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1. INTRODUCTION

Given a linear operator T': V- — V on some inner-product space (V,(.,.)), we define the numerical range of T' as
W(T) ={{Tv,v) :v e V,|v|| =1}

One should note that unlike the range of 7', which is a collection of vectors in V, the numerical range of T is
a collection of scalars. The numerical range has a number of interesting properties; for example, W(7T') must be
convex, and if 7" is a normal operator and V is finite dimensional, W(T') is the convex hull of the eigenvalues of T'.

This thesis will focus on finding subspaces M such that the compression of T to M, denoted T}, has a single
point numerical range. We define Ty; : M — M by

Tyv = PyTv,Vve M

where P)s is the the orthogonal projection of V' onto M.

The motivation for finding such subspaces lies in a theorem from quantum coding theory, which states that an
error process is correctable on a subspace M if the compression to M of each member of a particular collection of
linear operators associated with that error yields a single point numerical range. It is, in particular, desireable to
find such subspaces M of highest possible dimension.

If W(Ty) = {a}, it can easily be shown that « is in the numerical range of T', and this raises the question of
which points z in the numerical range of 1" have associated subspaces M, such that W (T, ) = {z} where M, is of
a given dimension. It is this question which will be the main focus of this thesis. We will consider subsets W,.(T')
(where 7 =1,2,...) of W(T) defined by

Wi (T) = {a e W(T) : {a} = W(Tn) where dim(M) =r}
and investigate their properties. In addition we will arrive at a result completely characterizing the sets W,.(T') for
any self-adjoint operator 7T'.

We will conclude with an investigation of W,.(T") for T' a normal operator, finding subsets of the numerical range of
T in which W,.(T") must be contained, given r an integer such that W,.(T') is non-empty, and establishing a complete

characterization of the subsets W,.(T") of W(T') when T : C* — C" has distinct eigenvalues forming a convex n-gon
and n < 6. We will finally conjecture that for 7" normal, W,.(T) is a convex set for every 7.

2. BACKROUND

The results to follow require several basic concepts from linear algebra, beginning with that of an inner product:

Definition 2.1. Let V be a vector space over C and let (-,-) : V x V — C. Then (-,-) is an inner product, and
(V,(-,+)) is an inner-product space if (-,-) satisfies:

(a) Vo €V, (0,0) > 0;

(b) (v,v) =0 if and only if v = 0;

(¢) Yv,w,u € V,a € C,{av+ u,w) = a(v,w) + (u,w);

(d) Yv,w eV, (v,w) = (w,v).
We quickly derive several additional useful properties of the inner product.

Proposition 2.2. Suppose that (-,-) is an inner product on V, that v,w,u € V, and that a € C. Then

(a) (v,aw) =a(v,w);
() (v,w~+u) = (v,w) + (v,u);
(¢) (v,0) =(0,v) =0.

Proof. To show (a), we observe that

(v,aw) = Taw,v)




It is a similar task to show (b):
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To show (c), we observe that
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One useful property of the inner product is that it gives rise to a norm.

Definition 2.3. A norm on a vector space V is a function || - || from V to R satisfying the following properties:
(a) |lv]| > 0VveV;
(b) |lv|| = 0 if and only if v = 0;
() llav]l = |a|[|v]| Vv € V,a € C;
(d) [Jv+w| <|v|l + |lw|| Vv,w € V (the triangle inequality).

We may now define the norm of v € V for V an inner-product space to be |[v|| = 1/(v,v). Note that by the
definition of the inner product this is in fact a function from V to R, as (v,v) > 0. To verify that this satisfies all
the necessary properties of a norm, we will first require the following important inequality.

Theorem 2.4 (Cauchy-Schwartz Inequality). Suppose V' is an inner-product space and w,v € V. Then |{w,v) | <
|lw||||v]]. Purthermore, given v nonzero, this will be an equality if and only if w is a scalar multiple of v.

Proof. If v is 0, the inequality is clearly satisfied. Now suppose v # 0, so (v,v) # 0, and thus ||v|| # 0. Then
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Hence, % < |lw||?, and thus | (w,v)|?> < [|w|/?||v||?, so that | (w,v)| < ||w||||v]. Now observe that we have

equality in the equation only if <w — (” ”2>v w— (||“5|rz)“> =0, so that w — (”ﬁ”)”“}v 0, and thus w = <|r ”v?) v, so that
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w is a scalar multiple of v. Finally, suppose w = av, where a € C. Then
wllivll = +/{av,av)v/(v,v)
= la|(v,v)
= la{v,v)|
| {av,v) |

= |<w’v>|

so that equality is guaranteed for w a scalar multiple of v, completing the proof. O
Proposition 2.5. The function from an inner-product space V to R given by |[v|| = \/(v,v) is a norm on V.

Proof. Properties (a), (b) and (c) follow directly from the definition of an inner product. It remains to show property
(d), the triangle inequality, which will follow directly from the Cauchy-Schwartz inequality. Let v,w € V. Then

lv+wl|®> = (v+w,v+w)
= (v,v) + (v,w) + (w,v) + (w,w)
< ol + llelllfwl + lwlillofl + flw]l?
= (Ioll + llwl)®
and hence ||v 4+ w|| < |jv]| + [Jw]|- O

We now provide some additional definitions concerning inner-product spaces.

Definition 2.6. Two vectors v, w in an inner-product space V are orthogonal and write v L w if (v,w) = 0. A set
of vectors in V' is orthonormal if its elements are pairwise orthogonal an have norm 1.

As the introduction mentions, this thesis will primarily be concerned with certain types of linear operators.
Recall that a linear operator on a vector space V is a function T' : V' — V such that Yo,w € V and a,b € C,
T(az + by) = aT'(z) + bT(y).

Although the concepts to follow may be applied to infinite dimensional inner-product spaces, we shall for simplicity
assume for the remainder of this thesis that our inner-product spaces are finite dimensional, except where noted
otherwise. We may in fact then assume we are working in C". Recalling that any linear operator from C™ to C"
may be represented as an n X n matrix, we will furthermore refer to linear operators and their matrix representations
interchangebly.

Using the inner product we may now define two special types of linear operators that will be of special interest;
‘first, though, we must introduce the concept of the adjoint of an operator.

Definition 2.7. The adjoint of a linear operator 7" on C”, denoted T, is the linear operator whose matrix repre-
sentation is the conjugate transpose of that of T’; that is, if [t;;] is the matrix representation of 7" relative to some
given basis of C", then the matrix of 7* with respect to that basis has (i, j)-entry ¢;;.

Note that it follows directly from the definition that (7*)* = T. The adjoint of an operator has an important
relationship to inner products involving the operator.

Proposition 2.8. For T a linear operator on C* and v,w € C*, (Tv,w) = (v, T*w). Furthermore, if T' is a linear
operator such that (Tv,w) = (v, T'w) for all v,w € C", then T' =T*.

Proof. Observe that if we consider vectors v and w to be n by 1 matrices, we have

(Tv,w) = w'Tw
= (T*w)*v
= v, T*w).
Now suppose (T, w) = (v, T'w) for all v,w € C*. Then (v,T*w) = (v, T"w), and thus (v, (T* — T")w) = 0. But

as v is arbitrary in C*, we may let v = (T — T")w, so that for all w € C*, ((T* — T")w, (T* — T")w) = 0, and hence
(T* — T")w = 0, and thus T* — T” is the zero operator, as w is arbitrary in C. Hence, 7" = T™*.
O



We may now define normal and self-adjoint (or Hermitian) operators.
Definition 2.9. An operator T is normal if TT* = T*T.
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Example 2.10. T = [ 11—

; ] is normal.

. « | 1+ 1 1-¢ -1 | _[3 O y
Proof. Observe that TT —[ 1 1—i][ 1+i]_[0 3],whlle

1
gir o i A=t = 1+ 1 130 . e
TT—[ 1 1+i][ % 1_1.]_[0 3].HenceTT =T*T.

Definition 2.11. T is self-adjoint (or Hermitian) if T = T™.

1 4 0
Example 2.12. | —i 1 0 | is clearly self-adjoint.
0 0 3

Observe that all Hermitian operators are clearly normal. Our investigation of these types of operators will make
extensive use of the properties of their eigenvalues and their associated eigenvectors.

Definition 2.13. Let T be a linear operator on V. Then if Tv = Av for some A € C and some v € V' \ {0}, then A
is an eigenvalue of T, and v is an associated eigenvector.

1,4 .0
Example 2.14. The matriz | —¢ 1 0 | has eigenvalues 0,2, and 3.
0 0 3
1+ w0 —1i 0 1410 i 2i
Proof. Observe that [ —¢ 1 0 1 — | [ Furthermore, | —2 1 0 1 = 2 |. Finally,
0 0 3 0 0 0 0 3 0 0
1 4 0 0 0
- 1 0 0 =100 O
Qiigerg 1 3

Notice that the matrix in the example above is the self-adjoint matrix from Example 7?7, and that all of its
eigenvalues are real numbers, even though the matrix itself contains complex entries, as do some of the demonstrated
eigenvectors. In fact, self-adjoint operators may have only real numbers as eigenvalues.

Proposition 2.15. Suppose T is a self-adjoint operator on C"™. Then the eigenvalues of T' are real numbers.

Proof. Let X be an eigenvalue of T. Then Jv € C™ such that v # 0 and Tv = Av. Now, as (Tv,v) = (v, T*v),

(Av,v) = (v, T*v)
(A, v) = (v,Tv)
(Av,v) = (v, v)
Aw,v) = X{v,v)
X = X
and hence, A € R. O

Recall the eigenvectors associated with distinct eigenvalues are linearly independent. For normal operators, even
more is true; such eigenvectors must be orthogonal. Our proof will depend on the following lemma.

Lemma 2.16. Suppose T is normal and Tv = Av. Then T*v = \v.

Proof. Observe that



|
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((T* = XD)v, (T* = X)v) T*v, T*v) — (T*v, lv) — (Ao, T*v) + |A? (v, v)
TT*v,v) — X (v, Tv) — X (Tv,v) + |\ (v,v)

T*Tv,v) — A (v, W) — X (Av,v) + |A]? (v,v)

= (T, Tv) — |AP* (v,v) — |A]? (v,v) + |A]? (v, v)

= A2 (v,0) = AR (v,0)
0.
Hence, (T* — X )v = 0, so T*v = \v.
O

Proposition 2.17. Suppose T .is a normal and A1, Ao are distinct eigenvalues of T. Then if v1 and vy are eigenvec-
tors associated with A1 and A2, respectively, vi and vy are orthogonal.

Proof. Observe that

A2 (v1,v2)

Il

= )\1 (’Ul, ’U2> .
Hence, Az (v1,v2) — A1 (v1,v2) = 0, and thus (A2 — A1) (v1,v2) = 0. As Ay, Ag are distinct, (A2 — A1) # 0, and thus
<U1, ’U2> =0
O
Lemma ?7 also serves as a lemma for the proof of the following theorem (for details, see [?, p. 126]).

Theorem 2.18. Suppose T' : C* — C™ is a normal linear operator. Then there is an orthonormal basis of C"
consisting of eigenvectors of T'. :

We now arrive at the main topic of this thesis, the numerical range.

Definition 2.19. For M a subspace of an inner-product space V, the unit sphere of M, denoted (M);, is the set of
all vectors in M with norm 1.

Definition 2.20. The numerical range of a linear operator T' acting on an inner-product space V', denoted W (T,
is given by W(T') = {(Tv,v) : v € (V)1 }.

Example 2.21. Suppose T is the identity on V. Then W(T) = {1}.

Proof. Let v € (V). Then (Tw,v) = (v,v) = ||v||? = 1. O
Example 2.22. Let T = [ 8 (1) ] . Then W (T) is the closed disk of radius § centered at the origin.

01
Proof. Let v € (C?);. Then we may write v = [ :1;92 ], where 1,79 € [0,1],61, 62 € [0, 27]. Note that as ||v| =1,
2

r?+r2=1,s0ry =+/1—r2 Then

» rpei® 1€
(T Si= <[ 0 },[”6192

= rlrgei(ez—el).

Now 6, — 6; may clearly take on any value in [0, 27], and 7179 = 734/1 — rZ, where ro may be any value in [0, 1]. Tt
may be shown using elementary calculus that rv/1 — 72 takes [0, 1] surjectively to [0, -;—] Hence, W (M) = {re? : r €
[0,1],6 € [0,27]}, the closed disk of radius % centered at the origin.

O



Example 2.23. Let T be a linear operator on V with eigenvalue X\. Then A € W(T).

Proof. Let A be an eigenvalue of a linear operator T" and let v be an associated eigenvector. Then v is non-zero, so
|v]| # 0. Then u = 7 is a unit vector, and thus (T'u,u) € W(T).

Now observe that
v
Tu,u) = <T _—, u>
e ol

v
= (A—=,1U
< [[oll >
= Au,u)
= A
Hence A € W(T). O

One important feature of the numerical range on finite dimensional inner-product spaces is that it must be compact.

Proposition 2.24. For T a linear operator on C™, W(T') is compact.

Proof. Let f : C* — C be given by f(v) = (Tw,v) for all v € C*. Write v = , and T = [t;;]. Then

U"’L
f() = Y11 > p_1 tuviTr, which is simply a polynomial with complex coefficients in the real and imaginary parts
of the v;’s, and hence is continuous. Thus, f((C™);) is compact, as (C™); is compact.
O

(This need not be the case on infinite dimensional inner-product spaces, as the unit sphere of an inner-product
space of infinite dimension need not be compact, see, for example, [?]).

One consequence of Theorem ?7? is that any normal operator may be represented as a diagonal matrix (this
is simply the matrix representation of the operator with respect to the orthonormal basis of eigenvectors of the
operator). Using such a representation it becomes simple to determine the numerical range of the operator.

1 0 0
Example 2.25. Suppose T is the normal operator with matriz representation | 0 1 0 . Then the numerical
0 0 1+¢

range of T is the filled-in triangle with vertices 1,4, and 1 +14 (note that 1,4, and 1 + i are the eigenvalues of T).

a
Proof. Let v € (C®);. Thenwv = | b |, where |a? + |b]? + |c|? = 1. Now observe that

(B = < I?i , (; >
‘ 1+1)e c

= lal* +lo” + (1 +9)|c?
so that the numerical range of T' consists precisely of all linear combinations of 1,4, and 1 + ¢ with nonnegative
coefficients summing to 1. Furthermore, note that
mmw%mmﬁzmmwuwaﬂﬁumJiﬁ
6] + |c|? 6] + |cf?

; |b]? 2
Notice that as |b|2+|c|2 + Iblzildz =315 z|b|£+|c|2 +(1+9)5mmae Ib‘g |612 is simply some point 7 on the line segment joining

iand 1+, and 5o as |of? + (b + |e”) = 1, laf? + (b + |ef) (i + (1 +6)pige) is @ point on the line
segment joining v and 1. Hence, the numerical range of 7" is simply the triangle with vertices 1,7, and 1 + 4 and its
interior. =



In the example above we see that the numerical range of the normal operator 7" is in the region formed by taking all
linear combinations of the eigenvalues of T" such that the coefficients of the eigenvalues are non-negative real numbers
summing to one. We call such a region the convezr hull of the eigenvalues. It will turn out that the numerical range
of a normal operator is exactly this region, which we may note has the property that given any two points in the
region, the line segment between them is in the region as well.

Definition 2.26. A subset M of C is convez if Vz,y € M, and for any t € [0,1], tz + (1 — t)y € M.

Definition 2.27. The convex hullof A1, s, ... , A, is the set of all z € C, such that z = >~ | a;A;, where > a; =
1 and each a; is a non-negative real number. Geometrically speaking, this will be the region enclosed by the line
segments joining the A;’s.

Theorem 2.28. The numerical range of a normal operator T' : C* — C™ s the convex hull of its eigenvalues.

Proof. Let z € W(T). Then there exists v € C™ such that |[v|| =1 and z = (Tv,v). Let U = {u;,us,... ,un} be an
orthonormal basis of C™ consisting of eigenvectors of T'. Then we may write v = ajuj + asus + - - - + anpu,. Observe
that
1 = ||
= <’U, U>
= (a1u1 + a2us + - + Apln, a1u1 + agUs + - - + Gply)
(a1u1, a1u1) + - - - + (@pUn, anuy,) (as u; and u; are orthogonal when ¢ # j)
laa|® (ur,ua) + -+ + |an|® (Un, tn)
- |a1|2 i ess |an|2_
Now observe that
(Tw,v)
(T(a1u1 + agug + - - + apuy), a1u1 + agug + - - + apty)
= (A1a1ug + Aaagua + - - - + AplnUn, @11 + agug + - - + apUy)
(Ara1ur, aquy) + - ()\nanum Ann)
= Alaaf? (ug,ur) + - + Anlan|? (un, un)
= Mlea]®+ -+ + Aalas/?,

and the theorem follows, as |a1|? + - -+ + |a,|? = 1.

One major theorem regarding the numerical range shows that it is always a convex set.

Theorem 2.29 (Toeplitz-Hausdorft). Suppose T' is a linear operator on the inner-product space V.. Then W(T') is
conver.

For a proof of the Toeplitz-Hausdorff theorem, see [?, p. 4].
Finally, we introduce the topic of compressions:

Definition 2.30. Let M be a subspace of V. Then M- ={h €V :h L mVme M}.

Theorem 2.31. Suppose M is a subspace of V and let h € V. Then there exist unique hpy € M and hy o € M*
such that h = hpr + hpgo .

Proof. Consider the set B = {m € M : |m|| < 2||h||}. B is closed and bounded, and therefore compact. Hence the

continuous mapping m — ||h —m|| maps B to a compact subset of R, and so that the mapping attains its minimum
on B. Hence there exists mo € B such that for all m € B, ||h —m| > ||h —my||. Observe additionally that as 0 € B,

S o R - B




|l = ||k = 0]| > [[h — mo||. Now suppose v € M \ B. Then |[lv|| > 2||A||. Hence,

[h =l = |lv—nhl
> vl =R
> 2|[All = Al
= Il
> |lh=ml|.

Hence, for all v € M, ||h —v|| > ||h —mg||. Now suppose h —m, ¢ M*. Then 3w € (M), such that (h — mg,w) # 0.
Let u = mo + (h — mo,w) w. Note that as u is a linear combination of mg and w, both of which are in M, u € M.

However,
|h—ul|l = \/(h—mo—(h—mo,w>w,h—m0—(h—mo,w)w)
< \/||h—m0||2—(h—mo,(h—mo,w>w>—((h—mo,w)w,h—mo)—l—((h—mo,w)w,<h—mo,w)w)
= /Ih = mo|2 = T =m0, 0) (b — mo, w) — {h — mo, w) {w, h — mo) + | (h — mo,w) |2 (w, w)
= VIh—mo|? — [ (h — mo,w) |2
< VIh—=mol?
= ”h_m0||7

a contradiction. Hence, h — mg € M*. Hence h = hps + hpse, where hyy = mo € M and hyyr = h — mo € M*.
Now suppose h = my 4+ v; = mg + v, where mi,ms € M, vi,v2 € M+, Then

(1) mp+v1 = Mg+ U2
(2) mp —mg = V2 —U1
Hence

(my —mg,m; —my) = (m1—mg,vs — 1)

= 0. (asml—mgeM,vg—vleMi)

| Hence, my — mg =0, and so m; = ms. Equation (2) now also shows v; = vy. Hence such a representation of h is
unique.
O

Definition 2.32. Let M be a closed subspace of V. Define Py; : V. — M by Pyh = hyr, where hpy is the unique
element in M such that h — hjs is in M. Py, is called the orthogonal projection of V onto M.

Definition 2.33. Suppose M is a closed subspace of V' and that T': V' — V is linear. We define the compression of
T onto M, denoted Ty, to be the linear operator from M to M given by Targ = PpT'g for all g € M.

Proposition 2.34. Let M be a closed subspace of C™. Then Py is self-adjoint.

Proof. Let v,w € C*. Then v = my + h1,w = mg + ha, where my,my € M, hy,hy € M*. Then (Pyv,w) =
{m1,mg + hg) = (mq, my). Similarly, (v, Pyyw) = (my + h1,ma) = (m1,my). Hence, Py = Pj;.
O

Corollary 2.35. Let T be a linear operator on' V', and let M be a subspace of V. Then W(T) is a subset of W(T).

Proof. As Py is self-adjoint, Vv € M, (Tnv,v) = (PyTv,v) = (T, Pyv) = (Tw,v). Hence if v € (M)y, (Tyv,v) =
(Tv,v) € W(T). O

We will specifically be interested in subspaces M such that W (T),) is a single point. The simplest such subspaces
are the eigenspaces of T'.

Example 2.36. Suppose T is a linear operator on T and M is an eigenspace of T; that is, M is a subspace of V
such that every element of M is an eigenvector of T' associated with the same eigenvalue, X\. Then W (Txs) = {\}.

SO o R o i) v AT




Proof. Let v € (M);. Then

Hence, W (T ) = {\}.

(T, v)

—~
S~
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O

We may also view compressions yielding single point numerical ranges as scalar multiples of the identity mapping.
To show this we will require the following lemma.

Lemma 2.37. Suppose T is a linear operator on the inner-product space V such that Vv € V, (Tv,v) = 0. Then

T= s

Proof. Let w € V. Then

and

0 =

(T(Tw + w), Tw + w)
(T(Tw), Tw) + (T (Tw),w) + (Tw, Tw) + (Tw, w)
(T'(Tw),w) + (Tw, Tw)

(T(Tw + tw), Tw + iw)

(T(Tw), Tw) + (T(Tw),iw) + (Tiw, Tw) + (Tiw, iw)
— i (TTw,w) + i (Tw, Tw)

i((Tw, Tw) — (TTw,w))

so that ((Tw, Tw) — (T'Tw,w) = 0. Hence,

0 = (ITTw,w)+ (Tw,Tw) + (Tw,Tw) — (TTw,w)
= (T Bw
Hence, (Tw,Tw) = 0, and thus Tw = 0. Then as w € V is arbitrary, T = 0. O

Proposition 2.38. Suppose T is a linear operator on V, and M is a subspace of V' such that W (Ta) = {a}. Then

T]\,[ =al.

Proof. Let u € M, u # 0. Then v = WZ—II € (M), so

Hence

(Tyv,v) = «
= a(v,v)
0 = (Tmv,v)— (aw,v)

= (Tmv— av,v)
= ((Tm — al)v,v)

(T — al)u,u) .

1
[ll?
Thus, (T — al)u,u) =0 for all w € M. Hence, Ty — al =0 by Lemma ??, so Ty = al.
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It is clear that any point oo € W(T') is the numerical range of Ty, for some 1-dimensional subspace M. We have
seen that eigenspaces allow the construction of higher dimensional subspaces M such that W (T),) is a single point.
Such subspaces, however, do not have to be eigenspaces, nor must the single point of the resulting numerical range
be an eigenvalue of 7', as the following example will demonstrate.

2 0 0 1
. ol % 1 3 0,0
Example 2.39. Let T be the linear operator on C* with given by T = 111 1| and let
00 3 3
0 0
M = span (1) ; 8 Then W(Tn) = {3}. (Notice that T is not a normal operator, and 3 is not an
0 1
eigenvalue of T'.)
0
Proof. Let v € (M);. Then v = 8 , where |b|? + |d|?> = 1. Now observe that
d
d 0
3b b
o - ([ 4[]
3d d
= 35> +3|d|?
= 3(|b” +1d)
= 3(1)
3.

Hence W (T) = {3}.
O

The next section will begin with a discussion of when the single point numerical range of a compression of an
operator must be an eigenvalue. First, however, we will conclude this section with a discussion of corner points,
which will later be used to show that certain subspaces M with W (T)s) a single point must be eigenspaces.

Definition 2.40. Let T': V — V. Then oo € W(T) is a corner point of W (T') provided that W (T') is contained in
the area bounded by two rays forming an angle of less than 180 degrees at their common vertex o.

Theorem 2.41. Suppose c is a corner point of W(T'), and suppose v € (V)1 is such that ¢ =< Tw,v >. Then
Tv = cv; that is, ¢ is an eigenvalue of T' with associated eigenvector v.

For a proof of the above, see 7, p. 20].

3. REsSULTS

3.1. Some Criteria for Single-Point Numerical Ranges. If the dimension of M is large enough and W (T)) =
{a}, then @ must be an eigenvalue of 7', as the following theorem of Fry’s ([?]) demonstrates.

Theorem 3.1. Let T': C* — C™ and let M be a subspace of C* such that dim M > %. Then if W(Ty) = {a}, o
is an eigenvalue of T'. Moreover, the multiplicity of o must be no less than dim M — dim M~*.

The second theorem from Fry’s thesis ([?]) is useful in building subspaces with our desired properties.

Theorem 3.2 (Augmentation). Let M be a proper subspace of V' such that W (Ty) = {a}, and let w € (ML), such
that (Tw,w) = . Let D be the set of all linear combinations of elements in M and w. Then W(Tp) = {a} if and
only if (Tv,w) = 0 = (Tw,v) for allve M.

Definition 3.3. Given a vector v and a linear operator T, we will say w satisfies the augmentation conditions with
v for T if (Tw,w) = (Tw,v) = (v,w) = 0.
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Notice that if w is a unit vector satisfying the augmentation conditions with v for 7" and (T'w,w) = (T'v,v), the
span of w and v is a subspace M such that W(T) is a single point.

Another very similar theorem results in a corollary giving a useful criterion for determining when a compression
to a subspace yields a single point. Its proof uses many of the same ideas as Fry’s proof of Theorem ?7.

Theorem 3.4. Suppose M is a subspace of H, T : H — H is linear, and U = {uy,u2,... ,ur} is an orthonormal
basis for M. Then W (Tyr) is a singleton if and only if Vi,j € {1,... ,k}, i # j, (Tu;,u;) = 0 = (T'uj,u;) and
(Tus, us) = (Tuj, uj).

Proof. Suppose W(Ty) = {a}. Let i,j € {1,...,k} such that i # j. Then, as |us|| = 1 = |Ju;l|, (Tus,us),
(Tuj,uj) € W(Tn), and so (T'u;, w;) = a = (Tuj, uj).
Now let v = au; + buj, where a,b € C\{0} and |a|? + |b|?> = 1 so that v € (span{u;,u;});. Then
a = (Tv,v)
= (Tau; + Tbuj, au; + bu;)
= a|® (Tui,wi) + |b* (Tuj, uj) + ab (Tug,uj) + ba (Tuy, u;)
= (lof2 + b)a + 0B (Tus,u5) + b (Tus, )
= o+ ab(Tu;,u;) + ba (Tuj, u;)

and hence
(3) ab (T'ui, uj) + ba (Tuj, u;) = 0.

Note that the above holds for any a,b € C \ {0} such that |a|? + |b|?> = 1. Letting a = b = %, we obtain

1 1
(4) = (T, uj) + o (Tuj,u;) =0.

Letting a = %, b= %, we obtain

—1 )
(5) 7 (Tui,uj) + 5 (Tuj,ui) = 0,
so that
1 i
(6) : (T, g — 5 Py = 0.

Now, adding equations (??) and (??), we obtain (T'u;,u;) = 0. Subtracting these equations gives (T'u;,u;) = 0.
Now suppose that Vi, j € {1,...,k}, i # j, (Tui, uj) = 0 = (Tuj, u;) and (Tus, u;) = (Tuj,uj) = o Let v € (M);.
Then v = aju; + agug + - - - + aguy, where |ag|? + |az|? + - -+ + |ak|? = 1. Observe that
(Tv,v) = (Taius + Tagus + -+ Tagug,aiul + - - agug)
(Tayur,arur) + (T'aguz, agug) + - - - + (Tagug, axu)
la|? (Tuy, u1) + laa|® (Tug, ug) + - - + |ag|* (Tug, ux)
(laa* + laaf® + - - + |ax[*)x

= (678

Il

Hence, as v € (M) is arbitrary, W (Th) = {a}.
O

Corollary 3.5. Suppose M is a subspace of C™ and T : C™ — C™ is linear. Then W (T) is a singleton if and only
if Vo,w € M such that v is orthogonal to w, (Tv,w) = 0.

Proof. Suppose W (Ty) is a singleton, and v,w € M are orthogonal. Then M’ = span{mv -w} is a subspace of

 lwll
1 1

(o]l = flwl]

lolwll

M, and so W (Ty) is also a singleton. Hence, by the previous result, <T—v —w> =0 and so —— (Tw,w) =0,
and thus (T'v,w) = 0.
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Now suppose M is such that VYv,w € M such that v is orthogonal to w, (T'v,w) = 0. Let U = {uy,ua,... ,ux}
be an orthonormal basis for M. Observe that for i # j, u; Lu;, and thus by hypothesis (Tu;,u;) = 0 = (T'uj, u;).
Furthermore, let v = u; +u; and w = u; — u;. Observe that v,w € M, and that

(v,w) = (us + uj,ui — uy)
= (wi,wi) + (i, —uz) + (ug, u) + (uj, —uy)
= (ui,ui) + (U5, —uy)
= 1-1
0

and thus v and w are orthogonal. Hence
0 = (Tv,w)
(Tu; + Tuj, u; — uj)
= (Tui,us) — (Tuj, uj) — (Tus, uz) + (Tuj, u;)
(Tus, ui) — (Tuj, uj)

and hence (T'u;, u;) = (T'uj, u;). Thus, by the theorem above, W (Ts) is a singleton.
O

3.2. The Sets W,(T') are Closed. We seek to describe, for a given r, subsets of the numerical range of a linear
operator such that for any point in the set, there is an r-dimensional subspace such that the numerical range of
the compression of the operator to that subspace is exactly that point. Recall that we will denote such a subset by
W,(T'). We will ultimately conjecture that W,.(T') is convex for at least normal operators; for now we will show that
it must be a closed set.

Lemma 3.6. Suppose (ar)5>, and (bg)52, are sequences of vectors in C™ such that (ar)52, converges to a and
(bg)72, converges to b. Then the sequence (Ck)k=1 gien by cx, = (ak, bi) converges to (a,b).

Proof. Observe that

lek = (a,b)| = [{(ak,bk) — (a,b)|
= |({ak,bx) — (ak,b) + (ax,b) — (a,b) |
= |{ak,bx —b) + (ar —a,b)|

|(akabk 2 b> I T+ | <ak _a7b>|
llaxllllbx — bl + llax — all]b]]-
Observe that as (ax)f2; converges to a, ||ax — al| goes to zero as k — oo, and ||ax|| is bounded. Furthermore, ||b|| is

a constant and ||bx — b|| goes to zero as k — oo, so that |c; — (a,b) | goes to zero as k — co. Hence, the sequence
(ck)52, converges to (a,b).

IAIA

O

Theorem 3.7. Suppose T : C* — C" and W,(T) = {a € W(T) : {a} = W(Ty) where dim(M) = r}. Then W,.(T)
18 closed.

Proof. Suppose (ax)%2, is a sequence in W,.(T') converging to a. Then by Theorem ??, for each aj, there exists a set
of unit vectors Hy = {hg1, hxa, - - - , hir} such that W(Ti,an(m,)) = {ax}, and if i # 7,
<hki’ hkj) = 0
(hki, Thic;) 0
(Mgedy £ Tip ) 0.

Now, observe that each sequence (hx)32 is bounded, as each hy, is a unit vector. Hence, (hg1)$2; has a convergent
subsequence That is, there is some sequence (k;)72; such that the sequence (hi;1)32 521 converges. Furthermore, the
sequence (hk_, 2) 5 is bounded and so has a convergent subsequence (hk 2) 2 5. Continuing in this manner we may find
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a sequence (kq)g2; such that (hk,1)921 converges to some g; for alll € {1,2,... ,7}. Now, observe that by our lemma,
for each I, (<hk,,l,hk,,l>)gi1 converges to (gi,g1). However, as each hg, is a unit vector, (<hkql,hkql>)g°:‘1 = (1)521
converges to 1, and thus (g;,g1) = 1, and g; is a unit vector. Furthermore, (<Thkql, hkql>)g‘;1 converges to (Tg;, g1),
and hence as ((Thy,1, hie1))o21 = (ak, )52, converges to a, (T'gy, gi) = ov.

Furthermore, observe that for [ # t, each term of the sequence ((hqu, Thkqt>)3‘;1 is zero, and so as this sequence
converges to (g1, Tg:), (91, Tgt) = 0, VL # t. Similarly, the sequences ((hi,i,T*h,¢))52; and ({1, hr,i))g2; have
all zero terms, and converge to (g;,T*¢g;) and (g;, g+), respectively. Hence (g;,T*¢;) = 0 and (g;, g;) = 0. Therefore,
by Theorem ?7, the set {91,92;--- ,9r} is a basis for an r-dimensional subspace M such that W (T») = {a}. Hence
a € WT(T)

Therefore, as (k)32 in W,.(T') is an arbitrary convergent sequence, every convergent sequence in W,.(1") converges
to a point in W,.(T"), and hence W,.(T') is closed.

O

3.3. Self-Adjoint Operators. We will now turn our attention to the case of self-adjoint operators. Recall that the
numerical range of a normal operator is the convex hull of its eigenvalues, and that the eigenvalues of a self-adjoint
operator are all real numbers. Hence the numerical range of a self-adjoint operator is simply a segment of the real
line.

1 000
0 2 0O . oy !

Example 3.8. Let T' = 003 0]l %® that T is clearly self-adjoint and has eigenvalues 1,2,3 and 4. Then
0 0 0 4

W (T) is the interval [1,4] of the real line.

Proof. We could simply invoke Theorem ??, however, we prefer to give a direct proof. Let v € (C*);. Then

a
v= IC) , where |a|? + |b|%> + |c|? + |d|?> = 1. Then
d
a a
2b b
etla = < ey ¢ >
4d d

= la|®> + 2|b|® + 3|c|? + 4/|d|?

and thus (T'w,v) is in the convex hull of 1,2,3 and 4, which is simply the interval [1,4].
O

We observe that the example above mimics the proof of Theorem ??, where the orthonormal basis of eigenvectors of

1 0 o [0
T is simply 0 | (1) ) ? L 8 . We see then that the value of (T'v, v) is simply a linear combination of
0 0 0 i

the moduli of the coefficients of v represented in terms of this basis, taking as its coefficients the associated eigenvalues.
This, combined with Theorem ??, leads us to a clear method for building a subspace M whose compression yields a
glven point in the numerical range of 7.

Example 3.9. Let T be as in the previous example, and let M = span . Then W(Tn) = {%}

SIS

L
V2
0
0 b 4
L
V2
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el 0 L
V2 i '
Proof. Let v e (M);. Thenv =a 8 +b f = | ¥2 | where |a|? + [b> = 1. Then
1 V2 V2
7z 0 5
(Tymv,v) = (Tw,v)
a_ a_
%%
¢ e
V2 V2
T L
.2 2 2 2
" 5|a|? + 5/b|?
£ 2
5
=
Hence, W (Tn) = {2}
O
1 0
Notice that the basis of M in the example above consists of a linear combination x; 8 + 9 8 , such that
0 1
0 0
1%x2 +4xx3 = % and a combination y; (1) + Y2 (1) such that 2 x y? + 3 x y2 = % It is easy then to see that
0 0

different choices for x1,x2,y1 and y, will yield two dimensional subspaces whose compression gives any point in the
interval [2,3]. This method will not, however, work for values outside of this interval, and in fact it may be shown
that there are no two dimensional subspaces yielding compressions of 7" with numerical range a single point outside
of this interval. These ideas may be used to completely characterize the sets W,.(T") for a self-adjoint operator T'.

Lemma 3.10. If H = {hi,ho,... , hx} is a set of k linearly independent vectors in a space with basis U =
{uy,ug,... ,un}, then for any set {i1,is,... ,ig—1} of k — 1 indices such that 1 < i; < n, span(H) contains a
vector v such that v is non-zero and when v is represented in terms of the basis U as ajuy + asus + - -+ + anUn, then
a;; =0 for each ij; in the set.

Proof. Let our H and U be as described. Then any v in the span of H is given by v = 2211 byh;. Furthermore, each
h; may be represented as a linear combination of vectors in the basis U, so h; = E?Zl ai;uq, and so the coefficient
of u;; in the expression of v is given by 7v;; = Zle bia;;;. Hence, by setting each of these sums to zero we obtain
a homogeneous system of k — 1 equations (one for each 7;;) in k£ unknowns (the b;), which must have a non-trivial
solution. Observe that any such non-trivial solution (b;)¥_, produces a vector v = Zf:l b hi; whose coordinate vector
relative to U has zeroes in positions 41,42,... ,ix—1. Furthermore, as there exists at least one non-zero b; and H is
linearly independent, v is non-zero. 0

Lemma 3.11. Suppose T is a normal operator on C* and M is a k-dimensional subspace of C*. Let L =
{A, Ay ;Ar} be a set of eigenvalues of T, where A\; has multiplicity m;. Then if > ;_ m; > n —k + 1, there
ezists v € (M) such that (Tv,v) is in the convex hull of L.

Proof. Let U = {u1,us,... ,u,} be an orthonormal basis for C" consisting of eigenvectors of T'. Then there is
a subset A = {e;,ey,...,e;} of U such that each e; € A has as its associated eigenvalue an element in L and
§2n—k+1. Hence [U\ Al <n—(n—k+1)=k— 1. Now, as the dimension of M is k, by Lemma ?? there is
a non-zero vector v € M such that if v is written v = aju; + aguz + ... + apun, a; = 0 if u; ¢ A. Hence v may be
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written as a linear combination of elements in A, v = biey + byez + --- + bses. We may further assume that v is a
unit vector. Hence, v € (span A);. Then
(T, ’U) = (T(bre; +byes+---+ bses), bier + baes + - - - bses)
= (libiey + laboey + - - - + lsbses, brey + baeg + - - - bses)
L[ba]? + lafba)? + - -+ + Ly bs|?
where [; is the eigenvalue associated with e;, and thus [; € L. Furthermore, as ||v|| = 1, [b1|? + [ba|> + - - - |bs|* = 1.
Hence, (T'v,v) is in the convex hull of L.

O

Theorem 3.12. Let T be a self-adjoint matriz acting on C*. Order the eigenvalues of T', A1, Aa, ..., A\ such that
M < A2 < ... < A, and let uy,ug, ... ,u, be an orthonormal basis for C™ consisting of eigenvectors of T'. Suppose
a € W(T). Let A be the set of u; such that the eigenvalue corresponding to u; is less than a, and let B be the set
of of u; such that the eigenvalue corresponding to u; is greater than a. Then if M is the subspace of C" of largest
dimension such that W (Tar) = a, dim(M) = min{|A|, |B|} + [, where | is the multiplicity of eigenvalue «, or 0 if

is not an eigenvalue.

Proof. Observe that given uq, and up, with corresponding eigenvalues Ay, and Ay, , if Ay, < a < Ay, (s0 that u,, € A

k @y
and up, € B) we may construct the unit vector w; = /1 — ooy o1 + oy Ubr- Furthermore,

/ a—A a— A
Tw,w = T 1 — a1 = __a'_lu + _—ﬂlu
( ) < 111 \/)\bl a1 Ab] — )\al iy )‘bl s >\a1 i
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- /\a1 T )\ala )\1211 )\bla )‘bl )‘a1
by — Agy Ab — Aoy
o G —Aa, 0+ X2 Mg e = dg X,
3 Aby — Aay
S s a()\bl o >‘a1) o )\al ()‘b1 3 )‘01)
. )\bl = )\al
= gy +a— Agy
= a.

Now, let M; = span{w;}. Then any unit vector in M; may be written ew;, where § € R. As (Tewwl, eww1> =
e |2 (Tw,, wi) = la = a, and so W(Tw,) = a. Now, if possible, construct wy as we constructed wy, using u,, and
up, distinct from those used to construct wi. Then w; and we are orthogonal, as they are linear combinations of
orthogonal vectors, and furthermore
(Twi,w2) = (Aa;k1Ua; + Ao, koUp, , k3, + kausp,)
= 0 (as distinct u; are orthogonal)
where k; are the constants used in the construction our w;. Similarly,
(ng, ’LU1> = ()‘az k:gua2 - )‘bz k4ub2, klual + kzub1>
= 0.

Hence by Theorem ?? , the compression of T' to span{w;, ws} has single point numerical range o. We may continue
to construct w; in this manner using u,, and up; distinct from those already used to augment our space, each time
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preserving the single point numerical range. For all v in the space already, T'v is a linear combination of eigenvectors
u orthogonal to those eigenvectors of which w; is a linear combination, and T'w; is a linear combination of eigenvectors
u orthogonal to those used in any vector in the space, and so (T'v,w;) = 0 and (T'v,w;) = 0. We may repeat until
we run out of distinct elements of A or B, and so may construct a subspace M of dimension min{|A|, |B|}, where
W (Thr) = o Furthermore, if o is an eigenvalue of T' with eigenspace C of dimension [, we may augment each of the
l-many u; in C to our space, and again as all these are orthogonal to those already used, and all give (T'u;, u;) = a,
the space will still have W(T) = a. In this way we obtain a subspace with dimension min{|A[, |B|} + L.

Now suppose the dimension of M, r, is greater than t = min{|A|, |B|} + [. Now let D be the larger of the sets
A and B, or A if |A| = |Bj, so that if L = {l3,ls,...,l} is the set of eigenvalues associated with eigenvectors in D,
and m; is the multiplicity of I;, then }°7_ m; = |D| =n —t > n—r + 1. Hence by Lemma ?7 there is a vector
v € (M)1 such that (T'v,v) is in the convex hull of L. But then if D = A, (Tv,v) < a and if D = B, (T'v,v) > a, a
contradiction, as v € (M);. Hence no such subspace may exist.

O

One natural question regarding the subspaces in the theorem above is whether or not they are unique. They are
not; assuming, for example, that « is not an eigenvalue, there are infinitely many of them.

Proposition 3.13. Suppose T' is a self-adjoint matriz acting on C", and o € W(T'). Then if there is a subspace
M of highest possible dimension k such that W(Ty) = {a}, where o is not an eigenvalue of T, there exist infinitely
many such subspaces.

Proof. Observe that by Theorem ?7? there is a subspace M; of C™ with dimension k¥ with orthonormal basis
{arur + azuz2,a3us + aqug, ... ,G2k—1U2k—1 + agkuak }, where each w; is a distinct element of an orthonormal ba-
sis for C™ consisting of eigenvectors of T, such that T, has numerical range {a}. Now consider the subspace
M, = span{e“ajui + asuz, agus + asus, - - - , agk—1Ugk—1 + a2xuzk }, where 6 € (0,7]. Observe that A = span{azuz +
a4y, . .. ,Q2k—1U2k—1 + GokUsk} is a subspace of C" with numerical range {a}, and h = e?aju; + asus is clearly
orthogonal to each element in A, as u; and uy are orthogonal to each u; appearing in the basis of A. Furthermore,
ifwe A

(Tw,h) = (Asasus+ - + Aokaortox, €?arus + azus)
0;
(Thyw) = (A aius + Asagus, azus + - - + azkuak)
Ial = \/learul? + lagusl?

= e lalfun)? + (aslual?
= |a1|2+ |a2l2

<Th’ h) = <)‘leioalu1 + A2agus, eioalul + a2u2>
2'6|2 (Ara1ur, aqu1) + (A2agua, agus)

= (Marug, a1u1) + (A2a2uz, asus)

= |e

= (x\lalul + Aoasgug, a1uy + az’LLz)
= (T(aru1 + azu2), a1us + aguz)
= a (asajui + agup € (M),).

Hence by the augmentation theorem, M, is a subspace with numerical range {a}. Now, observe that if M; = Mo,
then h may be expressed as a linear combination of vectors in the basis of M;. As our u; are linearly independent,
.and h contains in its expression only u; and us, the only vector in the basis of M; that may have non-zero coefficient
in the linear combination giving h is aju; + aguz. However, h is clearly not a multiple of aju; + asus and thus may
not be so expressed. Hence, h ¢ M;, and thus M; # M. In this manner we may by choice of § construct infinitely
Many distinct subspaces yielding compressions with numerical range {a} having dimension r. O
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3.4. Normal Operators. It would appear that as the lemmas used in establishing the results for self-adjoint
operators above are true for normal operators that methods similar to those used in Theorem 7?7 should extend
naturally to give a similar result for general normal operators. Unfortunately, however, it quickly becomes apparent
that while we may easily find the regions of the numerical range of a normal operator T' in which our subsets W;.(T')
must be contained, establishing that a given point must be in W,.(T) is not as simply done as in the self-adjoint
case.

We will for simplicity restrict our investigation to those normal operators 7' on C™ whose numerical range is a
convex n—gon, so that 7" has n distinct eigenvalues, no three of which are collinear. We will primarily be concerned
with W,.(T') when r is as large as possible; by Theorems 7?7 and ??, this means r < |3 ].

To aid in our description of the n-gons that will be our numerical ranges, we introduce some new notation.

Definition 3.14. Suppose {a1,az,... ,ax} is a set of complex numbers. Then we will say ajasas ... ay is the set of
all line segments (in C) joining a, to an41 for 1 < n < k, together with the line segment joining ax to a;.

Example 3.15. If A=0,B =i, and C = 1, then ABC is the triangle in the complex plane with vertices 0, i, and
i

When n is even, we can completely describe Wz (T).

Theorem 3.16. Suppose T is a normal matriz acting on C™, n > 2, such that the eigenvalues of T' form the convex
n-gon A\Az...An. Then there is no subspace M of dimension greater than % such that W(Tyr) is a single point.
Furthermore, if n is even, there is a subspace M of C™ with dimension § such that W(Tn) = {a} if and only if the
set of eigenvalues of T' may be partitioned into 5 pairs such that the line segments joining the elements of each pair

intersect at o.

Proof. Suppose, in order to obtain a contradiction, that there is a subspace M of dimension larger that % such
that W (Ty) = {a}. Then by Theorem ??, o must be an eigenvalue of T'. However, as T" is normal the numerical
range of T' must be the convex hull of its eigenvalues, and so as the numerical range of 7" is a convex n-gon, each
eigenvalue of T is a corner point of W(T'), and so « is a corner point of T. Hence, by Theorem ?7, any vector v
such that (T'w,v) = a must be an eigenvector of T, and thus M can have dimension no larger than the dimension
of the eigenspace of a. However, as T" acts on C™ and has as its numerical range an n-gon, 7" must have n distinct
eigenvalues, one for each vertex of the n-gon, and so each eigenvalue has multiplicity 1. Thus the dimension of M is
no greater that 1, a contradiction.

Now let n > 2 be even, and let U = {uy,us,... ,u,} be an orthonormal basis of C™ consisting of eigenvectors
of T. Suppose a lies on the intersection of 7 line segments connecting distinct pairs of eigenvalues of 7. Now, if «
is on the line segment connecting A; and \;, there exists some t such that a = tA; + (1 —t)A;. Hence, if u;, u; are
the eigenvectors in U with eigenvalues \; and A;, respectively, the vector vy = Viu; + /1= tu; clearly has norm 1
and (Tw,v) = tA; + (1 — t)A\; = o. We may find such a vector v, for each line segment s containing «, and as each
such vector will be a linear combination of eigenvectors of 7" orthogonal to the eigenvectors of which each other v, is
a linear combination, all such vectors will be pairwise orthogonal, and as T'v, is simply another linear combination
of the same eigenvectors as compose v,, (T'vs,v,) = 0 when s # r. Hence, by Theorem ?7?, the span of these v; is
will be a subspace M such that W (Ty) = {a}, and thus as there are % such v,, this subspace has dimension %, as
desired.

Now suppose there is a subspace M of C" with dimension % such that W(Tys) = «. Then by Lemma ?7?, there
is a unit vector vy € M such that (Tw;,v1) is in the convex hull of \j, A, ... ;Azy1. But there is also vy € M such
that (T'vq,v1) is in the convex hull of Ay, Aty 5 An. But (Twi,v1) = a = (Twg, v2), and hence o must lie on the
line segment joining A\; and Az +1. We may repeat this process for each pair of opposite eigenvalues, so that a must

lie on the intersection of each of these 5 line segments.
O

When n is odd, if W (Th) = {a}, it is clear that we may use Lemma ?? to place « in the intersection of a number
of subregions of W (T). However, where in the previous theorem if M has dimension | 5] the intersection of these
reg?ons is at most a single point, for which an appropriate subspace M exists, when n is odd the intersection of these
feglons contains many points for which no obvious corresponding M exists, so that it is unclear if Wz |(T) is the
entire intersection. If n = 3, %] =1, and it is clear that Wy (T") = W(T) (in fact, this is true for any linear operator
T), apd W,.(T) is empty for r > 1. The first interesting case for n odd is that when n = 5. We will now provide a
description of W, (T') when T is normal on C°, which will require a few lemmas.
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Lemma 3.17. Let T : C* — C* be normal with eigenvalues A, B,C, D (with associated eigenvectors ey, ea, €3, e4),
such that ABCD is a quadrilateral in C. Let v € (C*)1 and let (Tw,v) = Q. Suppose Q is in the interior of the
triangle ABC and in the interior of triangle ABD, and w € C* satisfies the augmentation conditions with v. Then
(Tw,w) is in the triangles ACD and BCD.

b c

(T'w,w) MUST BE IN THE SHADED REGION.

Proof. Let M = span{v,w}, and let (I'w,w) = B. Then if u € (M)1, u = av + bw where |a|? + |b|*> = 1. Then

(Tu,u) = (Tav+ Thw,av + bw)
|la|? (T, v) + ab (Tv, w) + ba (Tw, v) + |b|? (Tw, w)
= |al’Q+b°s

(where the final equality is due to w satisfying the augmentation conditions with v). Hence, (T'u,u) is on the line
segment joining @ to 3. However, by Lemma ??, as M is two dimensional it must contain a vector u; in the span
of e1,e3,e4 and uy in the span of eg,es,eq, so that (Tuy,u;) and (Tug,ug) are in the triangles ACD and BCD,
respectively. Hence, as these two values also must lie on the line segment connecting ¢ and £, § must lie in the
intersection of these triangles.

O

Lemma 3.18. Suppose T : C* — C* is normal, with eigenvalues A, B,C, D forming a quadrilateral ABCD in C.
Suppose further that Q is in the interior of triangles DBC and ADC. Then there is a continuous path (like the one
shown in the figure below) from B to A such that for each point p on the path there exists w,v € (C*); such that w
satisfies the augmentation conditions with a unit vector v and (T'v,v) = Q while (Tw,w) = p. Note that by Lemma
?? this path must lie entirely in the intersection of ABC and ABD.

Proof. Let {e1,e2,e3,e4} be an orthonormal basis of eigenvectors of T' corresponding to eigenvalues A, B,C and D,
respectively. We may assume without loss of generality that A = 0. We will begin by constructing a continuous
Parameterization v : [0, 1] — (C*)y, such that (Tw(z),v(z)) = @, v(0) € span{e;,es,eq}, and v(1) € span{ey, es,eq}.
Let b(z) = A + z(B - A), so that b parameterizes the line from A to B. Then for z € [0,1], the line through b(z)
and @ intersects the line DC' at some point l(z), which may be represented as a convex combination of C' and D,
(z) = D + s(z)(C — D). Tt is clear that s(z) will vary continuously with b(z), which is a continuous function of .
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A b(x) B

o 2(x) c

Furthermore, the distances from @ to b(z) and b(z) to I(z) will vary continuously with z, so that we may use
the ratio of these distances to find yet another continuous function, a(z), such that @ = b(z) + a(z)(l(z) — b(z)).
Finally note that s(z) and a(z) will have values in the interval [0, 1] for = € [0, 1], by their definitions. Furthermore,
a(z) # 0 for z € [0,1] as then Q@ = b(z), a contradiction, as @Q is not on the segment AB. Neither can s(z) be zero
or one, as if it were, [(z) = D or l(z) = C, so the segment from [(z) to b(z) does not pass through the interior of of
triangles DBC and ADC. Now let v(z) = (1/1 — a(z))(v/1 — ze1 +/ze2) + \/a(z)(y/s(x)e3 + /1 — s(x)eq). Then

for z € [0,1],

(v,v) = (1—a@)-z){er,e1) + (1 — a(z))(x) (e2; €2) + (x)5(2) (e3, €3) + a(2)(1 — s(2)) (€4 €a)
— (1-a@)(1-2) + (1 - a@)@) + a@)s(z) + a@)(1 - 5())
furthermore,
(Tv,v) = (1—-az)l-2)A+ (1 - a(z)(z)B + a(z)s(z)C + a(z)(1 — s(z))D

(1-a(z)((1—-z)A+zB) + (a(z))(s(z)C + (1 — s(x))D)
(1 - a(z))b(z) + (a(2))l(z)
st i

Now, from the definition of v, v(0) € span{e;,es,es}, and v(1) € span{eq,es,eq}. The continuity of v follows from
its construction from continuous functions.

I

We will now exhibit a continuous mapping w : (v([0,1]) — (C*); such that w(v) satisfies the augmentation conditions
with v, that is, (Tv,w(v)) = (T*v,w(v)) = (v, w(v)) = 0. Let v = vie1 + vaez + vses + vaeq (for v € v([0,1]) and let

B = B;+1iBy, C = C1+1iCs and D = D; +iD,. Calculation shows that if w(v) = wye; + wqes +wzes + wyeq where
vawy(—C2C1+C2D1— D1 B+C1Bs) vawy4C2(C1—D1)

— _ —v4w4(B1C1—D1B3) ~ @ ‘
Wi v1(B1C2—C1B3) Wy = SE G, —orhy and ws = s, then w(v) is a solution to
the system of equations (T'v, w(v)) = (I*v,w(v)) = (v,w(v)) = 0. Note that K = B;Cy — C1 By = ‘ gl gl , and

- 2 Co
so may be zero only if the vectors (B, Bz) and (C1, Cs) are linearly dependent, which they are not, as ABCD is a
quadrilateral, and A is the origin. Hence K is non-zero. Now write w; = ”47“1’41%1,202 = ”47“2’4;{&, and w3 = —_”—3;"&—}@,

where Ry = —CyCy + CyDy — D1Bs + C1Ba, Ry = C3(Cy — Dl) and R3 = B1C; — D1Bs. Note that for v € ’U([O, 1]),
v3,v4 # 0, and v; and v, are never both zero.

Ap2..2 2 2 p2
w4\/'u4R1v2v3+v4R v1v3+v4R v1v2+v1K vzv3
v1v2v3 K

. Note that the

Square root in the top is just a continuous real valued function of the components of v, call it Y (v), so L = vlf;‘};}(:l){

Note that as K is nonzero, Y (v) is nonzero so long as vy, vs, and v3 are non-zero, and that for v € v([0, 1]), v3 is never

0 and vy, v, are only zero at v(1) and v(0), respectively. Let w(v) = w(v)+ = ”4’;,2(”5)R1 er+ “4’{}(”;)1%2 e — %)L&ieg +

Then let L = \/w? + w? + w? + w?. Then it may be L =

V1V

#64 for v € v((0,1)) and let w(v(0)) = e2, w(v(1)) = ey, noting that these boundary values also clearly satisfy
the augmentation conditions. Clearly w(v) is a unit vector and by its construction must satisfy the augmentation
conditions for all v v([0,1]). Furthermore w is a continuous function of v on v((0,1)). Now observe that as x — 0,
?’2($) — 0, and so Y (v(z)) — /v] R3viv? = vaRov1v3 and so w(v(z)) — wUwR2e, — o) — 4(1(0)). Hence w(v(z))
IS continuous at z = 0.

Similarly, as 2 — 1, vi(z) — 0, and so Y (v(z)) — /v3R?v3v3 = v4R1v2v3 and so w(v(z)) — Wl — o —
w(v(1)). Hence w(v(zx)) is continuous at x = 1.

V4 Rg V1V3

’U4R1’U2‘U;
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Now, if wo = w(v(0)), (T'wo, wo) = B and if w1 = w(v(1)), (Tw1,w1) = A. Now, as the function f(u) = (T'u, u)
is continuous, the mapping g : [0,1] — C defined by g(z) = f(w(v(z))) is continuous with image joining B and A,

where w(v(z)) satisfies the augmentation conditions with v(z) for all z € [0,1].
O

Theorem 3.19. Suppose T : C5 —.C® is normal, with eigenvalues forming a convex pentagon. Then Wo(T') is the
intersection of all quadrilaterals whose vertices are eigenvalues of T.

Ir W(T') 1S THE PENTAGON ABOVE, W>(T') IS THE SHADED REGION AND ITS BOUNDARY.

Proof. Label the eigenvalues of T' A, B,C, D and E such that the pentagon they form is ABCDE. Furthermore,
let {e1,e2,€3,€4,€5} be an orthonormal basis of eigenvectors of 7' corresponding to eigenvalues A, B,C, D and E,
respectively. Now suppose M is a two dimensional subspace of C®. Then M has orthonormal basis{u, us}. Thus by
Lemma ?? there exists a vector u € (M), such that u is in the span of any 4 of ey, es, €4, €5, and thus it is clear that
(T'w,u) is in the convex hull of the 4 corresponding eigenvalues. Hence, if the numerical range of 7' compressed to
M is a single point, that point must be in the intersection of the convex hulls of any given 4 eigenvalues, and hence
Wo(T) is contained in the intersection of all such quadrilaterals.

Now suppose « is in the interior of the described intersection. Then a must be in the interiors of triangles AEC,
EBC, and ADB. Now consider the linear operator 7" : C* — C* with eigenvectors ey, €2, 3, e5 corresponding to
eigenvalues A, B, C and E, respectively. Note that T restricted to the span of ey, e2, e3, e5 is 7. Now by Lemma ??
applied to 7" there is a continuous path from A to B contained entirely in the intersection of ABC and AEB such
that for any point 3 on the path there exists a vector w satisfying the augmentation conditions with a vector v such
that (T"v,v) = a and (T"w,w) = B. As this path is continuous from A to B, and « is in the triangle ADB, the path
must intersect the ray emanating from D and passing through a at some point b. Let v and w be the unit vectors
satisfying the guaranteed conditions for b. Now, as « is on the line segment joining D and b, « = ¢tD + (1 — t)b for

some t € [0,1]. Let w’ = /1 —tw + Vteq. Then
(Tw ut) v= \/l—tw+\/i—ﬁe4,\/1—tw+\/Ze4>

(1 —1t)(Tw,w) +t(Teq,es)
(1—1t)(T"w,w) +tD
)

= (1-t)b+tD

Q.

Furthermore,

(Tw,w')y = (Tv,V1-tw)+ <Tv, \/Ze4>
= (T'v,vV1—tw)+0

= 0

(T*v,w') = (T"v,V1—tw)+ <T*v, \/Ze4>

’

= <T*v, 1—tw>+0
0
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(v,w') = <v,\/1——tw>+<v,\/Ze4>

= 0,

Hence, the span of v and w’ is a two dimensional subspace such that the compression of 7" to that subspace is {a}.

Finally, suppose « is on the boundary of the region described. Then v lies on one of the segments AC, BD,CE, or
DA, and then also in the triangle EBD, ACE, BDA, or ECB, respectively. We may assume without loss of generaliy
that o is on AC and in BDE. Then o may be represented as a convex combination of A and C, a = zA+yC or as a
convex combination of B,D and E, « = rB+sD+tE (so,z+y=r+s+t=1,z,y,r,t > 0). Let v = \/ze; +,/yes,

and let w = v/Tex + v/ses = V/tes. Then

(v,v) = z+4+y
= 1
(wyw)y = r+s+t
= %
(v, W) =10;
(Tv,w) = 0
(T*v,w) = (v,Tw)
= 0
(Tv,v) = zA+yB
= o
(Tw,w) = rB+sD+tE
= o

Hence, the span of v and w is a two dimensional subspace such that the compression of T" to that subspace is {a}.
O

It may be noted that W5(T') described above is itself a convex pentagon, and that all other W,.(T') so far found
for normal operators are themselves convex sets. We hence conjecture that for 7' : C* — C™ normal, for all r such

that W,.(T) is non-empty, W,.(T) is convex.
We will conclude with an informal investigation of W,.(T) for normal operators on C%. Suppose T : C® — C8 is
normal and has eigenvalues A, B,C, D, E, and F forming a convex hexagon ABCDEF. Then W;(T) = W(T) is the

hexagon shown below.

W (T)

Now by Theorem ??, W3(T) is nonempty if and only if the line segments AD, BE and C'F intersect at some point
Q as shown below, in which case Ws(T) ={Q}.




=2 £

Ws(T) = {Q}

Finally, using Lemma 77 as in the proofs of Theorems ?? and ??, it is clear that W5(7T") must be contained in
the intersection of all possible pentagons formed by any five of A, B,C, D, E and F, the shaded region in the figure
below.

To see that Wy (T') is exactly the shaded region above, notice that any point « in the region is in the intersection
of the triangles ACE and BDF'. Hence, a = 21A+x2C +z3E = y1 B+y2 D +ysF, where x1, x2, 3,91, y2 and y3 are
non-negative real numbers such that z; + 2 + z3 = y1 + y2 + y3 = 1. Now, as T is normal, there is an orthonormal
basis for C® consisting of eigenvectors of T', {ua,up,uc,up, ur, ur}, where u; is has as its corresponding eigenvalue
i. Then the vectors v and w given by v = /Tiua + \/Tauc + y/T3ug and w = /y1up + \/Y2up + \/Ysur are
orthogonal unit vectors such that (T'v,w) = (Tw,v) = 0 and (Tw,w) = (Tv,v) = a. Hence if M = span{v,w}, M
has dimension 2 and W(T) = {a}. Thus we may completely describe W,.(T') for all r such that W,.(T') may be
non-empty, when 7 is as described above. Notice that each W,.(T') described above is convex, further supporting our
conjecture.
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