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1. INTRODUCTION 

Given a linear operator T: V---+ V on some inner-product space (V, (., .) ), we define the numerical range of T as 

W(T) = {(Tv,v): v EV, llvll = l}. 

One should note that unlike the range of T, which is a collection of vectors in V, the numerical range of T is 
a collection of scalars. The numerfoal range has a number of interesting properties; for example, W (T) must be 
convex, and if Tis a normal operator and V is finite dimensional, W(T) is the convex hull of the eigenvalues of T. 

This thesis will focus on finding subspaces M such that the compression of T to M, denoted TM, has a single 
point numerical range. We define TM : M---+ M by 

TMv = PMTv, \:/v E M 

where PM is the the orthogonal projection of V onto M. 
The motivation for finding such subspaces lies in a theorem from quantum coding theory, which states that an 

error process is correctable on a subspace M if the compression to M of each member of a particular collection of 
linear operators associated with that error yields a single point numerical range. It is, in particular , desireable to 
find such subspaces M of highest possible dimension. 

If W (TM) = {a}, it can easily be shown that a is in the numerical range of T, and this raises the question of 
which points z in the numerical range of T have associated subspaces Mz such that W(TMJ = { z} where Mz is of 
a given dimension. It is this question which will be the main focus of this thesis. We will consider subsets Wr(T) 
(where r = l, 2, ... ) of W(T) defined by 

Wr(T) = {a E W(T): {a}= W(TM) where dim(M) = r} 

and investigate their properties. In addition we will arrive at a result completely characterizing the sets Wr(T) for 
any self-adjoint operator T. 

We will conclude with an investigation of Wr(T) for Ta normal operator, finding subsets of the numerical range of 
Tin which Wr(T) must be contained, given r an integer such that Wr(T) is non-empty, and establishing a complete 
characterization of the subsets Wr(T) of W(T) when T : en ---+ en has distinct eigenvalues forming a convex n-gon 
and n ~ 6. We will finally conjecture that for T normal, Wr(T) is a convex set for every r. 

2. BACKROUND 

The results to follow require several basic concepts from linear algebra, beginning with that of an inner product: 

Definition 2.1. Let V be a vector space over e and let (·, ·) : V x V ---+ e. Then (-, •) is an inner product, and 
(V, ( ·, ·)) is an inner-product space if ( · 1 ·) satisfies: 

(a) \:/v E V, (v, v) 2: O; 
(b) (v, v) = 0 if and only if v = O; 
(c) \:/v,w,u E V,a Ee, (av +u,w) = a(v,w) + (u,w) ; 
(d) \:/v,w EV, (v,w) = (w,v). 

We quickly derive several additional useful properties of the inner product. 

Proposition 2.2. Suppose that(-,·) is an inner product on V, that v, w, u E V, and that a Ee. Then 

(a) (v,aw) = a(v,w); 
(b) (v, w + u) = (v, w) + (v, u); 
(c) (v,O) = (0,v) = 0. 

Proof. To show (a) , we observe that 

(v, aw) ~ 
a (w, v) 

a(v, w) 

a (v, w). 



It is a similar task to show (b): 

To show (c), we observe that 

(v, w + u) (w + u, v) 

(w, v) + (u, v) 

(w, v) + (u, v) 

(v, w) + (v, u) . 

(v,0) (v,0v) 
0 (v, v) 

0 

0 (v, v) 

(0v, v) 
(0,v). 

One common example of an inner product is that on en, given by 

V1 W1 

( 
V2 W2 

) = t v,w,. 
i=l 

Vn Wn 

One useful property of the inner product is that it gives rise to a norm. 

Definition 2.3. A norm on a vector space V is a function II · II from V to R satisfying the following properties: 

(a) [[vii ~ 0 \fv E V; 
(b) [[vii = 0 if and only if v = 0; · 
(c) [[av[[ = [al [Iv[[ \fv EV, a E <C; 
(d) [[v + w[I :S [[v[[ + [[w[I \fv,w EV (the triangle inequality). 
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□ 

We may now define the norm of v E V for V an inner-product space to be [[vii = ~- Note that by the 
definition of the inner product this is in fact a function from V to R, as (v, v) ~ 0. To verify that this satisfies all 
the necessary properties of a norm, we will first require the following important inequality. 

Theorem 2.4 (Cauchy-Schwartz Inequality). Suppose V is an inner-product space and w, v E V. Then I (w, v) I :S 
llwl[ [[v[[. Furthermore, given v nonzero, this will be an equality if and only if w is a scalar multiple of v. 

Proof. If v is 0, the inequality is clearly satisfied. Now suppose v -=/= 0, so (v, v) -=/= 0, and thus [Iv[[ -=/= 0. Then 

(w, v) 2 o < llw - Wvll 

/ . (w, v) (w, v) ) 
\w-wv,w-wv 

(w, v) (w, v) I (w, v) [2 
(w,w) -w (v,w) - M (w,v) + [[vll 4 (v,v) 

II 11
2 _ I (w, v) 1

2 _ I (w, v) [2 I (w, v) [2 

w l[v[l2 [[v[[2 + llv[[2 

II 11

2 - I (w, v) 12 
w llvll2 . 

Hence, 1<;;,t :S [[w[[ 2, and thus I (w,v) [2 :S [lw[[ 2[[v[[ 2, so that I (w,v) I :S [[wllllv[[. Now observe that we have 

l·t · th t· 1 "f / (w ,v) - (w,v) ) - 0 th t (w,v) - 0 d h - (w,v) h equa 1 y m e equa 10n on y 1 \ w - llvll 2 v, w llvll2 v - , so a w - lfv1T2v - , an t us w - 7Tv1T2v, so t at 



w is a scalar multiple of v. Finally, suppose w = av, where a E e. Then 

llw!l!lvll ✓(av,av)~ 
ial (v, v) 

la (v, v) I 
I (av,v) I 
I (w,v) I 

so that equality is guaranteed for w a scalar multiple of v, completing the proof. 
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□ 

Proposition 2.5. The function from an inner-product space V to R given by llvll = ~ is a norm on V. 

Proof. Properties (a), (b) and (c) follow directly from the definition of an inner product. It remains to show property 
(d), the triangle inequality, which will follow directly from the Cauchy-Schwartz inequality. Let v, w EV. Then 

and hence llv + wll ::S llvll + llw!I. 

llv + wll 2 (v + w, v + w) 
(v, v) + (v, w) + (w, v) + (w, w) 

< llvll
2 + llvll llwll + !lw!l !lvll + llwll

2 

(llvll + llwll)
2 

We now provide some additional definitions concerning inner-product spaces. 

□ 

Definition 2.6. Two vectors v, w in an inner-product space V are orthogonal and write v ..l w if (v, w) = 0. A set 
of vectors in V is orthonormal if its elements are pairwise orthogonal an have norm 1. 

As the introduction mentions, this thesis will primarily be concerned with certain types of linear operators. 
Recall that a linear operator on a vector space V is a function T : V ~ V such that Vv, w E V and a, b E e, 
T(ax + by) = aT(x) + bT(y). 

Although the concepts to follow may be applied to infinite dimensional inner-product spaces, we shall for simplicity 
assume for the remainder of this thesis that our inner-product spaces are finite dimensional, except where noted 
otherwise. We may in fact then assume we are working in en. Recalling that any linear operator from en to en 
may be represented as an n x n matrix, we will furthermore refer to linear operators and their matrix representations 
interchangebly. 

Using the inner product we may now define two special types of linear operators that will be of special interest; 
· first, though, we must introduce the concept of the adjoint of an operator. 

Definition 2. 7. The adjoint of a linear operator T on en, denoted T*, is the linear operator whose matrix repre
sentation is the conjugate transpose of that of T; that is, if [tij] is the matrix representation of T relative to some 
given basis of en , then the matrix of T* with respect to that basis has (i,j)-entry tji· 

Note that it follows directly from the definition that (T*)* = T. The adjoint of an operator has an important 
relationship to inner products involving the operator. 

Proposition 2.8. For T a linear ope·rator on en and v, w E en , (Tv, w) = (v, T*w). Furthermore, if T' is a linear 
operator such that (Tv, w) = (v, T'w) for all v, w E en 1 then T' = T *. 

Proof. Observe that if we consider vectors v and w to be n by 1 matrices, we have 

(Tv, w) w*Tv 

(T*w )*v 

(v , T*w). 

Now suppose (Tv, w) = (v, T'w) for all v, w E en. Then (v, T*w) = (v, T'w), and thus (v, (T* - T')w) = 0. But 
as v is arbitrary in en, we may let v = (T* -T')w, so that for all w E en, ((T* -T')w , (T* -T')w) = 0, and hence 
(T* - T')w = 0, and thus T* - T' is the zero operator, as w is arbitrary in e. Hence, T' = T *. 

□ 



We may now define normal and self-adjoint ( or Hermitian) operators. 

Definition 2.9. An operator T is normal if TT* = T*T. 

[ 
1 + i 

Example 2.10. T = _
1 

1 
1 - i ] is normal. 

1 l [ 1 _ i 
1 - i 1 

-1 l [ 3 o l . 
1 + i = O 3 , w h1le 

l [ i n . Hence TT* = T*T. 

Definition 2.11. Tis self-adjoint ( or Hermitian) if T ~ T*. 

Example 2.12. [ ~i 1 
0 

~ ] is clearly self-adjoint. 
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□ 

Observe that all Hermitian operators are clearly normal. Our investigation of these types of operators will make 
extensive use of the properties of their eigenvalues and their associated eigenvectors. 

Definition 2.13. Let T be a linear operator on V. Then if Tv = AV for some A Ee and some v E V \ {O}, then A 
is an eigenvalue of T, and v is an associated eigenvector. 

The matrix [ 
1 

n Example 2.14. -i 1 has eigenvalues 0, 2, and 3. 
0 0 

i -i 1 2i 
Proof. 0 bserve that 

[ ~i 
1 ~ ][ 1 ] [H Furthermore, [ -i 1 ~ H n [ 2 ] Finally, 
0 0 0 0 0 

[ 
1 i n[n [H -i 1 □ 
0 0 

Notice that the matrix in the example above is the self-adjoint matrix from Example ?? , and that all of its 
eigenvalues are real numbers, even though the matrix itself contains complex entries, as do some of the demonstrated 
eigenvectors. In fact, self-adjoint operators may have only real numbers as eigenvalues. 

Proposition 2.15. Suppose T is a self-adjoint operator on en. Then the eigenvalues of T are real numbers. 

Proof. Let A be an eigenvalue of T. Then :3v E en such that v-=/= 0 and Tv = AV. Now, as (Tv, v) = (v, T *v), 

and hence, A E R. 

(Av,v) 

(Av,v) 

(Av,v) 

A (v, v) 

A 

(v, T*v) 

(v, Tv) 

(v, Av) 

'X (v, v) 

'X 

□ 

Recall the eigenvectors associated with distinct eigenvalues are linearly independent . For normal operators, even 
more is true; such eigenvectors must be orthogonal. Our proof will depend on the following lemma. 

Lemma 2.16. Suppose T is normal and Tv = AV. Then T*v = 'Xv. 

Proof. Observe that 



( (T* - XI)v, (T* - XI)v) 

Hence, (T* - XI)v = 0, so T*v = Xv. 

(T*v, T*v) - (T*v, Xv) - (Xv, T*v) + l>-1 2 (v, v) 

(TT*v, v) - A (v, Tv) - X (Tv, v) + l>-1 2 (v, v) 

(T*Tv, v) - A (v , >.v) - X (>.v , v) + l>-1 2 (v , v) 

(Tv, Tv) - l>-1 2 (v, v) - i>-1 2 (v, v) + 1>-1 2 (v, v) 

l>-1 2 (v, v) - l>-1 2 (v, v) 
0. 
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□ 

Proposition 2.17. Suppose T .is a normal and >.1 , >.2 are distinct eigenvalues of T. Then if v1 and v2 are eigenvec
tors associated with >.1 and >-2, respectively, v1 and v2 are orthogonal. 

Proof. Observe that 

\ V1, A2V2) 
(v1, T*v2) 

(Tv1, v2 ) 

(>-1v1,v2) 
>-1 (v1,v2). 

Hence, >-2 (v1,v2)->-1 (v1,v2) = 0, and thus (>-2 ->.1) (v1,v2) = 0. As >-1,>-2 are distinct, (>.2 ->.1) -/- 0, and thus 
(v1, v2) = 0. 

□ 

Lemma?? also serves as a lemma for the proof of the following theorem (for details, see [? , p. 126)). 

Theorem 2.18. Suppose T : en ~ en is a normal linear operator. Then there is an orthonormal basis of en 
consisting of eigenvectors of T. 

We now arrive at the main topic of this thesis, the numerical range. 

Definition 2.19. For Ma subspace of an inner-product space V, the unit sphere of M, denoted (M)i, is the set of 
all vectors in M with norm 1. 

Definition 2.20. The numerical range of a linear operator T acting on an inner-product space V, denoted W(T), 
is given by W(T) = { (Tv, v) : v E (V)i}. 

Example 2.21. Suppose T is the identity on V. Then W(T) = {1 }. 

Proof. Let v E (V)i. Then (Tv, v) = (v, v) = llvll 2 = 1. □ 

Example 2.22. Let T = [ ~ ~ l · Then W(T) is the closed disk of radius ½ centered at the origin. 

Proof. Let v E (e2 )i. Then we may write v = 

r? + r~ = 1, so r1 = ✓1 - r~ . Then 

(Tv, v) 

Now 02 - 01 may clearly take on any value in [0, 21r], and r1r2 = r2✓1 - r~, where r 2 may be any value in [0, 1]. It 
may be shown using elementary calculus that r~ takes [0, 1] surjectively to [0, ½l- Hence, W(M) = {rei8 : r E 

[0 , ½L 0 E [0, 21r]} , the closed disk of radius ½ centered at the origin. 

□ 
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Example 2.23. Let T be a linear operator on V with eigenvalue A. Then,\ E W(T). 

Proof. Let ,\ be an eigenvalue of a linear operator T and let v be an associated eigenvector. Then v is non-zero, so 
llvll =/- 0. Then u = ll~II is a unit vector , and thus (Tu, u) E W(T). 

Now observe that 

(Tu , u) 

Hence ,\ E W(T). 

( Tll:ll'u) 

\>-11:11,u) 
.\(u,u) 

.\. 

□ 

One important feature of the numerical range on finite dimensional inner-product spaces is that it must be compact. 

Proposition 2.24. For T a linear operator on en, W(T) is compact. 

Proof. Let f en ~ e be given by f ( v) (Tv, v) for all V E en. Write V , and T [tiJ]- Then 

Vn 

J(v ) = L?=l L~=l tlkvkvl, which is simply a polynomial with complex coefficients in the real and imaginary parts 
of the v/s, and hence is continuous. Thus, f((en)i) is compact , as (en)i is compact. 

□ 

(This need not be the case on infinite dimensional inner-product spaces, as the unit sphere of an inner-product 
space of infinite dimension need not be compact, see, for example, [?]). 

One consequence of Theorem ?? is that any normal operator may be represented as a diagonal matrix (this 
is simply the matrix representation of the operator with respect to the orthonormal basis of eigenvectors of the 
operator). Using such a representation it becomes simple to determine the numerical range of the operator. 

Example 2.25. Suppose T is the normal operator with matrix representation [ ~ ~ ~ ] . Then the numerical 
0 0 l+i 

range of T is the filled-in triangle with vertices 1, i , and l + i {note that l, i , and l + i are the eigenvalues of T ). 

Proof. Let v E (<C3)i. Then v = [ ; ] , where lal2 + lbl2 + lcl 2 = 1. Now observe that 

(Tv, v) 

JaJ 2 + iJbj2 + (1 + i)JcJ 2 

so that the numerical range of T consists precisely of all linear combinations of 1, i, and 1 + i with nonnegative 
coefficients summing to 1. Furthermore, note that 

Jal 2 + ilbl2 + (1 + i) lcl 2 I 12 (I 12 I l2) (· lbl
2 

. lcl
2 

) 
a + b + c i Jbl2 + lcl2 + (1 + i) lbl2 + JcJ2 

N t . th t lbl 2 lcl2 - 1 . lbl2 + (1 + .) lcl2 . . 1 . h 1· . . . o ice a as lbl2+l cl2 + lbl2+lcl2 - , i lbl2+1cl2 i lbl2+lcl2 1s s1mp y some pomt 'Y on t e me segment Jmmng 

i and 1 + i, and so as lal2 + (lbJ2 + lcl 2
) = 1, Jal2 + (lbJ2 + lcJ 2

) (i lblJ~~cl 2 + (1 + i) lblJ~~cl2) is a point on the line 
segment joining 'Y and 1. Hence, the numerical range of Tis simply the triangle with vertices 1, i, and 1 + i and its 
interior. D 
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In the example above we see that the numerical range of the normal operator T is in the region formed by taking all 
linear combinations of the eigenvalues of T such that the coefficients of the eigenvalues are non-negative real numbers 
summing to one. We call such a region the convex hull of the eigenvalues. It will turn out that the numerical range 
of a normal operator is exactly this region, which we may note has the property that given any two points in the 
region, the line segment between them is in the region as well. 

Definition 2.26. A subset M of e is convex if \fx , y EM, and for any t E [0, 1], tx + (l - t)y E M. 

Definition 2.27. The convex hull of A1, A2, ... , An, is the set of all x Ee, such that x = I:~=l aiAi, where I:~=l ai = 
1 and each ai is a non-negative real number. Geometrically speaking, this will be the region enclosed by the line 
segments joining the Ai 's . 

Theorem 2.28. The numerical range of a normal operator T: en ~ en is the convex hull of its eigenvalues. 

Proof. Let x E W(T). Then there exists v E en such that llvll = 1 and x = (Tv, v). Let U = { u1, u 2, ... , un} be an 
orthonormal basis of en consisting of eigenvectors of T. Then we may write v = a 1u 1 + a2u2 + · · · + anun. Observe 
that 

1 llvll 2 

Now observe that 

(v,v) 

(a1u1 + a2u2 + · · · + anun,a1u1 + a2u2 + · · · + anun) 

(a1u1,a1u1) + · · · + (anun,anun) (as ui and Uj are orthogonal when if=. j) 

I a I 1

2 
( U I , U I ) + · · · + I an 12 

( Un , Un) 

la1I2 + · · · + lanl2-

x (Tv , v) 

(T(a1u1 + a2u2 + · · · + anun),a1u1 + a2u2 + · · · + anun) 

(A1a1u1 + A2a2u2 + · · · + AnanUn,a1U1 + a2u2 + · · · + anun) 

(AI a I u I , a I u I ) + · · · + ( An an Un, an Un) 

A1la1I2 (u1, u1) + · · · + An Ian 12 (un, Un) 

A1la1I2 + · · · + Anlanl
2

, 

and the theorem follows, as la1I2 + · · · + Ian 12 = 1. 

One major theorem regarding the numerical range shows that it is always a convex set. 

□ 

Theorem 2.29 (Toeplitz-Hausdorff). Suppose T is a linear operator on the inner-product space V. Then W(T) is 
convex. 

For a proof of the Toeplitz-Hausdorff theorem, see [? , p. 4]. 
Finally, we introduce the topic of compressions: 

Definition 2.30. Let M be a subspace of V. Then MJ_ = {h EV: h ..l m \f m EM}. 

Theorem 2.31. Suppose M is a subspace of V and let h E V. Then there exist unique hM E M and hM1- E MJ_ 
such that h = hM + hM1-. 

Proof. Consider the set B = {m EM: llmll ::; 2llhll}. Bis closed and bounded, and therefore compact. Hence the 
continuous mapping m ~ llh - mll maps B to a compact subset of R , and so that the mapping attains its minimum 
on B. Hence there exists mo EB such that for all m EB, llh- mll 2:: llh- moll- Observe additionally that as OE B , 



llh// = 1/h - 0/1 2:: llh - moll- Now suppose v EM\ B. Then 1/vjj > 21!hl!. Hence, 

llh - v/1 /Iv - hi! 

> llvll - llh/1 

> 21/hll - llhll 

//hi! 

> llh- moll• 
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Hence, for all v EM, llh-vll 2". 1/h-moll- Now suppose h-mo ~ M1-. Then 3w E (M)i such that (h- mo,w)-/= 0. 
Let u =mo+ (h - mo, w) w. Note that as u is a linear combination of mo and w, both of which are in NI, u E M. 
However, 

11 h - u II ✓ ( h - mo - ( h - mo , w) w, h - mo - ( h - mo, w) w) 

< ✓ 11 h - mo/ 12 - ( h - mo , ( h - mo, w) w) - ( ( h - mo, w) w, h - mo) + ( ( h - mo, w) w, ( h - mo, w) w) 

J II h - mo 11 2 - ( h - mo , w) ( h - mo, w) - ( h - mo, w) ( w, h - mo) + I ( h - mo, w) I 2 ( w, w) 

✓llh - mo/1 2 - I (h - mo, w) /2 

< ✓!lh - mo/1 2 

llh-mol! , 

a contradiction. Hence , h - mo E M1-. Hence h = hM + hMJ__, where hM = mo EM and hMJ__ = h - m0 E M1-. 
Now suppose h = m1 + v1 = m2 + v2, where m1,m2 EM, v1,v2 E M1-. Then 

(1) 

(2) 

Hence 

(m1 - m2,v2 -vi) 

0. (as m1 - m2 EM, v2 - v1 E M1_) 

Hence, m1 - m2 = 0, and so m1 = m2. Equation (2) now also shows v1 = v2. Hence such a representation of h is 
unique. 

□ 

Definition 2.32. Let M be a closed subspace of V. Define PM : V ~ M by PMh = hM, where hM is the unique 
element in M such that h - hM is in M1_. PM is called the orthogonal projection of V onto M. 

Definition 2.33. Suppose Mis a closed subspace of V and that T: V ~Vis linear. We define the compression of 
Tonto NI, denoted TM , to be the linear operator from M to M given by TMg = PMTg for all g ENI. 

Proposition 2.34. Let M be a closed subspace of en. Then PM is self-adjoint. 

Proof. Let v , w E en. Then v = m1 + h1, w = m2 + h2, where m1, m2 E M, h1, h2 E M1_. Then (PMv, w) = 
(m1 , m2 + h2) = (m1, m2). Similarly, ·(v, PMw) = (m1 + h1, m2) = (m1, m2). Hence, PM = PM. 

□ 

Corollary 2.35. Let T be a linear operator on V, and let M be a subspace of V. Then W(TM) is a subset of W(T). 

Proof. As PM is self-adjoint, Yv EM, (TMv, v) = (PMTv, v) = (Tv, PMv) = (Tv, v). Hence if v E (M)i , (TMv, v) = 
(T v, v) E W(T). □ 

We will specifically be interested in subspaces M such that W(TM) is a single point. The simplest such subspaces 
are the eigenspaces of T . 

Example 2.36. Suppose T is a linear operator on T and M is an eigenspace of T; that is, M is a subspace of V 
such that every element of M is an eigenvector of.T associated with the same eigenvalue, A. Then W(TM ) = {A}. 



Proof. Let v E (M)i. Then 

Hence, W(TM) = {A}. 

(Tv , v) 
(,\v, v) 

A (v, v) 
,\. 
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□ 

We may also view compressions yielding single point numerical ranges as scalar multiples of the identity mapping. 
To show this we will require the following lemma. 

Lemma 2.37. Suppose T is a linear operator on the inner-product space V such that Vv E V , (Tv , v) = 0. Then 

T = 0. 

Proof. Let w E V. Then 

and 

0 (T(Tw + w), Tw + w) 

(T(Tw), Tw) + (T(Tw), w) + (Tw, Tw) + (Tw , w) 

(T(Tw), w) + (Tw, Tw) 

0 (T(Tw + iw), Tw + iw) 

(T(Tw) , Tw) + (T(Tw) , iw) + (Tiw , Tw) + (Tiw , iw) 

-i (TTw, w) + i (Tw, Tw) 

i( (Tw, Tw) - (TTw , w)) 

so that ( (Tw , T w) - (TTw, w) = 0. Hence, 

0 = (TTw, w) + (Tw , Tw) + (Tw, Tw) - (TTw, w) 

= 2 (Tw,Tw). 

Hence, (Tw , Tw) = 0, and thus Tw = 0. Then as w E V is arbitrary, T = 0. □ 

Proposition 2.38. Suppose Tis a linear operator on V , and Mis a subspace of V such that W(TM) = {a}. Then 
TM= a l. 

Proof. Let u EM, u-=/= 0. Then v = ll~II E (M)i, so 

Hence 

(TMv, v) a 

a (v , v). 

0 (TM v, v) - (av, v) 

(TMv - av, v) 

((TM - aI)v, v) 
1 

llull2 ((TM - al)u, u). 

Thus , ((TM - o1)u, u) = 0 for all u EM. Hence, TM - al= 0 by Lemma??, so TM= a l. 

□ 
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It is clear that any point a E W(T) is the numerical range of TM for some I-dimensional subspace 1\11. We have 
seen that eigenspaces allow the construction of higher dimensional subspaces M such that W(TM) is a single point. 
Such subspaces, however, do not have to be eigenspaces, nor must the single point of the resulting numerical range 
be an eigenvalue of T, as the following example will demonstrate. 

Example 2.39. Let T be the linear operator on e4 with given by T = [ ~ H ~ ] , and let 

0 0 3 3 

M = span! [ ~ l • [ ~ ] )· Then W(TM) {3}. (Notice that T is not a normal operator, and 3 is not an 

eigenvalue of T.) 

Proof. Let v E (M)i. Then v = [ ~ l • where lbl2 + ldl 2 = 1. Now observe that 

(Tv, v) 

Hence W(TM) = {3}. 

3lbl2 + 3ldl 2 

3(lbl 2 + ldl 2
) 

3(1) 

3. 

□ 

The next section will begin with a discussion of when the single point numerical range of a compression of an 
operator must be an eigenvalue. First, however, we will conclude this section with a discussion of corner points, 
which will later be used to show that certain subspaces M with W(TM) a single point must be eigenspaces. 

Definition 2.40. Let T: V-+ V. Then a E W(T) is a corner point of W(T) provided that W(T) is contained in 
the area bounded by two rays forming an angle of less than 180 degrees at their common vertex a. 

Theorem 2.41. Suppose c is a corner point of W(T), and suppose v E (V)i is such that c =< Tv, v >. Then 
Tv = cv; that is, c is an eigenvalue of T with associated eigenvector v. 

For a proof of the above, see [?, p . 20]. 

3. RESULTS 

3.1. Some Criteria for Single-Point Numerical Ranges. If the dimension of Mis large enough and W(TM) = 
{a}, then a must be an eigenvalue of T, as the following theorem of Fry's([?]) demonstrates. 

Theorem 3.1. Let T: en-+ en and let M be a subspace of en such that dim M > ~- Then if W(TM) = {a}, a 
is an eigenvalue of T. Moreover, the multiplicity of a must be no less than dim M - dim M..1. 

The second theorem from Fry's thesis ( [?]) is useful in building subspaces with our desired properties. 

Theorem 3.2 (Augmentation). Let M be a proper subspace ofV such that W(TM) = {a}, and let w E (M..l)i such 
that (Tw, w) = a. Let D be the set of all linear combinations of elements in M and w. Then W (Tv) = {a} if and 
only if (Tv,w) = 0 = (Tw,v) for all v EM. 

Definition 3.3. Given a vector v and a linear operator T, we will say w satisfies the augmentation conditions with 
v for T if (Tv , w) = (Tw , v) = (v, w) = 0. 
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Notice that if w is a unit vector satisfying the augmentation conditions with v for T and (Tw, w) = (Tv, v), the 
span of w and vis a subspace M such that W(TM) is a single point. 

Another very similar theorem results in a corollary giving a useful criterion for determining when a compression 
to a subspace yields a single point. Its proof uses many of the same ideas as Fry's proof of Theorem ?? . 

Theorem 3.4. Suppose M is a subspace of H, T : H--+ H is linear, and U = { u1, u2, ... , uk} is an orthonormal 
basis for M. Then W(TM) is a singleton if and only ifVi,j E {l, ... ,k}, i # j, (Tui,u1) = 0 = (Tu1 ,ui) and 
(Tui , ui) = (Tu1 ,u1). 

Proof. Suppose W(TM) = {ex}. Let i,j E U, ... ,k} such that i # j. Then, as lluill = 1 = llu1 II , (Tui,ui), 
(Tu1,u1) E W(TM), and so (Tui,ui) =ex= (Tu1,u1). 

Now let v = aui + bu1, where a,b E e\{0} and laJ 2 + lbl2 = 1 so that v E (span{ui,u1})i. Then 

ex (Tv, v) 

(Taui + Tbu1, aui + bu1) 
2 2 - -!al (Tui, ui) + lbl (Tu1 , u1) + ab (Tui, u1 ) + ba (Tu1 , ui) 

(lal 2 + lbl 2)ex + ab (Tui, u1) + ba (Tu1, ui) 

ex+ ab (Tui, u1) + ba (Tu1, ui) 

and hence 

(3) 

Note that the above holds for any a, b Ee\ {O} such that Jal 2 + Jbl 2 = 1. Letting a= b = ~' we obtain 

(4) 
1 1 

2 (Tui, u1) + 2 (Tu1, ui) = 0. 

Letting a= ~' b = ~' we obtain 

(5) 

so that 

(6) 
1 1 
- (Tu- u-) - - (Tu· u -) = 0. 
2 i, J 2 Jl i 

Now, adding equations (??) and (??), we obtain (Tui, u1) = 0. Subtracting these equations gives (Tu1, ui) = 0. 
Now suppose that Vi,j E {1, ... , k}, i # j, (Tui, u1) = 0 = (Tu1 , ui) and (Tui, ui) = (Tu1 , u1) = ex. Let v E (M)i. 

Then v = a1u1 + a2u2 + · · · + akuk, where la11 2 + la21 2 + · · · + lakl 2 = 1. Observe that 

(Tv, v) (Ta1u1 +Ta2u2 + · · · +Takuk,a1u1 + ·· ·akuk) 

(Ta1 u1, a1 u1) + (Ta2u2, a2u2) + · · · + (Takuk, akuk) 

la1J 2 (Tu1,u1) + la21 2 (Tu2,u2) + · · · + Jakl 2 (Tuk,uk) 

·( I a 1 12 + I a2 I 2 + · · · + I a k I 2) ex 

ex. 

Hence, as v E (M)i is arbitrary, W(TM) = {ex}. 

□ 

Corollary 3.5. Suppose Mis a subspace of en and T: en--+ en is linear. Then W(TM) is a singleton if and only 
if Vv, w EM such that v is orthogonal tow, (Tv, w) = 0. 

Proof. Suppose W(TM) is a singleton, and v, w E M are orthogonal. Then M' = span{ 1fhrv , 11 ~ 11 w} is a subspace of 

M , and so W(TM') is also a singleton. Hence, by the previous result, \ T ll~II v, 11 ~ 11 w) = 0 and so llvlltlwll (Tv, w) = 0, 

and thus (Tv , w) = 0. 
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Now suppose M is such that \/v, w E M such that v is orthogonal to w, (Tv, w) = 0. Let U = { u1, u2, ... , uk} 
be an orthonormal basis for M. Observe that for i -=/= j, ui_l_uj, and thus by hypothesis (Tui, uj) = 0 = (Tuj, ui)
Furthermore, let v = ui + Uj and w = ui - Uj. Observe that v, w EM, and that 

( V, W) ( Ui + U j , Ui - U j) 

(ui, ui) + (ui, -uj) + (uj, ui) + (uj, -uj) 

(ui, ui) + (uj, -uj) 

1-1 

0 

and thus v and w are orthogonal. Hence 

0 (Tv, w) 

(Tui + Tuj, ui - uj) 

(Tui, ui) - (Tuj , Uj) - (Tui, Uj) + (Tuj, ui) 

(Tui, ui) - (Tuj, uj) 

and hence (Tui,ui) = (Tuj,uj)- Thus, by the theorem above, W(TM) is a singleton. 

□ 

3.2 . The Sets Wr(T) are Closed. We seek to describe, for a given r, subsets of the numerical range of a linear 
operator such that for any point in the set, there is an r-dimensional subspace such that the numerical range of 
the compression of the operator to that subspace is exactly that point. Recall that we will denote such a subset by 
Wr (T). We will ultimately conjecture that Wr(T) is convex for at least normal operators; for now we will show that 
it must be a closed set . 

Lemma 3.6. Suppose (ak)k=I and (bk)k=I are sequences of vectors in en such that (ak)k=I converges to a and 
(bk) k=I converges to b. Then the sequence (ck)k=I given by Ck = (ak, bk) converges to (a, b). 

Proof. 0 bserve that 

lck - (a, b) I I (ak, bk) - (a, b) I 
I (ak , bk) - (ak, b) + (ak, b) - (a, b) I 
I (ak, bk - b) + (ak - a, b) I 

< I (ak, bk - b) I+ I (ak - a, b) I 
< llakllllbk - bll + llak - allllbll. 

Observe that as (ak)k=I converges to a, llak - all goes to zero ask~ oo, and llakll is bounded. Furthermore, llbll is 
a constant and II bk - bll goes to zero as k ~ oo, so that !ck - (a, b) I goes to zero as k ~ oo. Hence, the sequence 
(ck)k= 1 converges to (a , b). 

□ 

Theorem 3.7. Suppose T: en~ en and Wr(T) = {a: E W(T): {a:}= W(TM)where dim(M) = r}. Then Wr(T) 
is closed. 

Proof. Suppose ( o:k)k=1 is a sequence in Wr(T) converging to a:. Then by Theorem ?? , for each ak there exists a set 
of unit vectors Hk = {hk1 , hk2 , ••· ,hkr} such that W(Tspan(Hk)) = {o:k}, and ifi-=/=j , 

(hki, hkj) 0 

(hki, Thkj) 0 

(hki, T*hkj) 0. 

Now, observe that each sequence (hkl)k=I is bounded, as each hkl is a unit vector. Hence, (hki)k=I has a convergent 
subsequence. That is, there is some sequence (kj)f=1 such that the sequence (hk11 )f=1 converges. Furthermore, the 
sequence (hk_12)f=2 is bounded and so has a convergent subsequence (hk1s 2)~2 . Continuing in this manner we may find 
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a sequence (kq)~ 1 such that (hkql)~ 1 converges to some gz for all l E {1, 2, ... , r }. Now, observe that by our lemma, 

for each l, ((hk,,l,hk,,t))~1 converges to (gl,gl)- However, as each hk,,l is a unit vector, (\hkql,hk"t)) ~ 1 = (1)~1 

converges to 1, and thus (gl, gl) = 1, and gl is a unit vector. Furthermore, ( (Thk"l, hk,,t) )~1 converges to (Tgl, gl), 
and hence as ((Thk,

1
l, hk,,t))~1 = (akJ~1 converges to a, (Tgl,gl) = a. 

Furthermore, observe that for l # t , each term of the sequence ( ( hk,,l, Thkqt) )~1 is zero, and so as this sequence 

converges to (gt,Tgt), (gz ,Tgt) = 0, \/l -=J t. Similarly, the sequences ((hk"t,T*hk"t))~ 1 and ((hk"t,hk,,t))~1 have 
all zero terms, and converge to (gl, T * gt) and (gl, gt), respectively. Hence (gl, T* gt) = 0 and (gl, gt) = 0. Therefore, 
by Theorem??, the set {g1,g2, ... ,gr} is a basis for an r-dimensional subspace M such that W(TM) = {a}. Hence 
a E Wr(T). 

Therefore, as (ak)k=:: 1 in Wr(T) is an arbitrary convergent sequence, every convergent sequence in Wr(T) converges 
to a point in Wr(T), and hence Wr(T) is closed. 

D 

3.3. Self-Adjoint Operators. We will now turn our attention to the case of self-adjoint operators. Recall that the 
numerical range of a normal operator is the convex hull of its eigenvalues, and that the eigenvalues of a self-adjoint 
operator are all real numbers. Hence the numerical range of a self-adjoint operator is simply a segment of the real 
line. 

0 2 0 0 

[ 

1 0 0 0 l 
Example 3.8. Let T = 

0 0 3 0 
, so that T is clearly self-adjoint and has eigenvalues 1, 2, 3 and 4. Then 

0 0 0 4 
W(T) is the interval [1, 4] of the real line. 

Proof. We could simply invoke Theorem ??, however, we prefer to give a direct proof. Let v E (C4 )i. Then 

v = [ ; ] , where [a[ 2 + [b[2 + [c[ 2 + [d[ 2 = 1. Then 

(Tv, v) 

and thus (Tv, v) is in the convex hull of 1, 2, 3 and 4, which is simply the interval [1, 4]. 
D 

We observe that the example above mimics the proof of Theorem ?? , where the orthonormal basis of eigenvectors of 

Tis simply l [ ~ ] , [ ~ ] , [ ~ ] , I ~ ] ) · We see then that the value of (Tv, v) is simply a linear combination of 

the moduli of the coefficients of v represented in terms of this basis, taking as its coefficients the associated eigenvalues. 
This , combined with Theorem ?? , leads us to a clear method for building a subspace M whose compression yields a 
given point in the numerical range of T . 

l [ 
1 

v'2 
Example 3.9. Let T be as in the previous example, and let M = span ~ 

1 

v'2 



Proof. Let v E (M)i Then v = a [ i ] +b [ f ] [ I l where lal 2 
+ IW = 1. Then 

(Tv, v) 

\[U lil) 
lal 2 2lbl 2 3lbl 2 4lal 2 
2 + -2- + -2- + -2-

5lal2 + 5lbl2 

5 

2 

2 
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□ 

Notice that the basis of M in the example above consists of a linear combination x, [ ~ ] + x2 [ ~ l • such that 

1 ui + 4 ,x~ = ~ and a combination y, [ ~ ] + Y2 [ ~ ] such that 2 * yf + 3* Y? = t It is easy then to see that 

different choices for x 1, x2, YI and Y2 will yield two dimensional subspaces whose compression gives any point in the 
interval [2, 3]. This method will not, however, work for values outside of this interval, and in fact it may be shown 
that there are no two dimensional subspaces yielding compressions of T with numerical range a single point outside 
of this interval. These ideas may be used to completely characterize the sets Wr(T) for as.elf-adjoint operator T. 

Lemma 3.10. If H = {h1, h2, ... , hk} is a set of k linearly independent vectors in a space with basis U = 
{ u1, u2 , ... , Un}, then for any set { i1 , i2, ... , ik-d of k - l indices such that l ::; ij ::; n, span( H) contains a 
vector v such that v is non-zero and when v is represented in terms of the basis U as a1u1 + a2u2 + · · · + anun, then 
ai,; = 0 for each ij in the set. 

Proof. Let our Hand Ube as described. Then any v in the span of His given by v = I:7=1 bzhz. Furthermore, each 
h1 may be represented as a linear combination of vectors in the basis U, so hz = L~=l a1iui, and so the coefficient 

of ui:; in the expression of v is given by ,i1 = I:7=1 b1a1i_1 . Hence, by setting each of these sums to zero we obtain 
a homogeneous system of k - l equations (one for each ,i_j) in k unknowns (the bz), which must have a non-trivial 

solution. Observe that any such non-t.rivial solution (b1)~=l produces a vector v = I:7=1 b1hz whose coordinate vector 
relative to U has zeroes in positions i1, i2, ... , ik-1 · Furthermore, as there exists at least one non-zero b1 and H is 
linearly independent , v is non-zero . D 

Lemma 3.11. Suppose T is a normal operator on en and M is a k-dimensional subspace of en. Let L 
{,\1 , A2, ... , Ar} be a set of eigenvalues of T, where Ai has multiplicity mi. Then if L~=l mi ~ n - k + l, there 
exists v E (M)i such that (Tv, v) is in the convex hull of L. 

Proof. Let U = { u 1 , u 2 , ... , un} be an orthonormal basis for en con~isting of eigenvectors of T . Then there is 
a subset A = { e1 , e2 , ... , e8 } of U such that each ei E A has as its associated eigenvalue an element -in L and 
s ~ n - k + l. Hence IU \ Al ::; n - (n - k + l) = k - l. Now, as the dimension of M is k, by Lemma ?? there is 
a non-zero vector v E ]VJ such that if v is written v = a1 u1 + a2u2 + .. ·. + an Un, ai = 0 if ui ~ A. Hence v may be 
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written as a linear combination of elements in A , v = b1e1 + b2e2 + · · · + bse8 • We may further assume that v is a 
unit vector. Hence, v E ( span A )i. Then 

(Tv, v) (T(b1e1 + b2e2 + · · · + bses) , b1e1 + b2e2 + · · · bses ) 

(hb1e1 + bb2e2 + · · · + lsbses, b1e1 + b2e2 + · · · bs es ) 

hJb1J
2 + l2Jb2J

2 + · · · + lsJbsJ
2 

where li is the eigenvalue associated with ei, and thus li EL. Furthermore, as JJvJI = 1, Jb1J 2 + Jb2l 2 + · · · Jbsl 2 = 1. 
Hence , (Tv, v) is in the convex hull of L. 

□ 

Theorem 3.12. Let T be a self-adjoint matrix acting on en. Order the eigenvalues of T , A1 , A2, ... , Ak such that 
,\1 ::; ,\2 ::; . .. :S: ,\k , and let u1, u2, ... , Un be an orthonormal basis for en consisting of eigenvectors of T. Suppose 
a E W(T). Let A be the set of ui such that the eigenvalue corresponding to ui is less than a, and let B be the set 
of of ui such that the eigenvalue corresponding to ui is greater than a. Then if M is the subspace of en of largest 
dimension such that W(TM) = a, dim(M) = min{ JAI , JBJ} + l , where l is the multiplicity of eigenvalue a , or O if a 
is not an eigenvalue. 

Proof. Observe that given Ua 1 and Ub 1 with corresponding eigenvalues Aa1 and Ab1 , if Aa 1 < Cl' < Ab1 (so that Ua 1 E A 

and ub E B) we may construct the unit vector w1 = ✓1 - >..0.-:_; 1 Ua 1 + ✓~ 0.-:_;1 Ub 1 • Furthermore, 
l 1>1 " l 1,1 "1 

(Tw, w) 

Iow, let M1 = span{ wi}. Then any unit vector in M1 may be written ei0 w 1 , where 0 E R. As (Tei8w 1 , ei8w1) = 
Jei0

1
2 (Tw1 , w1) = la = a, and so W(TM1 ) = a. Now, if possible, construct w2 as we constructed w1, using Ua 2 and 

Ub2 distinct from thos; used to construct w1. Then w1 and w2 are orthogonal, as they are linear combinations of 
orthogonal vectors, and furthermore 

(Aa1 k1 Ua 1 + Ab1 k2Ub1 , k3Ua2 + k4 Ub2 ) 

0 ( as distinct ui are orthogonal) 

where ki are the constants used in the construction our wi. Similarly, 

( Aa2 k3 Ua 2 + Ab2 k4 Ub2 , k1 Ua 1 + k2Ub1 ) 

0. 

Hence by Theorem ?? , the compression of T to span{w1, w2} has single point numerical range a . We may continue 
to construct wi in this manner using Ua ; and Ub;. distinct from those already used to augment our space, each time 
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preserving the single point numerical range. For all v in the space already, Tv is a linear combination of eigenvectors 
u orthogonal to those eigenvectors of which wi is a linear combination, and Twi is a linear combination of eigenvectors 
u orthogonal to those used in any vector in the space, and so (Tv, wi) = 0 and (Tv , wi) = 0. We may repeat until 
we run out of distinct elements of A or B, and so may construct a subspace M of dimension min{IAI , IBI}, where 
W(TM) = a. Furthermore, if a is an eigenvalue of T with eigenspace C of dimension l, we may augment each of the 
l-many ui in C to our space, and again as all these are orthogonal to those already used, and all give (Tui, ui) = a , 
the space will still have W(TM) = a. In this way we obtain a subspace with dimension min{IAI, IBI} + 1. 

Now suppose the dimension of M, r, is greater than t = min{IAI, IBI} + l. Now let D be the larger of the sets 
A and B, or A if IAI = IBI, so that if L = {l1, l2, ... , ls} is the set of eigenvalues associated with eigenvectors in D , 
and m i is the multiplicity of li, then :z::::;=1 mi = IDI = n - t 2: n - r + l. Hence by Lemma ?? there is a vector 
v E (M)i such that (Tv , v) is in the convex hull of L. But then if D = A, (Tv, v) < a and if D = B , (Tv, v) > a, a 
contradiction, as v E (M)i. Hence no such subspace may exist. 

□ 

One natural question regarding the subspaces in the theorem above is whether or not they are unique. They are 
not; assuming, for example, that a is not an eigenvalue, there are infinitely many of them. 

Proposition 3.13. Suppose T is a self-adjoint matrix acting on en, and a E W(T). Then if there is a subspace 
M of highest possible dimension k such that W(TM) = {a}, where a is not an eigenvalue ofT, there exist infinitely 
many such subspaces. 

Proof. Observe that by Theorem ?? there is a subspace M1 of en with dimension k with orthonormal basis 
{ a1 u1 + a2u2, a 3u3 + a4u4, ... , a2k-l u2k-1 + a2kU2k}, where each Ui is a distinct element of an orthonormal ba
sis for en consisting of eigenvectors of T, such that TM

1 
has numerical range {a}. Now consider the subspace 

·0 l\lf2 = span{ei a1u1 +a2u2,a3u3 +a4u4, · · · ,a2k-1U2k-l +a2kU2k}, where 0 E (0,1r]. Observe that A= span{a3u3 + 
a 4u 4 , ... , a2k-1U2k-1 + a2kU2k} is a subspace of en with numerical range {a}, and h = ei0a1u1 + a 2u2 is clearly 
orthogonal to each element in A, as u1 and u2 are orthogonal to each ui appearing in the basis of A. Furthermore, 
ifwEA 

(Tw, h) 

(Th, w) 

11h11 

(Th , h) 

(A3a3u3 + · · · + A2ka2ku2k, ei
0

a1u1 + a2u2) 

O; 
( 

·0 
.A1ei a1u1 + A2a2u2, a3u3 + · · · + a2kU2k) 

O; 

✓1ei0 a1u11 2 + la2u21 2 

(jei0 iia1ilu11)2 + (la2ilu21) 2 

✓la11 2 + ia21 2 

l; 

( 
·0 ·0 

.A1ei a1u1 + A2a2u2, ei a1u1 + a2u2) 
·0 2 

lei I (.A1a1u1,a1u1) + (.A2a2u2,a2u2) 

(.A1a1u1,a1u1) + (.A2a2u2,a2u2) 

(Ai a1 u1 + .A2a2u2, a1 u1 + a2u2) 

(T(a1u1 + a2u2), a1u2 + a2u2) 

a (as a1u1 + a2u2 E (M)i). 

Hence by the augmentation theorem, l\lf2 is a subspace with numerical range {a}. Now, observe that if M1 = M 2 , 

then h may be expressed as a linear combination of vectors in the basis of M 1. As our u i are linearly independent, 
~nd h contains in its expression only u1 and u 2 , the only vector in the basis of M 1 that may have non-zero coefficient 
111 the linear combination giving h is a1 u1 + a2u2. However, h is clearly not a multiple of a 1 u1 + a 2u 2 and thus may 
not be so expressed. Hence, h (j.. M 1, and thus M 1 =/=- M2. In this manner we may by choice of 0 construct infinitely 
many distinct subspaces yielding compressions with numerical range {a} having dimension r. □ 
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3.4. Normal Operators. It would appear that as the lemmas used in establishing the results for self-adjoint 
operators above are true for normal operators that methods similar to those used in Theorem ?? should extend 
naturally to give a similar result for general normal operators. Unfortunately, however, it quickly becomes apparent 
that while we may easily find the regions of the numerical range of a normal operator Tin which our subsets Wr(T) 
must be contained, establishing that a given point must be in Wr(T) is not as simply done as in the self-adjoint 

case. 
We will for simplicity restrict our investigation to those normal operators T on en whose numerical range is a 

convex n-gon, so that T has n distinct eigenvalues, no three of which are collinear. We will primarily be concerned 
with Wr(T) when r is as large as possible; by Theorems ?? and ??, this means r:::; l ~ J. 

To aid in our description of the n-gons that will be our numerical ranges, we introduce some new notation. 

Definition 3.14. Suppose { a1, a2, ... , ak} is a set of complex numbers. Then we will say a1a2a3 ... ak is the set of 
all line segments (in C) joining an to an+l for 1 :::; n < k, together with the line segment joining ak to a1. 

Example 3.15. If A= 0, B = i, and C = 1, then ABC is the triangle in the complex plane with vertices 0, i, and 

l. 

When n is even, we can completely describe W i (T). 

Theorem 3.16. Suppose Tis a normal matrix acting on en, n > 2, such that the eigenvalues of T form the convex 
n -gon AiA2 ... An- Then there is no subspace M of dimension greater than ~ such that W(TM) is a single point. 
Furthermore, if n is even, there is a subspace M of en with dimension ~ such that W (TM) = {a} if and only if the 
set of eigenvalues of T may be partitioned into ~ pairs such that the line segments joining the elements of each pair 
intersect at a. 

Proof. Suppose, in order to obtain a contradiction, that there is a subspace M of dimension larger that ~ such 
that W(TM) = {a} . Then by Theorem??, a must be an eigenvalue of T. However, as Tis normal the numerical 
range of T must be the convex hull of its eigenvalues, and so as the numerical range of T is a convex n-gon, each 
eigenvalue of Tis a corner point of W(T), and so a is a corner point of T. Hence, by Theorem ??, any vector v 
such that (Tv , v) = a must be an eigenvector of T, and thus M can have dimension no larger than the dimension 
of the eigenspace of a. However, as T acts on en and has as its numerical range an n-gon, T must have n distinct 
eigenvalues , one for each vertex of the n-gon, and so each eigenvalue has multiplicity 1. Thus the dimension of M is 
no greater that 1, a contradiction. 

Now let n > 2 be even, and let U = { u1, u2, ... , un} be an orthonormal basis of en consisting of eigenvectors 
of T. Suppose a lies on the intersection of ~ line segments connecting distinct pairs of eigenvalues of T. Now, if a 
is on the line segment connecting Ai and Aj, there exists some t such that a = tAi + (1 - t)AJ· Hence, if ui, Uj are 
the eigenvectors in U with eigenvalues Ai and AJ, respectively, the vector Vs = ,Jtui + ~uj clearly has norm 1 
and (Tv , v) = tAi + (1 - t)AJ = a. We may find such a vector Vs for each line segment s containing a, and as each 
such vector will be a linear combination of eigenvectors of T orthogonal to the eigenvectors of which each other Vs is 
a linear combination, all such vectors will be pairwise orthogonal, and as Tvs is simply another linear combination 
of the same eigenvectors as compose Vs, (Tvs, vr) = 0 whens f= r. Hence, by Theorem ??, the span of these Vs is 
will be a subspace M such that W(TM) = {a}, and thus as there are~ such Vs, this subspace has dimension~' as 
desired. 

Now suppose there is a subspace M of en with dimension ~ such that W(TM) = a. Then by Lemma ?? , there 
is a unit vector v1 E M such that (Tv1, v1) is in the convex hull of A1, A2, ... , A~+I· But there is also v2 EM such 
that (Tv1, v1) is in the convex hull of A1, A!!:.+1, ... , An. But (Tv1, v1) =a= (Tv2, v2), and hence a must lie on the 
line segment joining Ai and A!!:.+1. We ma/ repeat this process for each pair of opposite eigenvalues, so that a must 
lie on the intersection of each ~f these ~ line segments. 

□ 

When n is odd, if W (TM) = {a}, it is clear that we may use Lemma ?? to place a in the intersection of a number 
of subregions of W (T). However, where in the previous theorem if M has dimension l ~ J the intersection of these 
regions is at most a single point, for which an appropriate subspace M exists, when n is odd the intersection of these 
reg~on~ contains many points for which no obvious corresponding M exists, so that it is unclear if WL i J (T) is the 
entire mtersection. If n = 3, l ~ J = 1, and it is clear that W1 (T) = W (T) (in fact, this is true for any linear operator 
T), and Wr(T) is empty for r > l. The first interesting case for n odd is that when n = 5. We will now provide a 
description of W2(T) when T is normal on C.5 , which will require a few lemmas. 
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Lemma 3.17. Let T: C4 ----+ C4 be normal with eigenvalues A, B , C , D {with associated eigenvectors e1, e2, e3, e4), 
such that ABCD is a quadrilateral in C. Let v E (C4)i and let (Tv, v) = Q. Suppose Q is in the interior of the 
triangle ABC and in the interior of triangle ABD, and w E C4 satisfies the augmentation conditions with v. Then 
(Tw, w) is in the triangles ACD and BCD. 

A~ -----------~ B 

(Tw, w) MUST BE IN THE SHADED REGION. 

Proof. Let M = span{v , w}, and let (Tw , w) = /3. Then if u E (M)i , u =av+ bw where lal 2 + 1h12 = 1. Then 

(Tu, u) (Tav + Tbw, av+ bw) 

lal 2 (Tv, v) + ab (Tv, w) + ba (Tw , v) + 1h12 (Tw , w) 

lal 2
Q + lbl2/3 

(where the final equality is due to w satisfying the augmentation conditions with v). Hence, (Tu , u) is on the line 
segment joining Q to /3. However, by Lemma??, as Mis two dimensional it must contain a vector u 1 in the span 
of e1, e3, e4 and u2 in the span of e2, e3, e4, so that (Tu1 , u1) and (Tu2 , u2) are in the triangles ACD and BCD , 
respectively. Hence, as these two values also must lie on the line segment connecting Q and /3, /3 must lie in the 
intersection of these triangles . 

□ 

Lemma 3.18. Suppose T : «:::4 ----+ C4 is normal, with eigenvalues A, B , C, D forming a quadrilateral ABCD in C. 
Suppose further that Q is in the interior of triangles DBC and ADC. Then there is a continuous path {like the one 
shown in the figure below) from B to A such that for each point p on the path there exists w, v E ( C4 ) 1 such that w 
satisfi es the augmentation conditions with a unit vector v and (Tv, v) = Q while (Tw , w) = p. Note that by Lemma 
?? this path must lie entirely in the intersection of ABC and ABD. 

D 

Proof. Let {e1, e2, e3, e4} be an orthonormal basis of eigenvectors of T corresponding to eigenvalues A , B , C and D , 
respectively. We may assume without loss of generality that A = 0. We will begin by constructing a continuous 
parameterization v : [O , 1]----+ (C4 )i, such that (Tv(x),v(x )) = Q, v(O) E span{e1 ,e3 ,e4 }, and v(l) E span{e2 ,e3 ,e4 }. 

Let b(x) = A+ x (B - A), so that b parameterizes the line from A to B. Then for x E [O, 1], the line through b(x) 
and Q intersects the line DC at some point l(x) , which may be represented as a convex combination of C and D , 
l(x) = D + s(x)(C - D). It is clear that s(x) will vary continuously with b(x), which is a continuous function of x. 
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Furthermore, the distances from Q to b(x) and b(x) to l(x) will vary continuously with x, so that we may use 
the ratio of these distances to find yet another continuous function, a(x), such that Q = b(x) + a(x)(l(x) - b(x)). 
Finally note that s(x) and a(x) will have values in the interval [0, 1] for x E [0, 1], by their definitions. Furthermore, 
a(x) f= 0 for x E [0 , 1] as then Q = b(x), a contradiction, as Q is not on the segment AB. Neither can s(x) be zero 
or one, as if it were, l(x) =Dor l(x) = C, so the segment from l(x) to b(x) does not pass through the interior of of 

triangles DBC and ADC. Now let v(x) = ( ✓1 - a(x))( vT--=--xe1 + y'xe2) + ,Ja(x)( Js(x)e3 + ✓1 - s(x)e4). Then 
for x E [0, l], 

(v, v) (1 - a(x))(l - x) (e1, e1 ) + (1 - a(x))(x) (e2, e2) + a(x)s(x) (e3, e3) + a(x)(l - s(x)) (e4, e4 ) 

(1 - a(x))(l - x) + (1 - a(x))(x) + a(x)s(x) + a(x)(l - s(x)) 

l; 

furthermore, 

(Tv, v) (1 - a(x))(l - x)A + (l - a(x))(x)B + a(x)s(x)C + a(x)(l - s(x))D 

(1 - a(x))((l - x)A + xB) + (a(x))(s(x)C + (l - s(x))D) 

(1 - a(x))b(x) + (a(x))l(x) 

Q. 

ow, from the definition of v, v(0) E span{e1,e3,e4}, and v(l) E span{e2,e3,e4}. The continuity of v follows from 
its construction from continuous functions. 

We will now exhibit a continuous mapping w: (v([0, 1]) -t (C4)i such that w(v) satisfies the augmentation conditions 
with v, that is, (Tv, w(v)) = (T*v, w(v)) = (v, w(v)) = 0. Let v = v1e1 + v2e2 + v3e3 + V4e4 (for v E v([0, 1]) and let 
B = B1 +iB2, C = C1 +iC2 and D = D1 +iD2. Calculation shows that if w(v) = w1e1 +w2e2 +w3e3 +w4e4 where 
w V4W4(-C2C1+C2D1-D1B2+C1B2) V4W4C2(C1-D1) d -V4W4(B1C1-D1B2) th -( ) . 1 t" t 

l = v1(B1C2-C1B2) 'W2 = v2(B1C2-C1B2)' an w 3 = v3(B1C2-C1B2) ' en WV IS a SOU IOn O 

the system of equations (Tv,w(v)) ':' (T*v,w(v)) = (v,w(v)) = 0. Note that K = B1C2 - C1B2 = I ~~ g: I, and 

so may be zero only if the vectors (B1, B 2) and (Ci, C2) are linearly dependent, which they are not, as ABCD is a 
quadrilateral, and A is the origin. Hence K is non-zero. Now write w 1 = v 4 w 4KR1 , w 2 = v 4 w4KR2 , and w 3 = -v4 wKR3 , V1 V2 V3 
where R1 = -C2C1 + C2D1 - D1B2 + C1B2, R2 = C2(C1 - D1) and R3 = B1 C1 - D1B2. Note that for v E v([0, 1]), 
V3 V4 -# 0, and v1 and v2 are never· both zero. 

r--=----=----=----= W4 v2 R 2v2v2+v2 R 2v2v2+v2 R 2v2v2+v2 K2v2v2 
Then let L = vw2 + w2 + w2 + w2. Then it may be L = 4 1 2 3 4 2 1 3 4 3 1 2 1 2 3 . Note that the 1 2 3 4 V1V2V3K 

quare root in the top is just a continuous real valued function of the components of v, call it Y(v), so L = w 4Y(t. V1V2V3 
ote that as K is nonzero, Y(v) is nonzero so long as v1,v2, and V3 are non-zero, and that for v E v([0, 1]) , v3 is never 

0 and V1 V2 are only zero at v(l) and v(0) respectively Let w(v) = w(v) .!. = v 4v 2v 3R 1 e1 + v 4 v 1 v3R2 e2 - v 4 v 1 v2R3 e + 
' ' · L Y(v) Y(v) Y(v) 3 

v1
~

2
(~)K e4 for v E v((0, 1)) and let w(v(0)) = e2, w(v(l)) = e1, noting that these boundary values also clearly satisfy 

the augmentation conditions. Clearly w ( v) is a unit vector and by its construction must satisfy the augmentation 
conditions for all v E v([0, 1]). Furthermore w is a continuous function of v on v((0, 1)). Now observe that as x -t 0, 
~2 (x) ~ 0, and so Y(v(x )) -t ✓v~R~vrv~ = V4R2V1V3 and so w(v(x)) -t ~:~2v:l~;e2 = e2 = w(v(0)). Hence w(v(x)) 
1 contmuous at x = o. 

Similarly, as X -t 1, v1(x) -t 0, and so Y(v(x)) -t ✓v~Rrv~v~ = V4R1V2V3 and so w(v(x)) -t V 4"i:lwsRi e1 = e1 = 
( ( )) 

V4 1V2 V3 
w v 1 . Hence w(v(x)) is continuous at x = l. 
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Now, if wo = w(v(O)) , (Two, wo) = B and if w1 = w(v(l)), (Tw1, w1) = A. Now, as the function f(u) = (Tu, u) 
is continuous, the mapping g : [O, 1] ----+ C defined by g(x) = f(w(v(x))) is continuous with image joining B and A, 
where w(v(x)) satisfies the augmentation conditions with v(x) for all x E [O, 1] . 

□ 

Theorem 3.19. Suppose T: cs ----+ cs is normal, with eigenvalues forming a convex pentagon. Then W 2 (T) is the 
intersection of all quadrilaterals whose vertices are eigenvalues of T. 

IF W(T) IS THE PENTAGON ABOVE, W2(T) IS THE SHADED REGION AND ITS BOUNDARY. 

Proof. Label the eigenvalues of T A, B, C, D and E such that the pentagon they form is ABC DE. Furthermore, 
let {e1,e2, e3,e4,es} be an orthonormal basis of eigenvectors of T corresponding to eigenvalues A , B , C , D and E , 
respectively. Now suppose M is a two dimensional subspace of cs. Then M has orthonormal basis{ u 1 , u2 }. Thus by 
Lemma?? there exists a vector u E (M)i such that u is in the span of any 4 of e1, e2, e4, es, and thus it is clear that 
(Tu, u) is in the convex hull of the 4 corresponding eigenvalues. Hence, if the numerical range of T compressed to 
M is a single point, that point must be in the intersection of the convex hulls of any given 4 eigenvalues, and hence 
W2 (T) is contained in the intersection of all such quadrilaterals. 

Now suppose a is in the interior of the described intersection. Then a must be in the interiors of triangles AEC, 
EEC, and ADE. Now consider the linear operator T' : C4 ----+ C4 with eigenvectors e1, e2, e3, es corresponding to 
eigenvalues A, B , C and E , respectively. Note that T restricted to the span of e1, e2, e3, es is T'. Now by Lemma?? 
applied to T' there is a continuous path from A to B contained entirely in the intersection of ABC and AEB such 
that for any point (3 on the path there exists a vector w satisfying the augmentation conditions with a vector v such 
that (T'v, v) = a and (T'w, w) = (3. As this path is continuous from A to B, and a is in the triangle ADE, the path 
must intersect the ray emanating from D and passing through a at some point b. Let v and w be the unit vectors 
satisfying the guaranteed conditions for b. Now, as a is on the line segment joining D and b, a = tD + (l - t)b for 
some t E [O, l]. Let w' = v'1°=tw + 0,e4 . Then 

Furthermore, 

(Tw}, w') \ v'1°=tw + vte4, v'1°=tw + vte4) 

(1 - t) (Tw, w) + t (Te4, e4) 

(Tv, w') 

(T*v, w') 

(1 - t) (T'w , w) + tD 

(1 - t)b + tD 

a. 

(Tv, v'1°=tw) + \ Tv, vte4) 

(T'v, v'1°=tw) + 0 

O; 

(T*v, v'1°=tw) + \ T*v, vte4) 

\ T
1

*v, v'1°=tw) + 0 

O; 
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(v, w') (v, ~w) + \ v, yle4 ) 
0. 

Hence, the span of v and w' is a two dimensional subspace such that the compression of T to that subspace is {a}. 

Finally, suppose a is on the boundary of the region described. Then v lies on one of the segments AC, BD, CE, or 
DA, and then also in the triangle EBD, ACE, BDA, or ECB, respectively. We may assume without loss of generaliy 
that a is on AC and in BDE. Then a may be represented as a convex combination of A and C, a= xA + yC or as a 
convex combination of B, D and E, a= rB +sD +tE (so, x+y = r+ s+t = l, x, y, r, t 2: 0). Let v = .fie1 + y'ye3, 
and let w = yre2 + Jse4 = v'tes. Then 

(v, v) x+y 

1· 
' 

(w,w) r+s+t 

1· 
' 

(v, w) 0· 
' 

(Tv,w) 0· 
' 

(T*v, w) (v, Tw) 

0· 
' 

(Tv, v) xA+yB 

a· 
' 

(Tw,w) rB +sD +tE 

a . 

Hence, the span of v and w is a two dimensional subspace such that the compression of T to that subspace is {a}. 
□ 

It may be noted that W2 (T) described above is itself a convex pentagon, and that all other Wr (T) so far found 
for normal operators are themselves convex sets. We hence conjecture that for T : en --+ en normal, for all r such 
that Wr(T) is non-empty, Wr(T) is convex. 

We will conclude with an informal investigation of Wr (T) for normal operators on e6 . Suppose T : e6 --+ e6 is 
normal and has eigenvalues A, B, C~D, E, and F forming a convex hexagon ABCDEF. Then W1 (T) = TtV(T) is the 
hexagon shown below. 

A D 

F E 

W(T) 

ow by Theorem??, W3 (T) is nonempty if and only if the line segments AD, BE and CF intersect at some point 
Q as shown below, in which case W3(T) = {Q}. 
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F E 

Finally, using Lemma ?? as in the proofs of Theorems ?? and ?? , it is clear that W2 (T) must be contained in 
the intersection of all possible pentagons formed by any five of A, B, C, D, E and F, the shaded region in the figure 
below. 

A D 

F E 

To see that W2 (T) is exactly the shaded region above, notice that any point a in the region is in the intersection 
of the triangles ACE and BDF. Hence, a= x1A+x2C+x3E = y1B+y2D+y3F, where x1,x2,x3,y1,y2 and y3 are 
non-negative real numbers such that X1 + x2 + X3 =YI+ Y2 + y3 = l. Now, as Tis normal, there is an orthonormal 
basis for C6 consisting of eigenvectors of T, { uA, us, uc, uv, UE, up}, where ui is has as its corresponding eigenvalue 
i. Then the vectors v and w given by v = JxiuA + ./X?,uc + y!X3UE and w = ffiu 8 + ,Jffi,uv + -jyi,up are 
orthogonal unit vectors such that (Tv , w) = (Tw, v) = 0 and (Tw, w) = (Tv, v) = a. Hence if M = span{v, w }, M 
has dimension 2 and W(TM) = {a}. Thus we may completely describe Wr(T) for all r such that Wr(T) may be 
non-empty, when Tis as described above. Notice that each Wr(T) described above is convex, further supporting our 
conjecture. 
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