
~ffectiveness of Genetic Algorithms in Finding
- Steinhaus Graphs with Maximal Clique Size)

Anurag M. Chandra

Honors Thesis
Department of Computer Science
Washington and Lee University

Thesis Advisor: Dr. Thomas P. Whaley

May 1998

Acknowledgements

I would like to take this opportunity to thank several people. Firstly, I want
to thank Dr. Whaley and Dr. Dymacek for being outstanding mentors to me
during the past four years and for giving me the opportunity to conduct research
with them on Steinhaus graphs and Parallel Computing during the summers of
1996 and 1997. I would like to thank Dr. Whaley for encouraging me to do this
thesis, for providing guidance at every step throughout this process, and for
being patient with me. I would like to thank Dr. Dymacek for also encouraging
me in this process, for helping me find various documents on Steinhaus graphs,
and for explaining graph theory. I would also like to thank Dr. Pamela Vermeer
and Dr. Kenneth Lambert for all that they have taught me and for being
supportive during my undergraduate career.

I would also like to thank the Massachusetts Institute of Technology for the
use of GAlib. This GA package, available at http://lancet.mit.edu/qa, allowed me
write the programs. I would like to thank Jeff Knudson of University Computing
for helping me install GAlib.

The Computer Science seniors - Noah Egorin, John Thrall, John Hills, and
Geoffrey Bourne - deserve many thanks for their support, competitive spirit, and
friendship. I am thankful to Ryan Beaman, Rob Sein, and Ton Chartisathian for
their friendship and for the experience of living at 8 North Main. And I would like
to thank all the families that made me feel at home here in the US.

Lastly, I would like to express my deepest gratitude to my parents for
everything they have done for me. Without them, this effort would not have been
possible.

i

Anurag Chandra
Lexington, VA
May 1998

Table of Contents

INTRODUCTION

1

2

3

4

5

AN INTRODUCTION TO GENETIC ALGORITHMS

1.1 Basic Characteristics of GAs
1.2 Solution Coding
1.3 Fitness Function
1.4 GA Reproduction Operators
1.5 Theoretical Aspects of GAs
1.6 Applications of GAs

STEINHAUS GRAPHS

2.1 The Definition and Organization of Steinhaus Graphs
2.2 Cliques in Steinhaus Graphs

APPL YING GAS TO STEINHAUS GRAPHS

3.1 Why apply GAs to Steinhaus Graphs with MCP?
3.2 Design and Implementation of GAs

EXPERIMENTS AND RESULTS

4.1 Overlapping and Non-overlapping Populations
4. 1. 1 Results

4.2 Effects of Mutation
4. 2. 1 Results

4.3 Crossover: Single Point and Two-Point
4. 3. 1 Results

4.4 Total Number of Graphs Computed
4. 4. 1 Results

4.5 Maximal Cliques Found
4. 5. 1 Results

CONCLUSIONS

APPENDIX A

REFERENCES

ii

1

2
3
4
5
5
7
9

11
11
13

14
14
15

18
20
21
22
22
24
25
26
27
30
30

32

33

34_

Introduction

The goal of this research was to study the effectiveness of genetic

algorithms (GA) in finding Steinhaus graphs of a given size whose maximal

cliques were as large as possible. This investigation was based on the results

obtained by Dr. Wayne Dymacek (Professor of Mathematics, Washington and

Lee University) and Dr. Thomas Whaley (Professor of Computer Science,

Washington and Lee University) during their research at Washington and Lee

University in 1992. In addition, a report by mathematicians Daekeun Lim and Jin

Hwan Kim on cliques in Steinhaus graphs also provided results related to this

research.

In the first chapter of this thesis, the concept of genetic algorithms will be

discussed. The various characteristics of GAs, their applications, and certain

theoretical aspects will be described.

The second chapter will focus on Steinhaus graphs and the occurrence of

maximal clique size in Steinhaus graphs. These graphs are a special type of

undirected graphs that have been studied by Dr. Dymacek and Dr. Whaley for

numerous years.

Chapter 3 will discuss the reasons for studying GAs using this particular

problem. It will also explain how GAs were applied to the problem and will

include a description of the algorithm.

Finally, in Chapter 4, the experiments performed during this research and

their results will be explained. Chapter 5 will conclude this paper by looking at

some future research possibilities for GAs applied to this problem.

1

Chapter 1: An Introduction to Genetic Algorithms

Evolutionary computation simulates biological evolution where computer

systems evolve a population of solutions to a given problem (Mitchell 2). Genetic

algorithms are the chief example of evolutionary computation. GAs are adaptive

algorithms which are used to solve optimization and search problems. Evolution

strategies, evolutionary programming, and genetic programming are other areas

closely related to GAs.

Individuals in a population in nature compete for available resources and

to attract mates. The individuals that are most successful in attracting mates and

surviving will have a greater probability of creating offspring while other

individuals will be unable to reproduce because they cannot survive or attract

mates. Each successive generation produces a fitter population, and the

characteristics of highly fit individuals will eventually be spread to more members

of the population. Thus, the species will evolve as generations pass.

John Holland developed the fundamental rudiments of GAs during the

1960s and 1970s at the University of Michigan. Holland's GAs mimic the

process of evolution of natural populations according to Charles Darwin's model

of the "survival of the fittest" (Beasley, Bull, and Martin, "Part 1" 1). In genetic

algorithms, each individual member of the population represents a possible

solution to the given problem. The individuals are assigned fitness scores using

the fitness function that measures how good that solution is for the problem.

Individuals with higher fitness are given greater opportunity to mate with other

members of the population to produce the offspring for the next generation. The

2

least fit individuals are less likely to reproduce and will be eliminated. Thus, the

new generation will contain more characteristics of the fitter individuals of the

previous generation. The evolution of the population will converge toward a

near-optimal solution to the problem. For any given problem, not all candidate

solutions are evaluated; instead, the GA finds the good solutions by searching

only a small portion of the possible candidates.

In this chapter, we discuss the basic features of genetic algorithms.

Section 1.1 will outline the characteristics of GAs. In Sections 1.2, 1.3, and 1.4,

we describe solution coding, fitness functions, and the reproduction operators. In

sections 1.5 and 1.6, theoretical aspects of GAs and applications of GAs are

addressed.

1.1 Basic Characteristics of GAs

The following steps are common to all GAs: populations of candidate

solutions, selection according to fitness of an individual, offspring generated by

crossover, and random mutation of the offspring (Mitchell 8). However, before

executing a GA, the solutions must have a representation or coding, a fitness

function must be created, and crossover techniques and the mutation probability

must be established. Figure 1.1 illustrates a standard GA (Beasley, Bull, and

Martin, "Part 1" 3).

3

BEGIN /* genetic algorithm*/

END

Generate initial population
Compute fitness of each individual

WHILE NOT finished DO
BEGIN /* produce new generation */

FOR population_size/2 DO
BEGIN /* reproductive cycle */

END

END

Select two individuals from old generation for mating
/* biassed in favour of the fitter ones */

Recombine the two individuals to give two offspring
Compute fitness of the two offspring
Insert new offspring in new generation

IF population has converged THEN
finished := TRUE

Figure 1. 1: A Traditional Genetic Algorithm

1.2 Solution Coding

A potential solution to an optimization problem is a representation of the

set of parameters. Chromosomes in a GA population represent possible

solutions for the problem, and they are individuals that make up the population.

A chromosome may be designed by putting together in a string a set of

parameters for the problem. Usually, these chromosomes are in the form of bit

strings. All members of the population have the same length.

For instance, one might want to maximize the following function: f(y) = y +

lsin(32*y)I, 0 ~ y < TI. In this case, the parameters for this function are the real

values for y. This variable may be represented using a binary string. During the

fitness calculation, the binary string will be converted to a real number, and f(y)

will be evaluated with this value (Mitchell 9).

4

1.3 Fitness Function

The fitness of each selected chromosome is assessed by the fitness

function. Fitness is a numerical score for the particular chromosome according

to how well the chromosome solves the given problem. This score is supposed

to be "proportional to the 'utility' or 'ability' of the individual which the

chromosome represents" (Beasley, Bull, and Martin, "Part 1" 3). For each

problem, a fitness function must be designed. Chromosomes with higher fitness

scores will be given a greater likelihood of contributing to the next generation.

Therefore, the design of a good fitness function is key to the success of the GA.

Usually in function optimization problems, the fitness function is simply the

function being optimized. In the example of maximizing f(x,y) = x.2- - y2, the

fitness function will find the value of f(x,y) depending on the values of x and y

which are represented by the chromosome. So if x and y were 17 and 5

respectively, f(x,y) = 172
- 52 = 289 - 25 = 264 would be the fitness value. The

higher the value of f(x,y), the better the fitness of the chromosome will be. Thus,

in future generations, the probability of reproducing with this chromosome as a

parent is high. The GA will get a greater chance of obtaining offspring which

maximize f(x,y).

1.4 GA Reproduction Operators

In the reproduction stage of the GA, chromosomes are selected from the

total population and are recombined to produce offspring. The selection process

is based on the fitness of the chromosomes and gives more opportunities to fitter

5

chromosomes for being involved in reproduction. After being added to the

mating pool, the chromosomes undergo crossover and mutation in order to

create the offspring.

Crossover This operator takes two chromosomes and cuts them at a

randomly chosen point and produces two "head" segments and two "tail"

segments (Beasley, Bull, and Martin, "Part 1" 3). By swapping the "tail"

segments, two new chromosomes are produced which become the offspring.

This is called single point crossover and is illustrated in Figure 1.2. Thus, there

are two new chromosomes that inherit some characteristics of the parent

chromosomes.

Parents

Crossover point Crossover point
~----'y.___~ y

I oo 1001 oo 11 I I oo 11 o 1 1 o 11

Offspring * ~
I oo 1001 101Q E1°1°°11

Figure 1.2: Single Point Crossover

Mutation This operator is used to alter one or more genes (positions)

in a chromosome. Some of the bits of a chromosome are randomly chosen and

flipped with a small probability. Figure 1.3 shows the implementation of the

mutation operator. The mutation rate is the probability of modifying each gene in

the chromosome.

6

Offspring

Mutated Offspring

Mutation point
y

00 1001 1011

00 1001 1010

Figure 1.3: Single mutation

1.5 Theoretical Aspects of GAs

GAs are simple to describe and implement. ·However, the reason why

they work is more difficult to explain. John Holland's Schema Theorem and other

hypotheses have been put forth and help us comprehend better the theoretical

aspects of the GAs.

The Schema Theorem was first formulated in 1975 by Holland to explain

how the GAs work. A schema is a set of bit strings which are created from the

alphabet A= {O, 1,*}. The* symbol represents the "don't cares" which means that

it can match anything. For instance, the schema H = *1 *11 matches four strings:

{01011, 01111, 11011, 11111 }. These four strings are instances of H (Mitchell

27). Similarly, some of the schema contained in the chromosome 00011 are

0~**1, 000**, ***11, and *0*1 *. The number of non-* symbols in a schema is

called the order of the schema. In other words, the order is the number of fixed

positions in a schema. Schema H is of order 3. The defining length of the

schema is the distance between the outermost fixed positions. For schema H,

the defining length is 3.

7

The defining length and the order of a schema are important in calculating

probabilities for survival of the schema during reproduction (Michalewicz 44). Let

us assume that in a population containing strings of length 8, chromosome x =

01100110 and chromosome y = 10001011. Now chromosome x matches,

among others, the schema S1 = 0******0 and S2 = **1 0****. Assume further that

both x and y have been selected for crossover and the crossover point is at

position 6. Thus the offspring produced from x = 011001110 and y = 100010111

will be x1 = 01100111 and Y1 = 10001010. S2 is kept intact in offspring x1. S1 is

destroyed because the fixed positions were at the front and rear of the schemata,

and no offspring contained it after crossover. A shorter defining length, as in the

case of S2 , will give a greater chance to the schemata to survive crossover. With

mutation, the order of the schema is important to its survival. Let us assume that

x1 = 01100111 undergoes mutation and the mutation point is at position 2. Then

x 11 = 00100111 and the mutated offspring still preserves schema S2 . If S2 had a

bigger order, then the probability of destroying the schema would be higher.

Thus, it can be seen that short, low order schema have a better probability

of surviving reproduction. According to Holland, a chromosome's high fitness

results from the good schemata it has, and passing this good schemata to the

next generation will enhance the likelihood of finding better solutions. Holland's

Schema Theorem concludes that short, low-order schemas with above-average

fitness will receive an exponentially increasing number of reproductive

opportunities in successive generations (Michalewicz 51).

8

David E. Goldberg's Building Block Hypothesis asserts that the GA is

powerful because it is able to find good building blocks that are schemata of

short defining length and low order (41-42). The idea behind this hypothesis is

that the GA tries to construct better strings with each generation based on the

good schemata from the previous generation. The GA does not try outright to

achieve the optimal solution by experimenting with all combinations of solutions.

This leads to improved performance of the population as they evolve for many

generations.

1.6 Applications of GAs

GAs have been used for solving a wide variety of problems. Some of the

applications are listed below and illustrate the flexibility of genetic algorithms.

Optimization GAs have been used extensively for research

purposes in this area. For numerical optimization, GAs have proven to be better

than conventional optimization techniques on difficult, discontinuous, multimodal

functions. GAs have been applied to combinatorial optimization problems such

as the traveling salesperson problem, bin packing, job-shop scheduling, and

circuit layout (Beasley, Bull, and Martin, "Part 1" 13).

Machine learning GAs have been used to evolve rules for machine

learning systems such as neural network weights, maze solving, sensors for

robots, and classifier systems.

Economics Models of the development of bidding strategies and

economic market emergence have been implemented using GAs.

9

Image processing With x-rays and satellite pictures, two images of the

same area, which are taken at different times, are aligned by the use of GAs.

The GA finds a set of equations that can alter one image and make it fit onto the

other.

Evolution The study of individual learning, the evolution of species,

and their effect on each other is conducted with the use of GAs too (Mitchell 15-

16).

10

Chapter 2: Steinhaus Graphs

At Washington and Lee University, Dr. Wayne Dymacek, Dr. Thomas

Whaley, and several undergraduate students participating in the R.E. Lee

Summer Research Program have conducted research on various properties of

Steinhaus graphs and their complements for many years. Among the graph

properties investigated are the following: bipartite graphs, planarity, degree

sequences, edge counts, chromatic number, and maximal clique size.

In this chapter, we introduce the notion of a Steinhaus graph and address

some related ideas. In particular, we discuss the occurrence of maximal clique

size in Steinhaus graphs.

2.1 The Definition and Organization of Steinhaus Graphs

Steinhaus graphs are a special class of undirected graphs. Let T =

a1,1a1 ,2 ... a1,n be a string of O's and 1 's of length n. T can be used to generate the

Steinhaus matrix, A = [a;,j], of a Steinhaus graph as follows. All entries along the

main diagonal contain a zero. So a1, 1,a2,2, ... ,an,n are zeroes. A Steinhaus

triangle is the upper-triangular part of the Steinhaus matrix and excludes the

main diagonal. Since the first row of the Steinhaus matrix is given by T, the

remaining cells of the Steinhaus triangle can be computed using the Exclusive-Or

operation. This operation is applied to the cell directly above and the cell that is

northwest of the entry being calculated. If both these cells contain the same

value, either 0 or 1, then the entry being computed receives a 0. Otherwise, the

entry receives a 1. Since Steinhaus graphs are undirected, they are symmetric

11

along the main diagonal. As a result of this property, the lower-triangular part of

the Steinhaus matrix is filled in by symmetry. Figure 2.1 is an example of a

Steinhaus graph and its adjacency matrix.

1
2
3
4
5
6

1 2 3 4 5 6
0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0

Figure 2. 1: A Steinhaus graph (011000) and its matrix

Since the adjacency matrix of a Steinhaus graph is determined by the first

row [a1 j] from j=2 ton, this is called the generating string of the graph. Thus, a

generating string of length n-1 identifies a Steinhaus graph with n vertices.

Counting all possible generating strings for n vertices yields a total of 2n-1

Steinhaus graphs. For example, the total number of Steinhaus graphs with 15

vertices is 214
. The size of a Steinhaus graph is the number of vertices in the

graph. The row number in the matrix corresponds to the vertex in the graph.

12

2.2 Cliques in Steinhaus Graphs

A clique in an undirected graph G = (V, E) is a subset V' of V, each pair of

which is connected by an edge in E (Carmen, Lieserson, and Rivest 947). It is,

thus, a complete sub-graph contained within the graph G. The number of

vertices contained in a clique is the clique size. An optimization problem

involving cliques is finding a clique of largest possible size in graphs of a certain

size.

In general graphs, it is possible that a graph of size n will have a maximal

clique of size n; i.e., a complete graph of n vertices. However, in the case of

Steinhaus graphs, all vertices are not adjacent to each other. Hence, the

maximal clique size of Steinhaus graphs with n vertices will be less than n. The

size of the largest clique in Steinhaus graphs with n vertices, for n ~ 2, is bound

by 1(n + 3)/31 (Lim and Kim 2). For example, for Steinhaus graphs of size 22, the

maximal clique size is 9.

13

Chapter 3: Applying GAs to Steinhaus Graphs

Let MCS(G) be the size of the largest clique is graph G. SMCS(n) is

defined to be the maximum of MCS(G) where G is a Steinhaus graph with n

vertices. Then, a Steinhaus graph of size n has the Maximal Clique Property

(MCP) if MCS(G) = SMCS(n). In other words, G has the MCP if G is a Steinhaus

graph whose maximal clique is as large as possible among Steinhaus graphs of

its size. The objective of this research is to investigate the effectiveness of GAs

at finding Steinhaus graphs with the MCP.

Section 3.1 examines the reasons for choosing the problem of Steinhaus

graphs with MCP to study GAs. The design of the program and implementation

of the GAs is explained in Section 3.2.

3.1 Why apply GAs to Steinhaus graphs with MCP?

During their research in 1992, Dr. Dymacek and Dr. Whaley had gathered

data on Steinhaus graphs with MCP. The data from this research is available in

Appendix A. It shows, through size 26, the number of Steinhaus graphs with n

vertices that have a maximal clique size of k. For n = 3m + 1, m ~ 4, the data

suggests that there are four Steinhaus graphs with n vertices having MCP, and

for these graphs, MCS(G) = m + 2. Thus, we know from Appendix A that there

are only four Steinhaus graphs of sizes 13, 16, 19, 22, and 25 that have the

MCP. This empirical information provided the basis for testing the GAs

developed in this research.

14

In addition, during the period of this research, it was discovered that

Daekeun Lim and Jin Hwan Kim have recently classified cliques in Steinhaus

graphs. Their research determined the generating strings of the graphs with

MCP. They proved that for n ~ 25 vertices, out of 2n-1 graphs, the number of

graphs with the MCP is four if n = 3m + 1. Although they did not assert this fact

for the smaller sizes, the identification of these Steinhaus graphs confirmed the

empirical data gathered at Washington and Lee University.

The generating string of the Steinhaus graphs provides a straightforward

encoding for the chromosomes in the population of the GA. Additionally, the

fitness function would calculate the MCS(G) where G was a Steinhaus graph of

the given size. These are discussed further in Section 3.2 . The SMCS(n) was

available from the previous research. It was also known that the targeted graphs

were rare among the huge search space for larger sizes of Steinhaus graphs.

Thus, this problem contained all the components for studying the

application of GAs - good encoding, obvious fitness function, large search

space, few individuals with optimal values and empirical data for confirming the

results.

3.2 Design and Implementation of the GAs

Different tests were conducted to find the graphs with the MCP. These

noted the effects of the different elements of the GAs, such as mutation and

crossover, on the ability to find these graphs. The pseudo-code for the genetic

algorithm used in this research is shown in Figure 3.1.

15

BEGIN /* Clique GA*/

END

User input: graph size, maximal clique size, population size,
number of generations, percentages for crossover and
mutation, number of runs

WHILE NOT completed_runs DO
BEGIN/* Run GA*/

END

Generate random initial population
Compute clique size (fitness) of each individual

WHILE NOT finished_GA DO
BEGIN /* produce new generation */

END

Reproduce through crossover
Compute clique size (fitness) of offspring
Mutate some offspring
Insert new offspring in new generation

IF best fitness is maximal clique size THEN
finished_ GA := TRUE

Print results from this run
IF number of runs completed THEN

complete.d_runs := TRUE

Figure 3. 1: Algorithm using GA to find graphs with maximal clique size

As indicated in this pseudo-code, the user has the responsibility of setting

the population size and the number of generations to evolve this population. The

user also controls the likelihood of applying crossover and mutation to the

parents and offspring respectively. The user also inputs the size of the graphs to

consider and the known optimal value.

The binary generating strings serve as the encoding (chromosomes) for

the graphs. In the fitness function, the chromosome is expanded to form the

adjacency matrix for that particular graph, G. The fitness function then calculates

MCS(G). The GA is seeking to find the graphs that have the MCP. The clique

16

size as the fitness function is correctly representative of the utility of the

chromosome.

The research involved the investigation of different ways of forming

populations in each generation (overlapping versus non-overlapping), different

methods of crossover (single point versus two-point), and the effect of the rate of

mutation. The results will be discussed in the next chapter.

17

Chapter 4: Experiments and Results

The experiments were designed to explore the effectiveness of genetic

algorithms in finding the Steinhaus graphs with maximal clique size. In this

chapter, five experiments will be described and their results will be discussed. In

these experiments, results for all the sizes were very similar, and so, only results

of Steinhaus graphs of size 22 are shown.

For all the experiments, the new generations were created by (1) selecting

individuals for reproduction according to fitness, (2) applying crossover to these

selected individuals according to the crossover rate, and (3) applying mutation to

the offspring according to the mutation rate.

Any individual in the population has a probability p of being selected for

reproduction where p is the fitness of the individual divided by the sum of the

fitness of all individuals in the population (Michalewicz 32). Hence, individuals

with higher fitness will have a higher probability of being selected for•

reproduction.

The crossover rate, which is the probability of crossover, is usually set

between 0.6 and 1.0, and in these experiments, it was fixed at 0.9. The

crossover rate gives the expected number of chromosomes that will undergo

crossover after being selected for mating. This number is equal to the Population

Size * Crossover Rate. A random real number between 0 and 1 is chosen for

each chromosome in the mating pool, and if this number is less than the

crossover rate, the chromosome is selected for crossover. Crossover is then

applied randomly to these newly selected individuals (Michalewicz 33). The

18

chromosomes in the mating pool that do not participate in crossover are

replicated to produce the offspring. In Section 4.3, single point crossover is

compared to two-point crossover.

The mutation rate, the probability of mutation, gives the expected number

of bits to be mutated in each generation. This number is equal to the Mutation

rate * Chromosome Length * Population size. For instance, if the population size

is 128, and the length of the chromosome is 21, the total number of bits in the

population is 2688. For each bit in the population, a random real number

between 0 and 1 is chosen. If this number is less than the mutation rate, the bit

is flipped (Michalewicz 33). If the mutation rate is set to 0.1, then the expected

number of mutated bits in each generation would be 268.8. · Different rates of

mutation were used, and their effect will be described in Section 4.2.

Population sizes varied by powers of two from 32 to 128. Similarly, the

number of generations was set in powers of two from 128 to 1024. This method

was chosen to enable easier calculation of the total number of graphs computed

by the GA and will be described in further detail in Section 4.4.

In the first four experiments, the gathered data is the probability of finding

one Steinhaus graph with the MCP; i.e., how often the GA will find one of these

graphs, if it is run 100 times. For example, with the single point crossover rate

fixed at 0.9, the mutation rate set to 0.1, and with a population size of 64, which

is evolved for 512 generations, the GA found one Steinhaus graph with the MCP

about 91 % of the times it was run. In all these experiments, the different success

rates possible under the different circumstances are observed and discussed.

19

The last experiment, explained in Section 4.5, focuses on which Steinhaus

graphs, of the above mentioned sizes, with MCP are found by the GA.

4.1 Overlapping and Non-overlapping Populations

The genetic algorithm evolves a population of individuals over a given

number of generations. There are two methods to form the new population for

each generation. The first experiment was to compare the GAs usage of these

two methods and their effect on finding graphs with the MCP successfully.

Firstly, non-overlapping populations were used in the GA. David E.

Goldberg describes a GA as a simple GA when it uses non-overlapping

populations (41). The simple GA creates an initial population, which is based on

the specifications of the population size and the chromosome size entered by the

user. The use of non-overlapping populations by the GA creates an entirely new

population at each generation. Chromosomes from the previous population are

selected for reproduction, and they undergo crossover to create offspring for this

new population. The new population still has the same number of individuals as

the previous population. The GA is stopped when the termination criteria, such

as convergence of population or number of generations, is met.

Overlapping populations was the second form of populations used. This

type of GA is also known as a steady state GA. Similar to the simple GA, the

steady state GA creates an initial population dependent on the input of the user

and concludes when the termination criteria are achieved. The difference in this

GA lies in the reproductive stage when the new population is formed for the next

20

generation. In each generation, the algorithm selects chromosomes for

reproduction and creates a temporary population containing the offspring

produce_d from the crossover. This population of offspring is evaluated according

to the fitness function and is added to the main population. Then the population

is truncated to the original size by discarding the chromosomes with the lowest

fitness. It is possible that the newly generated offspring are discarded. Either a

specified number of individuals can be removed each generation or removal may

be based on a percentage of the population. All experiments conducted in this

research used the replacement percentage. The replacement percentage is the

percentage of the population that will be replaced each generation and was kept

constant at 0.6.

4.1.1 Results

All the variables, such as crossover and mutation rates, were kept

· constant, and then the simple GA and the steady state GA were run on the same

population sizes for the given number of generations. Table 4.1 displays the

data comparing the simple GA and the steady state GA.

Table 4.1 clearly indicates the higher success rate of the GA with

overlapping populations. Using a steady state GA, one graph with the MCP was

found a very high percentage of the time while the simple GA found these graphs

a much smaller percentage of the time. For all sizes that were tested and at

different mutation levels for each size, the result was the same: the use of

overlapping populations in the GA outperformed the use of non-overlapping

21

populations. This is possibly because in the steady state GA, the worst

individuals in the populations are discarded in each generation and replaced by

better ones. So the overall fitness of the population is higher, and the population

is able to converge faster. Thus, the steady state GA finds the graphs with

maximal cliques faster than the simple GA. Since the steady state GA was more

successful, it was used in the rest of the experiments.

Population Number of Overlapping Non-overlapping
Size Generations Populations Populations
32 1024 0.85 0.4
64 256 0.91 0.1
64 512 0.91 0.2
128 256 1.0 0.13
128 512 1.0 0.33

Table 4. 1: Probability of finding one graph with MCP, using overlapping and

non-overlapping populations (Size 22, Mutation = 0. 1)

4.2 Effects of Mutation

For the conducted experiments, the optimal level of mutation was not

known. Hence, for all experiments, different levels of mutations were tested.

Trial and error finally produced the best mutation rates for the GA.

4.2.1 Results

The results of the effects of mutation are shown below in Table 4.2. The

population sizes and number of generations were kept constant, and mutation

rates were changed.

22

Mutation Success
Level Rate
0.01 0.4
0.05 0.96
0.1 1.0

0.15 0.7
0.2 0.45

Table 4.2: Probability of finding one Steinhaus graph with MCP, using different

mutation levels (Size 22, Population = 128, Generations = 256)

The mutation rate is just a small factor in the reproductive phase of the GA

and is typically between 0.001 to 0.01 (Beasley, Bull, and Martin, "Part 1" 3).

However, using such low levels of mutation is not helpful to our problem, and

greater than normal levels of mutation have to be used to produce the best

results. When very little or no mutation is used, the probability of finding graphs

with the MCP is very low. As seen in Table 4.2, for the mutation rate of 0.01, the

success of the GA is only 40%. With less mutation, the success rate is even

lower. Similarly, for very high levels of mutation, the GA did not perform well. As

the mutation level increased beyond 0.15, the performance of the GA fell rapidly.

The experiments showed that the optimal levels of mutation for this

problem were 0.05 and 0.1. Table 4.2 reiterates this fact. One would assume

that for different population sizes as well as for different sizes of the Steinhaus

graphs, the optimal mutation level would vary. However, this was not the case.

For all population sizes, the best results were consistently found when the

23

mutation levels were set at 0.05 and 0.1. This observation also holds for all sizes

of Steinhaus graphs that were considered in this research.

4.3 Crossover: Single Point and Two-Point

Single point crossover and two-point crossover are the most commonly

used techniques of crossover. Other forms of crossover include multi-point

crossover and uniform crossover. This experiment examines the use of single

point crossover and two-point crossover in the GA and their effectiveness in

finding Steinhaus graphs with maximal clique size.

Single point crossover was explained in Chapter 1. Two-point crossover

follows the same principle except for cutting the chromosomes in two points

rather than one point as in single point crossover. Cutting the chromosome in

two points divides it into three pieces. Offspring A will receive the first and the

third pieces of the chromosome from the first parent while Offspring B will get the

first and third pieces from the second parent. The middle pieces of the parent

chromosomes are then swapped. Thus, two new offspring are created. This is

illustrated in Figure 4.1.

Crossover Points Crossover Points

Parents
00 1001 0011 00 1101 1011

Offspring

Figure 4. 1: Two-Point Crossover

2 4

With the addition of one more crossover point, more building blocks and

schema are likely to be disturbed. However, the search space may be searched

more thoroughly with this procedure.

4.3.1 Results

Table 4.3 compares the performance of the single point crossover and the

two-point crossover. Again, all variables were kept constant, and only the

crossover technique was changed in the GA.

Mutation Single Point Two-Point
Level Crossover Crossover
0.05 0.88 0.8
0.1 0.91 0.95

Table 4.3: Probability of finding one graph with the MCP using

different crossovers (Size 22, Population = 64, Generations = 512)

The figures in Table 4.3 are representative of similar success rates of the

two types of crossover techniques for different graph sizes, population sizes, and

number of generations. Both crossover techniques were evenly matched for

most levels of mutation. For higher mutation rates, single point crossover was

slightly better. Since there was no significant difference in the performance

between the two crossover techniques, the use of either technique by the GA

25

would have produced good results. All of our other experiments only used single

point.

4.4 Total Number of Graphs Computed

An exhaustive search to find all Steinhaus graphs with the MCP would

inspect all the graphs of the given size. Since the sizes of Steinhaus graphs that

were considered in this research had only four graphs with the MCP, in order to

find one of these graphs, one fourth of the number of graphs would have to be

searched on average. For example, there are 221 graphs of size 22, out which

there are four graphs that have the MCP. On the average, we would expect to

inspect 219 graphs chosen at random before finding one with the MCP.

In each generation, every member of the population of the GA has its

fitness measured. As graphs are the members of the population, every graph's

clique size is computed by the fitness function. Since a genetic algorithm

evolves its population for a given number of generations, the total number of

graphs evaluated in a genetic algorithm is as follows:

Number of graphs evaluated = P * G

Here, P represents the size of the population used in the GA, and G denotes the

number of generations.

Table 4.4 displays results gathered from tests where the population size is

128 and the number of generations is 512. So the total number of graphs

evaluated in this experiment is at most 27 * 29
, which equals 216

.

26

4.4.1 Results

This experiment searched for the optimal combination of population size

and number of generations that would yield a high probability of finding a graph

with the MCP.

The best performance of the GA for this problem is shown in Table 4.4.

For the mutation rates of 0.05 and 0.1, the GA was able to find one graph with

the MCP every time. So the combination where the population size is set to 27

and the number of generations is 29 is very effective in finding these graphs.

With this combination, the GA finds one graph with the MCP by computing at

most 216 graphs. The combinations of population size and number of

generations shown in Table 4.2 and Table 4.3 are not as effective but still have a

good success rate. In Table 4.2, a population of 27 graphs is evolved for 28

generations, while in Table 4.3, a population of 26 is evolved for 29 generations.

Thus, at most, the total number of graphs the GA computes in these instances is

215
. The use of the GAs gives a high probability of finding these graphs unlike

the other method in which searching 219 random graphs might not yield the graph

with the MCP.

Mutation Success
Level Rate
0.05 1.0
0.1 1.0

Table 4.4: Probability of finding one graph with the MCP

(Size 22, Population = 128, Generations = 512)

27

We observed above that the total number of graphs evaluated in the GA's

best performance is 216. This figure, however, is an upper bound for the number

of graphs evaluated. So, when the GA is executed with a population size of 128

and the user inputs the number of generations as 512, this population does not

necessarily evolve for all those generations. The GA stops when the graph is

found, and this event usually occurs before 200 generations. Table 4.5 displays

the average number of generations taken by the GA to find one graph with the

MCP. It also indicates the average number of graphs that were actually

evaluated by the GA.

Population Number of Number of Graphs
Size Generations Evaluated
64 86 5504
128 64 8192

Table 4.5: Average number of generations to find a graph with the MCP and

actual number of graphs evaluated (Size 22, Mutation = 0. 05)

When a population size is set to 64, the GA finds the graph with the MCP

in 86 generations on average. The actual number of graphs computed is 64 * 86,

which is equal to 5504. This is a remarkable improvement on the exhaustive

search, which would on average compute 524,288 graphs to find a graph with

the MCP. For the larger population size of 128, the GA solves the problem in

only 64 generations. In this instance, however, the actual number of graphs

28

computed is 8192. This figure, although slightly higher than when the population

size is set to 64, is still significantly better than computing 524,288 graphs with

the exhaustive search.

In Table 4.5, it is noticed that the GA computes a relatively small number

of graphs when the population size is 64. Table 4.6 shows the success upon

using different population sizes for the mutation rate of 0.05. With the lower

population size, the GA solves the problem 88% of the time, while evaluating

only 5504 graphs on average. The population size of 128 is clearly better in

finding a graph with the MCP as it has a 100% success rate. Although, fewer

graphs are computed when the smaller population is used, the GA solves the

problem more consistently using the bigger population size.

Population Success
Size Rate
64 0.88
128 1.0

Table 4.6: Probability of finding one graph with MCP (Size 22, Mutation= 0.05)

All the results shown are for size 22. Similar results were obtained for all

the sizes that were tested in this experiment. Also, as the size of the graph

increases, the performance of the GA is more effective because it is more

successful in reducing the number of graphs computed.

29

4.5 Maximal Cliques Found

The parlner of a Steinhaus graph is the graph with the generating string

[an-i, n] from i=1 to n-1 (Lim and Kim 1). In classifying the cliques in Steinhaus

graphs, Daekeun Lim and Jin Hwan Kim identified the four graphs that have

maximal clique size with n ~ 25 where n = 3k + 1. These graphs are represented

by the following generating strings: (a) 0(101 l, (b) 0(011)\ (c) 0(1OOf1(101),

and (d) 0(01 of\011). The partner of the graph with generating string (a) is the

graph with generating string (b). Similarly, the graph with generating string (c)

and the graph with the generating string (d) are partners (Lim and Kim 12).

These four generating strings also hold for the smaller sizes of Steinhaus graphs

that were tested in this research. This experiment attempted to find out which of

these graphs were found by the GA and how often.

4.5.1 Results

The data in Table 4.7 shows how often the graphs with each generating

string were found. These results were based on the first graph found with the

MCP.

Generating Times
Strings Found(%)

0(011 r 39
0(101 r 31
0(1oot·1(101) 18
0(01 or-·1(011) 12

Table 4. 7: Finding graphs with the MCP (Size 22)

30

The partners, (a) and (b), are found first more often than the other pair of

partners. One of these two graphs is usually found first between 70% and 75%

of all runs of the GA. The reason for this occurrence is unknown.

These observations hold for all sizes considered in this investigation. In

fact, for the other sizes, the percentage of runs these graphs were found differs

from the figures in Table 4.7 by a very small amount.

31

Chapter 5: Conclusions

This research suggests that GAs have to be greatly customized in order to

apply it to the search for Steinhaus graphs with the MCP. The results described

in Chapter 4 provide the parameters to be used in order to optimize GAs for this

purpose. Overlapping populations and certain rates of mutation were found to

improve the success of GA in solving the problem. Crossover technique did not

affect the performance of the GA.

The information from this study lays the groundwork for a variety of areas

for further investigation. The possibility of computing fewer graphs can be

explored. During each generation, the fitness function calculates the fitness of

each chromosome. Since many of these chromosomes are retained for the next

generation in the steady state GA, computing their fitness again is unnecessary.

If possible, chromosomes could be labeled when their fitness is computed for the

first time. Thus, in future generations, the GA would not need to compute the

fitness of that particular chromosome again. This would considerably reduce the

number of graphs being computed by the GA and would make it more effective.

It is also not known why certain graphs with the MCP are found more often.

More investigation is required on this subject.

32

Appendix A

n
1 1
2 1 1
3 1 3
4 1 5 2
5 1 8 7
6 1 9 22
7 1 12 47 4
8 1 14 82 31
9 1 18 131 106

10 1 18 200 287 6
11 1 20 277 693 33
12 1 22 327 1558 140
13 1 26 398 3132 535 4
14 1 27 467 5830 1848 19
15 1 30 552 9908 5804 89
16 1 33 642 15304 16407 377 4
17 1 38 771 22421 40874 1412 19
18 1 37 899 30739 94223 5103 70
19 1 38 1060 39831 203417 17558 235 4
20 1 39 1155 48980 417028 56318 748 19
21 1 42 1296 58250 818163 168444 2311 69
22 1 43 1357 67234 1543595 477166 7554 198 4
23 1 46 1492 74932 2811962 1281583 23741 528 19
24 1 49 1614 80966 4940779 3288919 74852 1368 60
25 1 54 1797 87772 8349480 8097792 236456 3699 161 4
26 1 54 1907 95681 13538121 19185907 722476 9861 405 19

1 2 3 4 5 6 7 8 9 10
k

The entry in the (n,k) position is the number of Steinhaus graphs with n vertices

that have clique number k.

33

References

Beasley, David, David Bull, and Ralph Martin. An Overview Genetic Algorithms:

Part 1, Fundamentals. University Computing. 15(2) 58-69. 1993.

Beasley, David, David Bull, and Ralph Martin. An Overview Genetic Algorithms:

Part 2, Research Topics. University Computing. 15(4) 170-181. 1993.

Carmen, Thomas, Charles Leiserson, and Ronald Rivest. Introduction to

Algorithms. New York: McGraw-Hill, 1991.

Dymacek, Wayne M., Matthew Koerlin, and Tom Whaley. A Survey of Steinhaus

Graphs. To appear in the Proceedings of the Eighth International

Conference on Graph Theory, Combinatorics, Algorithms, and

Applications (Kalamazoo, Michigan, 1996).

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, Mass.: Addison-Wesley, 1989.

Lim, Daekeun, and Jin Hwan Kim. Cliques in Steinhaus Graphs. Pre-print.

Mitchell, Melanie. An Introduction to Genetic Algorithms.

Cambridge, Mass.: MIT Press, 1996.

Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution

Programs. New York: Springer-Verlag, 1994.

34

	RG38_Chandra_thesis_1998_0001
	RG38_Chandra_thesis_1998_0002
	RG38_Chandra_thesis_1998_0003
	RG38_Chandra_thesis_1998_0004
	RG38_Chandra_thesis_1998_0005
	RG38_Chandra_thesis_1998_0006
	RG38_Chandra_thesis_1998_0007
	RG38_Chandra_thesis_1998_0008
	RG38_Chandra_thesis_1998_0009
	RG38_Chandra_thesis_1998_0010
	RG38_Chandra_thesis_1998_0011
	RG38_Chandra_thesis_1998_0012
	RG38_Chandra_thesis_1998_0013
	RG38_Chandra_thesis_1998_0014
	RG38_Chandra_thesis_1998_0015
	RG38_Chandra_thesis_1998_0016
	RG38_Chandra_thesis_1998_0017
	RG38_Chandra_thesis_1998_0018
	RG38_Chandra_thesis_1998_0019
	RG38_Chandra_thesis_1998_0020
	RG38_Chandra_thesis_1998_0021
	RG38_Chandra_thesis_1998_0022
	RG38_Chandra_thesis_1998_0023
	RG38_Chandra_thesis_1998_0024
	RG38_Chandra_thesis_1998_0025
	RG38_Chandra_thesis_1998_0026
	RG38_Chandra_thesis_1998_0027
	RG38_Chandra_thesis_1998_0028
	RG38_Chandra_thesis_1998_0029
	RG38_Chandra_thesis_1998_0030
	RG38_Chandra_thesis_1998_0031
	RG38_Chandra_thesis_1998_0032
	RG38_Chandra_thesis_1998_0033
	RG38_Chandra_thesis_1998_0034
	RG38_Chandra_thesis_1998_0035
	RG38_Chandra_thesis_1998_0036
	RG38_Chandra_thesis_1998_0037

