEN 900
IF L$="NEW" THEN 20
IF L$="IFF" THEN 200
IF L$="END" THEN 9999
PRINT "INVALID COMMAND (ENTER ’‘COMMAND’ FOR A LIST OF VALID COMMANDS)"
GOTO 40
PRINT "THERE ARE" ;R;"RULES AND";D;"DEDUCTIONS"
P$="OFFON "
PRINT "AUTOMATIC MODE IS NOW ";MID(PS$,A*3+1,3)
GOTO 30
IF R<KT THEN 230
PRINT "NO ROOM FOR MORE RULES"
GOTO 30
R=R+1
P=INSTR(0,X$," THEN ")
T$(R)=RIGHT(XS$,P+6)
IF L$="IFF" THEN 290
I$S(R)=MID(X$,4,P-4)
GOTO 35
I$(R)=MID(X$,5,P-5)
X$="1IF "+T$(R)+" THEN "+I$(R)
L$=LEFT(X$,3)
GOTO 200
Z$(1)="THESE ARE THE RULES:"
Z$(2)=|ll|

(RELEASE ~10.1) B ASTIOC-V LINK-

FOR I=1 TO R
Z$(I42)="TIF "+IS$(I)+" THEN "+T$(I)
NEXT I

Z$(R+3)=""

Z$(R+4)="THESE ARE THE GIVENS/DEDUCT
Z$(R+5)=""

P$="TRUE FALSE "

FOR I=1 TO D
Z$(I+R+5)=MID(PS$,G(I)*6+1,6)+GS(I)
NEXT I

Z$(R+D+6)="""

Z$(R+D+7)="THESE ARE THE VARIABLES:
FOR I=1 TO R+D+7

PRINT Z$(1)

Z$(I)=""

NEXT I

GOTO 30

IF D<T THEN 430

PRINT "NO ROOM FOR MORE GIVENS"
GOTO 30

D=D+1

P=INSTR(0,X$," ™)
M$=RIGHT(XS$,P+1)

L$=LEFT(MS$,3)

IF L$="NOT" THEN 490

G$(D)=M$

G(D)=0

GOTO 30

GS(D)=RIGHT(MS$,4)

G(D)=1

GOTO 30

PRINT "ENTER FIRST, LAST RULE; FIRST
PRINT "ENTER ‘1,0’ FOR NO DELETION";
INPUT R1,R2,D1,D2

IF R1>R2 THEN 550

R=R+R1-R2-1

FOR I=R1 TO R

RO=I+R2-R1+1

I$(1)=1$(RO)

T$(I)=T$(RO)

NEXT I

IF D1>D2 THEN 580

D=D+D1-D2-1

FOR I=D1 TO D

DO=I+D2-D1+1

G$(I)=G$(DO)

G(I)=G(DO)

NEXT I

PRINT "DELETIONS COMPLETED"
GOTO 30

P=INSTR(O0,X$," ™)

IF P>0 THEN 640

READY COMPILER

IONS:"

"+v$

, LAST GIVEN TO DELETE."

(RELEASE ~10.1) B ASTIOC-YV LINK-READY COMPILER

PRINT "THE PROPER FORMAT IS ’‘VARIABLE XYZ’"
GOTO 30

V$=RIGHT(XS$,P+1)

V=LEN(VS$)

GOTO 30

P=INSTR(O0,X$," ")

IF P=0 THEN 790

M$=RIGHT(X$,P+1)

IF M$="ON" THEN 770

IF M$<>"OFF" THEN 790

A=0

GOTO 780

A=1

PRINT "AUTOMATIC MODE IS NOW ";M$;"."

GOTO 30

PRINT "THE PROPER FORMAT IS ’AUTO ON’ OR ‘AUTO OFF’"
GOTO 30

PRINT "THE COMMANDS ARE:"

PRINT

PRINT "AUTOMATIC ON/OFF: ADJUSTS AUTOMATIC MODE"

PRINT "COMMAND: GIVES YOU THIS LIST"

PRINT "DELETE: DELETES RULES AND/OR GIVENS/DEDUCTIONS"
PRINT "END: TERMINATES PROGRAM"

PRINT "GIVEN XXX: ADDS XXX TO THE LIST OF GIVENS/DEDUCTIONS"
PRINT "IF XXX THEN YYY: ADDS THIS RULE (AND’S SHOULD BE SPACED)"
PRINT "IFF XXX THEN YYY: ENTERS IF XXX THEN YYY AND IF YYY THEN XXX"
PRINT "IS XXX: CHECKS TO SEE IF XXX IS A VALID DEDUCTION"
PRINT "NEW: CLEARS WORKSPACE (LIKE STARTING ALL OVER)"
PRINT "NUMBER: GIVES NUMBER OF RULES AND GIVENS/DEDUCTIONS"
PRINT "TELL: TELLS THE RULES AND GIVENS/DEDUCTIONS"
PRINT "VARIABLE XXX: ENTERS XXX AS THE LIST OF VARIABLES"
PRINT
PRINT "ALL COMMANDS MAY BE SHORTENED TO THREE (3) LETTERS"
GOTO 30

REM DEDUCTION MACHINE. LINES 1000-2999 ARE

REM COPYRIGHT (C) 1983 WILLIAM W. BERGHEL.

REM

REM E$ IS WHAT WE’RE TRYING TO GET

E$=RIGHT(XS$,4)

PRINT "OBJECT: ";E$

E=0

IF LEFT(ES$,3)<>"NOT" THEN 1080

E$=RIGHT(XS$,7)

E=1

D2=0

Y=0

REM

REM FIRST, PULL APART THE RULE INTO USEABLE FORM

REM

D1=D

FOR I0=R TO 1 STEP -1

R$=I1$(10)

RELEASE ~10.1) B ASTI

[11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
140
150
160
170
180
185
190
200
210
220
230
235
240
245
250
260
270
290
291
292
293
295
296
297
300
310
320
330
340
350
360
370

Pl=1

c=1

F(C)=0
M$=MID(RS$,P1,3)
IF M$<>"NOT" THEN 1120
F(C)=1
L$=LEFT(RS$,P1-1)
M$=RIGHT(RS$,P1+3)
RS=L$+M$
P=INSTR(P1,R$," ")
IF P=0 THEN 1125
C=C+1

P1=P+1

GOTO 1113

S0=0

S=1

FOR Il=1 TO 50
SS(I]_)=""

NEXT Il

FOR Il=1 TO LEN(R$)
R(I1)=0
M$=MID(R$,I1,1)
P=INSTR(O,VS$,M$)
IF P=0 THEN 1210
R(I1l)=P

IF S>S0 THEN 1240
S=S+1

GOTO 1240
$$=8$(S)
S$(S)=S$+Ms
R(I1)=-S

S0=$

NEXT Il

S=S0

REM

c -V

LINK-READY COMPILER

REM TRY THE TRUTH OF THE THEN-PART OF THE RULE

REM
T$=T$(10)

IF LEFT(TS$,3)="NOT" THEN 1295

F=0

GOTO 1300

F=1

Z§=T$
T$=RIGHT(ZS,4)
REM

REM NOW, SEE WHICH IF’S COULD WORK

REM
FOR Il=1 TO D
I(11)=1
X$=G$(I1)

FOR I2=1 TO S

IF INSTR(0,X$,S$(I2))>0 THEN 1400

RELEASE ~10.1) B ASTIOC-YV LINK-READY COMPILER

380
390
+00
500
510
511
520
530
54,0
550
560
570
580
590
500
510
520
530
54,0
550
700
710
720
730
740
750
760
770
780
)00
)10
)20
)30
)40
)50
)51
)52
)53
)60
)70
)80
)90
100
110
120
130
140
150
6 0
1170
180
190

NEXT I2
I(11)=0

NEXT I1

REM

REM SET UP THE PROOF PART

REM

DO=D1

IF I(DO)>0 THEN 1570

D0O=D0-1

IF DO<1 THEN 2800

GOTO 1530

FOR Il=1 TO C

W(I1l)=DO

NEXT I1

REM

REM FIRST SEE IF THE CONDITIONS (T/F) HOLD
REM

FOR Il=1 TO C

IF G(W(I1))<>F(I1l) THEN 2700
NEXT I1

REM

REM SECOND PIECE TOGETHER THE GIVENS
REM

X$=G$(W(1))

FOR I1=2 TO C

Y$=X$+" "+GS$(W(I1l))

X$=Y$

NEXT I1

PRINT "D=";D;" R=";I0;" DL=";D2;" TR: ";X$;
REM

REM THIS IS THE BIGGIE !!!!!
REM TASK: SEE IF X$ FITS R$, AND IF SO, THEN HOW?
REM

REM

PO=1

FOR Il=1 TO 26

C$(Il)=""

NEXT I1

FOR Il=1 TO S
P=INSTR(PO,X$,S$(I1))

IF P=0 THEN 2700
M$=MID(X$,P0,P-PO)

IF R(1)=-I1 THEN 2180

FOR I2=2 TO LEN(RS)

IF R(I2)=-1I1 THEN 2140

NEXT 12

IF LEN(C$(R(I2-1)))>0 THEN 2170
CS(R(I2-1))=M$

GOTO 2180

IF C$(R(I2-1))<>M$ THEN 2700
PO=P+LEN(S$(I1))

IF PO>LEN(X$) THEN 2260

RELEASE ~10.1) B ASTIC-YV LINK-READY COMPILER

00 NEXT Il
204 P1=LEN(RS)

205 IF R(P1)<0 THEN 2700

210 M$=RIGHT(XS$,P0)

220 IF LEN(CS$(R(P1)))>0 THEN 2250
230 C$(R(PL))=M$

240 GOTO 2260

250 IF C$(R(P1))<>M$ THEN 2700

260 REM

270 REM IT FITS !!!

280 REM

300 REM

310 REM FIGURE OUT WHAT IT GOES TO
311 REM

320 Z$=" mn

330 FOR Il=1 TO LEN(TS)

340 M$=MID(TS$,I1,1)

350 P=INSTR(O,VS$,M$)

360 IF P>0 THEN 2385

370 Y$=ZS$+MS$

380 GOTO 2400

385 IF LEN(CS$(P))=0 THEN 2370

390 Y$=Z$+C$(P)

400 Z$=Y$

410 NEXT Il

411 PRINT TAB(50);"DED: ";Z$;

420 REM

430 REM SEE IF IT MATCHES ANYTHING
4140 REM

450 FOR Il=1 TO D

4160 IF Z$<>G$(I1) THEN 2520

470 REM IT’S ALREADY IN THE LIST !!!
480 REM FORGET IT IF THE TRUTH-PART MATCHES
490 IF G(I1l)=F THEN 2700

495 PRINT:PRINT

500 PRINT "WE HAVE A CONTRADICTION!"
510 GOTO 30

520 NEXT I1

500 REM

510 REM WE HAVE A BRAND NEW DEDUCTION!
620 REM

621 REM

522 REM SEE IF IT MATCHES WHAT WE WANT
523 REM

524 IF Z$<>E$ THEN 2640

525 IF F<>E THEN 2630

526 REM IT DOES!!!

527 PRINT:PRINT:PRINT "YES!"

28 Y=-1

29 GOTO 2640

530 PRINT:PRINT:PRINT "NO!"

331 Y=-1

RELEASE ~10.1) B ASTIC-YV LINK-READY COMPILER

40 IF DT THEN 2670

41 REM BUT NOT ENOUGH ROOM!

45 IF Y=-1 THEN 30

49 PRINT:PRINT

‘50 PRINT "I DON’'T KNOW; I RAN OUT OF SPACE!"

60 GOTO 30

.70 D=D+1

80 G$(D)=2$

90 G(D)=F

95 IF Y=-1 THEN 30

'00 REM

'10 REM DECREMENT COUNTERS

'20 REM

‘21 PRINT

'30 WO=C

40 W(WO)=W(WO0)-1

'50 IF W(W0)<1 THEN 2780

'60 IF I(W(W0))=0 THEN 2740

'65 FOR Il=1 TO C

'70 IF W(I1l)>D2 THEN 1600

'75 NEXT I1

'80 W(WO0)=DO

90 WO=WO0-1

99 IF WO>0 THEN 2740

00 NEXT I0

05 REM IF WE’'RE IN AUTOMATIC MODE, THEN CONTINUE; ELSE, QUIT
07 D2=D1

10 IF A=0 THEN 2840

20 IF D>D1 THEN 1100

30 PRINT "I DON’T KNOW; CERTAINLY NOT FROM WHAT YOU GAVE ME."
35 GOTO 30

40 PRINT "I DON’'T KNOW; I DID NOT HAVE TIME TO SEE."
45 PRINT "IF YOU LET ME CONTINUE, I‘LL TRY TO FIND OUT."
50 GOTO 30

199 END

-

-

SAMPLE RUN

The following is a sample run. The CAPITALS are what
the program types; the lower case letters are the user
entries but would be in capital letters in an actual run.
Before every command PROVER types ENTER COMMAND, followed by
a question mark. I shall abbreviate this by using only a
question mark.

During the process of proving the theorem, PROVER
prints four to five items: D, R, DL, TR, and maybe DED. D
is the number of deductions already present, R is the rule
we are trying to fit, DL is the deduction limit (no test
case will be tried if all of its if-parts are below this
limit), TR is the trial string, and DED, if present, is the
d eduction that fits the rules.

prover
?variables xyz

?7if x=y y=z then x=z
?7given a=b

?7giv b=c

?7is a=c

OBJECT: A=
D= 2 R=
D= 2 R

D= 2 R

1

lw]

| i

1
coo

H

]
D>UI='UU

I
oo
w > o

1
awa

I
I
I

YES!
7tel
THESE ARE THE RULES:
IF X=Y Y=7Z THEN X=Z

THESE ARE THE GIVENS/DEDUCTIONS:

TRUE A
TRUE B
TRUE A

I
aOow

THESE ARE THE VARIABLES: XYZ

7new
?7var xyzuv
?21ff x>y then x=y+u

v

7iff x<y then y=x+u
?2if x=y then y=x
?2giv a>b

2tell

THESE ARE THE RULES:

IF X>Y THEN X=Y+U

IF X=Y+U THEN X>Y

IF X<Y THEN Y=X+U

IF Y=X+U THEN X<KY

IF X=Y THEN Y=X

THESE ARE THE GIVENS/DEDUCTIONS:
TRUE A>B

THESE ARE THE VARIABLES: XYZUV

?is b<a

OBJECT: BB

DED: A=B+U

I DON’T KNOW; I DID NOT HAVE TIME TO SEE.
IF YOU LET ME CONTINUE, I‘LL TRY TO FIND OUT.

?7is b<a

OBJECT: B<A

D= 2 R= 5 DL= 0 TR: A=B+U
D= 3 R= 4 DL= O TR: A=B+U
YES!

7tell

THESE ARE THE RULES:

IF X>Y THEN X=Y+U

IF X=Y+U THEN X>Y

IF XY THEN Y=X+4U

IF Y=X+U THEN X<KY

IF X=Y THEN Y=X

THESE ARE THE GIVENS/DEDUCTIONS:

TRUE A>B
TRUE A=B+U

DED: B+U=A
DED: B<A

TRUE B+U=A {note the unnecessary step —-- wwb}

]

TRUE B<A

THESE ARE THE VARIABLES: XYZUV

?7del

ENTER FIRST, LAST

RULE; FIRST, LAST GIVEN TO DELETE.

ENTER ‘1,0’ FOR NO DELETION?1,0,2,4
DELETIONS COMPLETED

?auto on

AUTOMATIC MODE IS

7num

THERE ARE 5 RULES
AUTOMATIC MODE IS

?7is b<a

OBJECT: B<KA

D= 1 R= 1 DL=
D= 2 R= 5 DL=
D= 3 R= 4 DL=
YES!

? end

NOW ON.

AND 1 DEDUCTIONS

NOW ON

0 TR: A>B DED: A=B+U
1 TR: A=B+U DED: B+U=A
1 TR: A=B+U DED: B<KA

e

BIBLIOGRAPHY

Barr, Avron, and Feigenbaum, Edward A., The Handbook of

Artificial Intelligence, Volume I, William Kaufman, Inc.,

Los Altos, Califormnia, 1981.

Boyer, Robert S., and Moore, J. Strother, A Computational

Logic, Academic Press, Inc., New York, 1979.

Chang, Chin-Liang, and Lee, Richard Char-Tung, Symbolic

Logic and Mechanical Theorem Proving, Academic Press, Inc.,

New York, 1973.

Dreyfus, Hubert L., What Computers Can’t Do: A Critique of

Artificial Reason, Harper and Row, Publishers, Inc., New

York, 1972.

Johnson, Robert S., Class Notes from Mathematics 301

(Fund amental Concepts of Mathematics) (adapted from Landau,

Edmund, Foundations of Analysis, Chelsea Publishing Company,

New York, 1966).

