
PROVER

An El em ent ary Th eor em-Proving Pro gr am

(In partial fulfillment of requirements

f o r g r ad u at i on w i th ho no r s i n m at h em at i c s •)

W i 11 i am W • B erg h el

May 1983

Acknowl edg em ent

The author wishes to thank his advisor, Dr. Rob er t L.

Wilson, for his continuing support and help in this project.

The author also wishes to express his thanks to Dr.

S • Johnso n f or th e us e of hi s co u rs e m at er i al s for

Mathematics 301.

Rob er t

INTRODUCTION

Ever since the advent of computers, there have been

at t em p t s t o w r i t e th eo r em - pr o v i ng pr o g r ams f o r v a r i o us

reasons. One of the first theorem-proving programs was

w r i t t en i n 1 9 5 6 by A 11 en N ew e 11 , J • C • Sh aw, and H. A. Simon

for the RAND Corporation and Carnegie Institute of

Technology. Th e program, Logic Theorist , was d es i g n ed to

translate propositional calculus using Whitehead and

Russell's Principia Mathematica.

subs tit u ti on and rep 1 ac em en t • (1)

Its methods were mostly

The f o 11 owing year, the trio d ev is ed the Gen er al

Program Solver, which was, to some extent, an exp anded form

of Logic Theorist, except that it used means-ends analysis

i n o rd er t o r educ e th e po s s i b 1 e numb er o f m et hods of

deriving a solution.(2) The third major program of the

f i f t i es w as H er b er t G el er n t er ' s G eo m et r y Th eo r em - Pr o vi ng

Machine. Written in 1959 at the IBM Research Center, its

goal was to solve high school geometry problems.(3)

(1) Barr and Feigenbaum, The Handbook of Artificial Intelligence,
Volume I, pp. 109-110.

(2) Ibid., pp. 112-113.
(3) Ibid., p. 119.

3

Since those days, much work has progressed in automatic

theorem-proving, but little of it has actually surfaced in

the form of "program listings." The reason for this secrecy

i s th at th eo r em - pr o vi ng i s a v er y comp et i t i v e ar ea of

computer science, for theorem-proving goes far beyond the

usual contexts of symbolic logic. A th eor em-proving program

could be used for many other special chores, including

m at h em at i c s (as s um i ng th at m at h em at i c s i s s ep ar at e f r om

symbolic logic). How ev er , a f a r g r eat er c o n s eq u enc e of

having a theorem-prover is that it could be used to test

pro gr am correctness ; it could poss i b 1 y be us ed to s e e if a

given algorithm worked properly, if a given program had

end 1 es s 1 o op s , o r ev en i f a g iv en s et of c o d e w as th e mo s t

efficient implement at ion of an algorithm on a particular

c om put er s y s t em • So, one can see the long-range goals of

companies to develop theorem-provers; a program written

abs t r ac t 1 y enough co u 1 d b e a pp 1 i ed t o n ear 1 y ev er y po s s i b 1 e

situation.

Much progress has been made in theorem-proving

techniques in the past twenty years by the

previously-mentioned pioneers, as well as by Chang and Lee,

Boy er and Moore, and W.W. B 1 ed s o e , t o n am e a f ew • However,

many of their efforts have materialized in the form of

" exp er t s y s t ems " (exp er t s y s t ems i mi t at e hum an a c t i o n s

4

r at h er th an at t em p t t o ex hi bi t c r eat i vi t y) • These pro gr ams

recognize types of pro bl ems and th en move to the appropriate

met hod of proof. Thus, to some extent they lack the

abstractness of some of the earlier programs; in their favor

is the fact that they can handle most of the present types

of proof, including proof by contradiction and proof by

induction.

At this point, I should mention that, originally, the

ultimate goals of these people were to write

t h eo r em - pr o v er s ; t o d a y , th e g o al s t end t ow a rd w r i t i n g

theorem-proving assistants. Th e d i s t i n c t i o n i s imp o r t ant •

A th eo r em-prov er is s elf - s u ff i c i en t ; it is g iv en th e i nit i al

data and the conclusion, to which it adds all of the

n ec ess ary steps. On th e o th er h and , w hi 1 e a th eo r em - pr o vi ng

assistant can exhaustively perform insertions, replacements,

and implications, it still has the flexibility of the human

As an -- it can be given help in the middle of a problem.

example, a self-contained program may be able to do

induction, but it must decide on what it should induct; an

as s i s t ant pr o g r am c an b e g iv en th e i n du c t i o n p ar t

s ep ar at el y.

5

My goal is to write a theorem-proving assistant that

c an , t o s om e ext en t , t ak e a hypo th es i s (th at wo r ks o n

IF-THEN rules) and make some progress toward a realizable

go al. However, since I need a more concrete problem set, I

have restricted my goal to writing a program that might,

when given minimal help by the user, be able to pass

Mathematics 301, "Fundamental Concepts of Mathematics," with

flying colors. So , th i s pr o gr am sh o u 1 d b e ab 1 e t o p er f o rm

some tasks with symbolic logic, as well as prove that, if

x<y, then y)x.

6

PROVER -- An Elementary Theorem-Proving Program

PROVE R i s th e t i t 1 e of my th eo r em - pr o v er , o r , mo r e

accurately, my theorem-proving assistant. It was d ev el op ed

over the 1982-1983 school year in order to satisfy the

requirements of my Honors Thesis. For my programming

1 angu age, I had two choices: LISP and BAS IC. LISP is the

favorite among the designers of most th eor em-proving

p r o g r ams ; how ev er , s i n c e I am mo s t f 1 u en t i n BAS IC , I w r o t e

PROVER in the latter language. A b en ef i c i al side- effect of

this decision is that PROVER will run on a home computer as

it is now written, without modifications. Th e 1 is ting ,

explanation of sections, variable lists, and minimal

directions are in the back of this report. For now, let me

demonstrate some of the proofs which PROVER can and cannot

do.

PROVER is very good at following straightforward

IF-THEN rules to their logical conclusion. For instance, if

one enters:

VAR xyz
IF x=y y=z THEN x=z
GIVEN a=b
GIVEN b=c
IS a=c

(

I
I

\
\

for an explanation of capitalized
words, refer to the documentation
i n th e b ac k of th i s r ep o r t

PROVER wi 11 respond in an affirmative manner. Li k ew i s e , i f

one enters:

7

VAR xyzuv
IFF x)y THEN x=y+u
IFF x<y THEN y=x+u
IF x=y THEN y=x
GIVEN a)b
IS b(a

PROVER will again respond YES! to your question. If you

w o u 1 d 1 i k e t o s e e a 1 i s t of d educ t i o n s th at i t h as f o rm ed ,

you m a y en t er TELL t o s e e th em •

We have now seen some kinds of proofs that PROVER can

perform. Are there any others? Aside from the "obvious"

kinds, yes and no. Yes, it can also perform two more types

of proof proof by contradiction and proof by induction.

However, at this point, the fact that PROVER is a

theorem-proving assistant, and not a theorem-prover, plays a

c r u c i al r o 1 e • In order to prove by contradiction, one must

enter the theorem "backwards" -- i.e., one must assume the

cont r ap o sit iv e also • In th e c as e of pr o o f by i n du c t i o n , o n e

must enter the "l" case and prove that it is in the set, and

t h en h e mu s t en t er th e " n" c as e and p r o v e t h at " n + 1 " i s i n

the set. So , PROVE R i s c a p ab 1 e o f t h es e t as k s , bu t i t i s

not really performing them on its own -- it needs expert

h el p f r om th e us er •

8

PROVER can, as I noted above, detect contradictions.

However, when it says that is has a contradiction, it does

not n ec es s a r i 1 y m e an th at you h av e a pr o o f by co n t r ad i c t i o n ;

it means that the rules and the givens collide to give a

deduction contrary to another deduction (I should state here

that givens and deductions are treated by PROVER in the same

way, so I shall use the terms interchangeably). If your

m et hod of proof i s proof by cont r ad i ct i o n , th en you h av e

succeeded som ewh ere; otherwise, you have prob ably entered a

rule and/or a given incorrectly.

I am amazed at how many methods of proof PROVER seems

to be unable to do. PROVER has no replacement command, as

i n , " Rep 1 ac e al 1 ((x)) w i th (x) . " For th i s r e as on , i t of t en

gets trapped in terminology. 0 n e s u ch ex amp 1 e i s

associativity. One cannot simply say, "Get rid of all the

parent hes es." One must give a rul e to f o 11 ow.

Unfortunately, there are so many special cases for the

associativity rules that it is easier to simply manually

r em o v e th e u n n ec es s a r y p ar en th es es • Wh i 1 e this method is

not particularly appealing, no better way has yet been

suggested (remember: since this program is meant to also

p er f o rm v a r i o us pr o o f s i n f i el d s o th er th an m at h em at i c s , I

cannot assume that the parentheses mean "do this first" as

t h ey d o i n m at h em at i c s) •

9

Ano th er p r ob 1 em w i th PROVER i s th at i t c an no t p er f o rm

commutativity easily. F o r ex amp 1 e , i f x > y and u > v , th en

x=y+ql and u=v+q2. But then x+u=y+ql+v+q2. The pro gr am has

no way of telling that ql and q2 should just be moved to the

end of the statement to make x+u=y+v+ql+q2, thus giving

x+u)y+v. 0 n e m a y , how ev er , " s i n g 1 e s t e p " th e p r o g r am

t hr o ugh , us i n g , f o r ex amp 1 e , a c o n v en t i o n t h at " a 11

variables are listed in alphabetical order" and changing the

givens as appropriate.

10

CONCLUSION

I am, to some extent, impressed by what my program can

prove. It prob ably seems quite trivial to the casual

observer, but b eli eve me, it is not easy to implement such a

pr oc es s. Still, I am even more surprised by what PROVER

cannot do; I never thought I would have such a hard time

just b ec aus e of some par enth es es! When writing a pro gr am

like this, one learns about the special cases and the

restrictions that one must force on the user of the program.

Wh i 1 e th i s pro gr am may b e ab 1 e t o prov e 1 i t t 1 e mo r e

t h an i f x < y th en y > x , s t i 11 , f ew s tu d en t s i n Math em at i c s 3 0 1

proved th at theorem. While my program may be overshadowed

by the achievements of others over the past thirty years,

and deservedly so, one must st art som ewh ere. I set out to

do what looked like a simple task, and I ended up, to some

extent, showing why others have not done this simple task.

I suppose that success in a project like this is partly in

understanding the parts that are unsuccessful.

1 1

PROVER -- The Documentation

PROVE R i s a pr o gr am d es i g n ed t o run i n mo s t di al ec t s of

BAS IC. The commands are as follows:

AUTOMATIC: Turns automatic proving mode on and off. When

the mode is on, PROVER will prove one "single step" and then

t r y to pr o v e an o th er • Wh en th e mo d e i s of f , PROVE R wi 11

prove one "sing 1 e step" and th en wi 11 stop.

COMMAND: Gives the user a list of commands and the formats.

DELETE: Deletes the rules and/or givens.

ask ed f o r b o th c as es o n th e n ext 1 i n e.

END: Terminates proving session.

Th e r ang e wi 11 b e

G IVE N : Ad d s w h at f o 11 ow s t o th e " g i v en" 1 i s t • Note: if the

first three letters are "NOT", then PROVER assumes the

n eg at i o n o f th e r es t o f th e 1 i n e •

IF: Adds a rule. See GIVEN.

IFF: Adds a rule and its converse. See GIVEN, IF.

IS: Check to see if what follows is a valid deduction.

NEW: Clears workspace.

over from scratch.

This has the s am e ef f ec t as st art i ng

NUMBER: This gives the number of rules, the number of

deductions, and the various modes that are on.

TELL: Gives a list of the rules, deductions, and variables.

VARIABLE: Enters what follows as a variable list.

Note: All commands may be shortened to three (3) characters.

To a large extent, I use the following variables as
d es c r i b ed b el ow :

Arrays:

C $ []
F []
G []
G $ []
I []
I$ []
R []
s $ []
T $ []
w []
z $ []

Letter equivalences for variables
False/Trues for Rule (see G[])
Truth of Givens (-!=Undefined , O=T, l=F)
G iv ens / D educ t i o n s
If-parts that could work (O=No, l=Yes)
If-parts (ANDed tog ether) of Rules
Rule Place (+=Variable, -=Simplified assignment)
Sim p 1 i f i ed V er s i o n of Ru 1 e
Then-parts of Rules
Where we are in IF composition
Pr i n t i n g Ar r a y (e as y t o p r i n t , s a y , 2 0 at o n c e)

Scalars:

C
D,DO
D 1, D2
E
F

:Count (number of If-Parts in rule)
:Number of Givens/Deductions
:Givens/Deductions to be deleted
:Truth of hypothesis
: Truth of d eduction b ei ng t est ed

P,PO,Pl:Position in string
R,RO :Number of Rules
R 1 , R2 : Rul es to be d el et ed
S , SO : P 1 ac e i n S $ []
T : To t al dim ens i o n s i z e f o r arr a y s
V :Number of variables (never used)
WO :Column for W[]
Y :Are we through (-l=Yes, O=No)
I , J , I O : F o r - N ex t V a r i ab 1 es (I O i s o u t s i d e I 1 , et c •)

Strings:

E $ End st ate to be d educed
1$ Left three 1 ett ers of a string
M$ Middle (or right) part of a string
R$ Rule
S $ S amp 1 e string so f ar
T$ Then-part of Rule
V$ Variable list
X$ Input string
Y$ Oft en a subs ti tut e for X$
Z$ Anything

The line numbers are arranged as follows:

1- 29
30- 99

100- 199
200- 299
300- 399
400- 499
500- 599
600- 699
700- 799
800- 899
900- 999

1000-1099
1100-1299
1300-1499
1500-1599
1600-1699
1700-1999
2000-2299
2300-2599
2600-2699
2700-2799
2800-2899

In i t i al i z at i o n
Ent er command and interpret
NUMBER Comm and
IF/IFF Command
TELL Command
GIVEN Comm and
DE LE TE Comm and
VARIABLE Command
AUTOMATIC Command
(not in use)
COM MAND (Help !)
Proof Initialization
Pul 1 apart rule
See which IF's might apply
Find upper IF
See if T/F conditions hold
Piece together Givens
S e e i f t r i al f i t s
S e e i f i t i s al r e ad y d educ ed
Ad d t r i al as a d educ t i o n
D ec r em en t count er s and t r y ag ai n
Test for automatic mode

I sh al 1 now s ay a f ew qui ck words about PROVER. First,

PROVER performs its proofs by trying out possible

combinations of the givens to see if they fit the rules. It

us es the 1 as t r u 1 es , th en the 1 as t givens • Because of this,

the most-used rules and givens should be entered last for

optimum efficiency. PROVER will work without them in that

order, but it wi 11 run s om ewh at s 1 ow er.

If you ask PROVER a question it cannot answer, it may

r u n q u i t e aw h i 1 e : at 1 e as t , i t w i 11 r u n u n t i 1 (1) i t h as

gotten every possible deduction from the givens and rules or

(2) i t h as run out of s p ac e. Thi s i s a pr ob 1 em I c an no t

solve; it assumes that there is an answer. Aft er all, you

could be asking for a 1OO-line proof from it, so it should

not s top af t er th e f i rs t f ew d educ ti on s •

One more item: PROVER cannot easily handle existence

quantifiers.

give a=b+u.

F o r x > y , i t w i 11 g i v e x = y +u ; f o r a> b , i t w i 11

Thus, I must restrict the user somewhat: one

may enter rules in the program with this type of condition,

but b ew are. No two u's (in this case) are necessarily the

same. With this in mind, the user is cautioned to check the

p r o g r am ' s r es u 1 t s • Its purpose is to off er suggestions and

possible methods of proofs. It i s th e duty of th e us er to

check for existence quantifiers.

With no further ado, I present PROVER.

(RELEASE "10.1) BASIC - V LINK-READY COMPIL ER

REM TIS THE DIMENSION SIZE
T=lOO

0 DIM 1$(100) ,T$(100) ,G$(100) ,G(lOO) ,Z$(210) ,S$(50) ,R(lOO)
1 DIM I (100) , F (1 0) , W (1 0) , C $ (2 6)
0 R=O
1 D=O
2 A=O
3 FOR I=l TOT
4 1$(1)=""
5 T$(1)=""
6 G$(1)=""
7 G(I)=-1
8 NEXT I
9 V$=""
0 PRINT
5 PRINT "ENTER COMMAND"
0 INPUT X$
5 PRINT
0 L$=LEFT(X$,3)
0 IF L$="IS " THEN 1000
1 IF L$="NUM" THEN 100
2 IF L$="IF" THEN 200
3 IF L$="TEL" THEN 300
4 IF L$="GIV" THEN 400
5 IF L$="DEL" THEN 500
6 IF L$="VAR" THEN 600
7 IF L$="AUT" THEN 700
9 IF L$="COM" THEN 900
0 IF L$="NEW" THEN 20
1 IF L$="IFF" THEN 200
9 IF L$="END" THEN 9999
0 PRINT "INVALID COMMAND (ENTER 'COMMAND' FOR A LIST OF VALID COMMANDS)"
0 GOTO 40
00 PRINT "THERE ARE";R;"RULES AND";D;"DEDUCTIONS"
01 P$="OFFON"
02 PRINT "AUTOMATIC MODE IS NOW ";MID(P$,A*3+1,3)
10 GOTO 30
00 IF R(T THEN 230
10 PRINT "NO ROOM FOR MORE RULES"
20 GOTO 30
30 R=R+l
40 P=INSTR(O,X$," THEN")
50 T$(R)=RIGHT(X$,P+6)

.60 IF L$="IFF" THEN 290

.70 I$(R)=MID(X$,4,P-4)

.80 GOTO 35
:90 I$(R)=MID(X$,5,P-5)
:91 X$="IF "+T$(R)+" THEN "+I$(R)
;j 2

3
L$ =LEFT (X$, 3)

·~ GOTO 200
-00 Z$(1)="THESE ARE THE RULES:"
,01 Z$(2)=""

(RELEASE "10.1) BASIC - V LINK-READY COMPILER

10
20
30
40
41
42
49
50
60
70
71
72
80
81
82
83
90
00
10
20
30
40
50
60
70
80
81
85
90
91
95
00
01
10
20
30
40
41
42
43
49
50
60
70
71
72
73

, 79

1~
,00
I 10

FOR I=l TOR
Z$(I+2)="IF "+1$(1)+" THEN "+T$(I)
NEXT I
Z$(R+3)=""
Z$(R+4)="THESE ARE THE GIVENS/DEDUCTIONS:"
Z $ (R + 5) = '"'
P$="TRUE FALSE"
FOR I=l TOD
Z$(I+R+5)=MID(P$,G(I)*6+1,6)+G$(I)
NEXT I
Z$(R+D+6)=""
Z$(R+D+7)="THESE ARE THE VARIABLES: "+V$
FOR I=l TO R+D+7
PRINT Z$(I)
Z$(I)=""
NEXT I
GOTO 30
IF D(T THEN 430
PRINT "NO ROOM FOR MORE GIVENS"
GOTO 30
D=D+l
P=INSTR(O,X$," ")
M$=RIGHT(X$,P+l)
L$=LEFT(M$,3)
IF L$="NOT" THEN 490
G$(D)=M$
G(D)=O
GOTO 30
G$(D)=RIGHT(M$,4)
G(D)=l
GOTO 30
PRINT "ENTER FIRST, LAST RULE; FIRST, LAST GIVEN TO DELETE."
PRINT "ENTER '1,0' FOR NO DELETION";
INPUT Rl,R2,Dl,D2
IF Rl)R2 THEN 550
R=R+Rl-R2-1
FOR I=Rl TOR
RO=I+R2-Rl+l
I$ (I)= I$ (RO)
T$(I)=T$(RO)
NEXT I
IF Dl)D2 THEN 580
D=D+Dl-D2-l
FOR I=Dl TO D
DO=I+D2-Dl+l
G$(I)=G$(DO)
G(I)=G(DO)
NEXT I
PRINT "DELETIONS COMPLETED"
GOTO 30
P=INSTR(O,X$," ")
IF P)O THEN 640

(RELEASE "10.1) BASIC - V LINK-READY COMPILER

20 PRINT "THE PROPER FORMAT IS 'VARIABLE XYZ'"
30 GOTO 30
40 V$=RIGHT(X$,P+l)
50 V=LEN(V$)
60 GOTO 30
'.)Q P=INSTR(O,X$," ")
10 IF P=O THEN 790
20 M$=RIGHT(X$,P+l)
30 IF M$="ON" THEN 770
40 IF M$<>"OFF" THEN 790
50 A=O
60 GOTO 780
70 A=l
30 PRINT "AUTOMATIC MODE IS NOW ";M$;"."
81 GOTO 30
90 PRINT "THE PROPER FORMAT IS 'AUTO ON' OR 'AUTO OFF'"
91 GOTO 30
JO PRINT "THE COMMANDS ARE:"
05 PRINT
10 PRINT "AUTOMATIC ON/OFF: ADJUSTS AUTOMATIC MODE"
15 PRINT "COMMAND: GIVES YOU THIS LIST"
20 PRINT "DELETE: DELETES RULES AND/OR GIVENS/DEDUCTIONS"
25 PRINT "END: TERMINATES PROGRAM"
30 PRINT "GIVEN XXX: ADDS XXX TO THE LIST OF GIVENS/DEDUCTIONS"
35 PRINT "IF XXX THEN YYY: ADDS THIS RULE (AND'S SHOULD BE SPACED)"
lO PRINT "IFF XXX THEN YYY: ENTERS IF XXX THEN YYY AND IF YYY THEN XXX"
l5 PRINT "IS XXX: CHECKS TO SEE IF XXX IS A VALID DEDUCTION"
50 PRINT "NEW: CLEARS WORKSPACE (LIKE STARTING ALL OVER)"
55 PRINT "NUMBER: GIVES NUMBER OF RULES AND GIVENS/DEDUCTIONS"
60 PRINT "TELL: TELLS THE RULES AND GIVENS/DEDUCTIONS"
65 PRINT "VARIABLE XXX: ENTERS XXX AS THE LIST OF VARIABLES"
90 PRINT
91 PRINT "ALL COMMANDS MAY BE SHORTENED TO THREE (3) LETTERS"
92 GOTO 30
000 REM DEDUCTION MACHINE. LINES 1000-2999 ARE
010 REM COPYRIGHT (C) 1983 WILLIAM W. BERGHEL.
D20 REM
050 REM E$ IS WHAT WE'RE TRYING TO GET
060 E$=RIGHT(X$,4)
070 PRINT "OBJECT: ";E$
072 E=O
074 IF LEFT(E$,3)<>"NOT" THEN 1080
076 E$=RIGHT(X$,7)
078 E=l
080 D2=0
090 Y=O
100 REM
101 REM FIRST, PULL APART THE RULE INTO USEABLE FORM
-~
1
. ·00 2

3
REM

ib D l=D
105 FOR IO=R TO 1 STEP -1
110 R$=I$(IO)

: RELEASE "10.1) BASIC - V LINK-READY COMPILER

L 11
L 1 2
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
140
150
160
170
180
185
190
200
210
220
230
235
240
245
250
260
270
290
291
292
293
295
296
297
300
310
320
330

~~
360
370

Pl=l
C=l
F(C)=O
M$=MID(R$,Pl,3)
IF M$<>"NOT" THEN 1120
F(C)=l
L$=LEFT(R$,Pl-l)
M$=RIGHT(R$,P1+3)
R$=L$+M$
P=INSTR(Pl,R$," ")
IF P=O THEN 1125
C=C+l
Pl=P+l
GOTO 1113
SO=O
S=l
FOR 11=1 TO 50
S $ (I 1) = '"'
NEXT 11
FOR Il=l TO LEN(R$)
R(Il)=O
M$=MID(R$,Il,1)
P=INSTR(O,V$,M$)
IF P=O THEN 1210
R(Il)=P
IF S)SO THEN 1240
S=S+l
GOTO 1240
S$=S$(S)
S$(S)=S$+M$
R(Il)=-S
SO=S
NEXT 11
S=SO
REM
REM TRY THE TRUTH OF THE THEN-PART OF THE RULE
REM
T$=T$(IO)
IF LEFT(T$,3)="NOT" THEN 1295
F=O
GOTO 1300
F=l
Z$=T$
T$=RIGHT(Z$,4)
REM
REM NOW, SEE WHICH IF'S COULD WORK
REM
FOR 11=1 TO D
I(Il)=l
X$=G$(Il)
FOR 12=1 TO S
IF INSTR(O,X$,S$(12)))0 THEN 1400

: RELEASE Al0.1) BASIC - V LINK-READY COMPILER

380 NEXT 12
390 I(Il)=O
'.J.00 NEXT 11
500 REM
510 REM SET UP THE PROOF PART
511 REM
520 DO=Dl
530 IF I(DO))O THEN 1570
540 DO=D0-1
550 IF DO(l THEN 2800
560 GOTO 1530
570 FOR 11=1 TO C
580 W(Il)=DO
590 NEXT 11
:iOO REM
:ilO REM FIRST SEE IF THE CONDITIONS (T/F) HOLD
520 REM
:, 30
540
550
700
710 ·
7 2 0
730
740
750
760
770
780
JOO
010
820
:)30
040
050
051
052
053
060
070
080
090
100
110
120
130
140
150

-~~6
180
190

FOR 11=1 TO C
IF G(W(Il))()F(Il) THEN 2700
NEXT 11
REM
REM SECOND PIECE TOGETHER THE GIVENS
REM
X$=G$(W(l))
FOR 11=2 TO C
Y$=X$+" "+G$(W(Il))
X$=Y$
NEXT 11
PRINT "D=";D;" R=";IO;" DL=";D2;" TR: ";X$;
REM
REM THIS IS THE BIGGIE ! !! ! !
REM TASK: SEE IF X$ FITS R$, AND IF SO, THEN HOW?
REM
REM
PO=l
FOR 11=1 TO 26
C$(Il)=""
NEXT 11
FOR Il=l TO S
P=INSTR(PO,X$,S$(Il))
IF P=O THEN 2700
M$=MID(X$,PO,P-PO)
IF R(l)=-Il THEN 2180
FOR 12=2 TO LEN(R$)
IF R(I2)=-Il THEN 2140
NEXT 12
IF LEN(C$(R(I2-l))))O THEN 2170
C$(R(I2-l))=M$
GOTO 2180
IF C$(R(I2-l))()M$ THEN 2700
PO=P+LEN(S$(Il))
IF PO)LEN(X$) THEN 2260

RELEASE "10.1) BASIC - V LINK-READY COMPILER

~00
~04
ms
~10
~20
~30
~40
~so
~60
no
mo
300
310
311
320
330
340
350
360
370
380
385
390
400
410
411
420
430
440
450
460
470
480
490
495
500
510
520
600
610
620
621
62 2
623
624
625
626
627

~~
630
631

NEXT 11
Pl=LEN(R$)
IF R(Pl)<O THEN 2700
M$=RIGHT(X$,PO)
IF LEN(C$(R(Pl))))O THEN 2250
C$(R(Pl))=M$
GOTO 2260
IF C$(R(Pl))()M$ THEN 2700
REM
REM IT FITS !! !
REM
REM
REM FIGURE OUT WHAT IT GOES TO
REM
Z$=""
FOR 11=1 TO LEN(T$)
M$=MID(T$,Il,l)
P=INSTR(O,V$,M$)
IF P)O THEN 2385
Y$=Z$+M$
GOTO 2400
IF LEN(C$(P))=O THEN 2370
Y$=Z$+C$(P)
Z$=Y$
NEXT 11
PRINT TAB(SO);"DED: ";Z$;
REM
REM SEE IF IT MATCHES ANYTHING
REM
FOR 11=1 TOD
IF Z$()G$(Il) THEN 2520
REM IT'S ALREADY IN THE LIST!!!
REM FORGET IT IF THE TRUTH-PART MATCHES
IF G(Il)=F THEN 2700
PRINT:PRINT
PRINT "WE HAVE A CONTRADICTION!"
GOTO 30
NEXT 11
REM
REM WE HAVE A BRAND NEW DEDUCTION!
REM
REM
REM SEE IF IT MATCHES WHAT WE WANT
REM
IF Z$()E$ THEN 2640
IF F()E THEN 2630
REM IT DOES!!!
PRINT:PRINT:PRINT "YES!"
Y=-1
GOTO 2640
PRINT:PRINT:PRINT "NO!"
Y=-1

RELEASE "10.1) BASIC - V LINK-READY COMPILER

,40 IF D(T THEN 2670
,41 REM BUT NOT ENOUGH ROOM!
,45 IF Y=-1 THEN 30
,49 PRINT: PRINT
,50 PRINT "I DON'T KNOW; I RAN OUT OF SPACE!"
,60 GOTO 30
, 70 D=D+l
,80 G$(D)=Z$
,90 G(D)=F
1 95 IF Y=-1 THEN 30
'00 REM
' 10 REM DECREMENT COUNTERS
' 20 REM
·21 PRINT
'30 WO=C
' 40 W(WO)=W(W0)-1
'50 IF W(WO)<l THEN 2780
'60 IF I(W(WO))=O THEN 2740
'65 FOR 11=1 TO C
'70 IF W(Il))D2 THEN 1600
'75 NEXT 11
'80 W(WO)=DO
' 90 WO=W0-1
99 IF WO)O THEN 2740

;QQ NEXT IO
:Q5 REM IF WE'RE IN AUTOMATIC MODE, THEN CONTINUE; ELSE, QUIT
,07 D2=Dl
;10 IF A=O THEN 2840
,20 IF D)Dl THEN 1100
130 PRINT "I DON'T KNOW; CERTAINLY NOT FROM WHAT YOU GAVE ME."
;3 5 GOTO 30
,40 PRINT "I DON'T KNOW; I DID NOT HAVE TIME TO SEE."
145 PRINT "IF YOU LET ME CONTINUE, I'LL TRY TO FIND OUT."
150 GOTO 30
t99 END

SAMPLE RUN

Th e f o 11 ow i ng i s a s amp 1 e run • Th e CAP ITAL S a r e w h at
the program types; the lower case letters are the user
entries but would be in capital letters in an actual run.
Before every command PROVER types ENTER COMMAND, followed by
a question mark. I shall abbreviate this by using only a
question mark.

Dur i ng th e pr o c es s of pr o v i ng th e th eo r em , PROVE R
p r i n t s f o u r t o f i v e i t ems : D , R , D L , TR , and m a y b e DE D • D
i s th e numb er of d educ ti o n s al r e ad y pr es en t , R i s th e r u 1 e
we are trying to fit, DL is the deduction limit (no test
case will be tried if all of its if-parts are below this
1 i mi t) , TR i s t h e t r i al s t r i n g , and DE D , i f p r es en t , i s t h e
d educ t ion th at f i ts th e r u 1 es •

prov er
?variables xyz
?if x=y y=z then x=z
?given a=b
?giv b=c
? is a=c

OBJECT: A=C
D= 2 R= 1 DL= 0
D= 2 R= 1 DL= 0
D= 2 R= 1 DL= 0

YES!

? tel

THESE ARE THE RULES:

IF X=Y Y=Z THEN X=Z

TR: B=C B=C
TR: B=C A=B
TR: A=B B=C

THESE ARE THE GIVENS/DEDUCTIONS:

TRUE A=B
TRUE B=C
TRUE A=C

THESE ARE THE VARIABLES: XYZ

?new
?var xyzuv
?iff x>y then x=y+u

DED: A=C

?iff x<y then y=x+u
?if x=y then y=x
? g iv a) b
? tell

THESE ARE THE RULES:

IF X)Y THEN X=Y+U
IF X=Y+U THEN X)Y
IF X<Y THEN Y=X+U
IF Y=X+U THEN X<Y
IF X=Y THEN Y=X

THESE ARE THE GIVENS/DEDUCTIONS:

TRUE A)B

THESE ARE THE VARIABLES: XYZUV

? is b< a

OBJECT: B(A
D= 1 R= 1 DL= 0 TR: A)B DED: A=B+U
I DON'T KNOW; I DID NOT HAVE TIME TO SEE.
IF YOU LET ME CONTINUE, I'LL TRY TO FIND OUT.

? is b< a

OBJECT: B(A
D= 2 R= 5
D= 3 R= 4

YES!

? tell

DL= 0
DL= 0

THESE ARE THE RULES:

IF X)Y THEN X=Y+U
IF X=Y+U THEN X)Y
IF X(Y THEN Y=X+U
IF Y=X+U THEN X(Y
IF X=Y THEN Y=X

TR: A=B+U
TR: A=B+U

THESE ARE THE GIVENS/DEDUCTIONS:

DED: B+U=A
DED: B(A

TRUE A)B
TRUE A=B+U
TRUE B+U=A {note the unnecessary step -- wwb}

TRUE B<A

THESE ARE THE VARIABLES: XYZUV

? d el

ENTER FIRST, LAST RULE; FIRST, LAST GIVEN TO DELETE.
ENTER '1,0' FOR NO DELETION?l,0,2,4
DELETIONS COMPLETED

?auto on

AUTOMATIC MODE IS NOW ON.

?num

THERE ARE 5 RULES AND 1 DEDUCTIONS
AUTOMATIC MODE IS NOW ON

? is b< a

OBJECT: B<A
D= 1 R= 1 DL= 0 TR: A)B
D= 2 R= 5 DL= 1 TR: A=B+U
D= 3 R= 4 DL= 1 TR: A=B+U

YES!

? end

DED: A=B+U
DED: B+U=A
DED: B<A

BIBLIOGRAPHY

Barr, Avron, and Feigenbaum, Edward A., The Handbook of

Artificial Intelligence, Volume I, William Kaufman, Inc.,

Los Altos , Calif or ni a, 19 81 •

Boy er, Rob er t S. , and Mo ore, J. Strother, A Computational

Logic, Academic Press, Inc., New York, 1979.

Chang, Chin-Liang, and Lee, Richard Char-Tung, Symbolic

Logic and Mechanical Theorem Proving, Academic Press, Inc.,

N ew Yo r k , 1 9 7 3 •

Dreyfus, Hubert L., What Computers Can't Do: A Critique of

Artificial Reason, Harper and Row, Publishers, Inc., New

York, 1972.

Johnson, Robert S., -CJ ass Not es from Mathematics 301

(Fundamental Concepts of Mathematics), (adapted from Landau,

Edmund , Found at i o n s of An al y s i s , Ch el s ea Pub 1 i sh i n g Comp any ,

N ew Yo r k , 1 9 6 6) •

