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Introduction 

The goal of this research was to study the effectiveness of genetic 

algorithms (GA) in finding Steinhaus graphs of a given size whose maximal 

cliques were as large as possible. This investigation was based on the results 

obtained by Dr. Wayne Dymacek (Professor of Mathematics, Washington and 

Lee University) and Dr. Thomas Whaley (Professor of Computer Science, 

Washington and Lee University) during their research at Washington and Lee 

University in 1992. In addition, a report by mathematicians Daekeun Lim and Jin 

Hwan Kim on cliques in Steinhaus graphs also provided results related to this 

research. 

In the first chapter of this thesis, the concept of genetic algorithms will be 

discussed. The various characteristics of GAs, their applications, and certain 

theoretical aspects will be described. 

The second chapter will focus on Steinhaus graphs and the occurrence of 

maximal clique size in Steinhaus graphs. These graphs are a special type of 

undirected graphs that have been studied by Dr. Dymacek and Dr. Whaley for 

numerous years. 

Chapter 3 will discuss the reasons for studying GAs using this particular 

problem. It will also explain how GAs were applied to the problem and will 

include a description of the algorithm. 

Finally, in Chapter 4, the experiments performed during this research and 

their results will be explained. Chapter 5 will conclude this paper by looking at 

some future research possibilities for GAs applied to this problem. 
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Chapter 1: An Introduction to Genetic Algorithms 

Evolutionary computation simulates biological evolution where computer 

systems evolve a population of solutions to a given problem (Mitchell 2). Genetic 

algorithms are the chief example of evolutionary computation. GAs are adaptive 

algorithms which are used to solve optimization and search problems. Evolution 

strategies, evolutionary programming, and genetic programming are other areas 

closely related to GAs. 

Individuals in a population in nature compete for available resources and 

to attract mates. The individuals that are most successful in attracting mates and 

surviving will have a greater probability of creating offspring while other 

individuals will be unable to reproduce because they cannot survive or attract 

mates. Each successive generation produces a fitter population, and the 

characteristics of highly fit individuals will eventually be spread to more members 

of the population. Thus, the species will evolve as generations pass. 

John Holland developed the fundamental rudiments of GAs during the 

1960s and 1970s at the University of Michigan. Holland's GAs mimic the 

process of evolution of natural populations according to Charles Darwin's model 

of the "survival of the fittest" (Beasley, Bull, and Martin, "Part 1" 1 ). In genetic 

algorithms, each individual member of the population represents a possible 

solution to the given problem. The individuals are assigned fitness scores using 

the fitness function that measures how good that solution is for the problem. 

Individuals with higher fitness are given greater opportunity to mate with other 

members of the population to produce the offspring for the next generation. The 
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least fit individuals are less likely to reproduce and will be eliminated. Thus, the 

new generation will contain more characteristics of the fitter individuals of the 

previous generation. The evolution of the population will converge toward a 

near-optimal solution to the problem. For any given problem, not all candidate 

solutions are evaluated; instead, the GA finds the good solutions by searching 

only a small portion of the possible candidates. 

In this chapter, we discuss the basic features of genetic algorithms. 

Section 1.1 will outline the characteristics of GAs. In Sections 1.2, 1.3, and 1.4, 

we describe solution coding, fitness functions, and the reproduction operators. In 

sections 1.5 and 1.6, theoretical aspects of GAs and applications of GAs are 

addressed. 

1.1 Basic Characteristics of GAs 

The following steps are common to all GAs: populations of candidate 

solutions, selection according to fitness of an individual, offspring generated by 

crossover, and random mutation of the offspring (Mitchell 8). However, before 

executing a GA, the solutions must have a representation or coding, a fitness 

function must be created, and crossover techniques and the mutation probability 

must be established. Figure 1.1 illustrates a standard GA (Beasley, Bull, and 

Martin, "Part 1" 3). 

3 



BEGIN /* genetic algorithm*/ 

END 

Generate initial population 
Compute fitness of each individual 

WHILE NOT finished DO 
BEGIN /* produce new generation */ 

FOR population_size/2 DO 
BEGIN /* reproductive cycle */ 

END 

END 

Select two individuals from old generation for mating 
/* biassed in favour of the fitter ones */ 

Recombine the two individuals to give two offspring 
Compute fitness of the two offspring 
Insert new offspring in new generation 

IF population has converged THEN 
finished := TRUE 

Figure 1. 1: A Traditional Genetic Algorithm 

1.2 Solution Coding 

A potential solution to an optimization problem is a representation of the 

set of parameters. Chromosomes in a GA population represent possible 

solutions for the problem, and they are individuals that make up the population. 

A chromosome may be designed by putting together in a string a set of 

parameters for the problem. Usually, these chromosomes are in the form of bit 

strings. All members of the population have the same length. 

For instance, one might want to maximize the following function: f(y) = y + 

lsin(32*y)I, 0 ~ y < TI. In this case, the parameters for this function are the real 

values for y. This variable may be represented using a binary string. During the 

fitness calculation, the binary string will be converted to a real number, and f(y) 

will be evaluated with this value (Mitchell 9). 
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1.3 Fitness Function 

The fitness of each selected chromosome is assessed by the fitness 

function. Fitness is a numerical score for the particular chromosome according 

to how well the chromosome solves the given problem. This score is supposed 

to be "proportional to the 'utility' or 'ability' of the individual which the 

chromosome represents" (Beasley, Bull, and Martin, "Part 1" 3). For each 

problem, a fitness function must be designed. Chromosomes with higher fitness 

scores will be given a greater likelihood of contributing to the next generation. 

Therefore, the design of a good fitness function is key to the success of the GA. 

Usually in function optimization problems, the fitness function is simply the 

function being optimized. In the example of maximizing f(x,y) = x.2- - y2, the 

fitness function will find the value of f(x,y) depending on the values of x and y 

which are represented by the chromosome. So if x and y were 17 and 5 

respectively, f(x,y) = 172 
- 52 = 289 - 25 = 264 would be the fitness value. The 

higher the value of f(x,y), the better the fitness of the chromosome will be. Thus, 

in future generations, the probability of reproducing with this chromosome as a 

parent is high. The GA will get a greater chance of obtaining offspring which 

maximize f(x,y). 

1.4 GA Reproduction Operators 

In the reproduction stage of the GA, chromosomes are selected from the 

total population and are recombined to produce offspring. The selection process 

is based on the fitness of the chromosomes and gives more opportunities to fitter 
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chromosomes for being involved in reproduction. After being added to the 

mating pool, the chromosomes undergo crossover and mutation in order to 

create the offspring. 

Crossover This operator takes two chromosomes and cuts them at a 

randomly chosen point and produces two "head" segments and two "tail" 

segments (Beasley, Bull, and Martin, "Part 1" 3). By swapping the "tail" 

segments, two new chromosomes are produced which become the offspring. 

This is called single point crossover and is illustrated in Figure 1.2. Thus, there 

are two new chromosomes that inherit some characteristics of the parent 

chromosomes. 

Parents 

Crossover point Crossover point 
~----'y.___~ y 

I oo 1001 oo 11 I I oo 11 o 1 1 o 11 

Offspring * ~ 
I oo 1001 101Q E1°1°°11 

Figure 1.2: Single Point Crossover 

Mutation This operator is used to alter one or more genes (positions) 

in a chromosome. Some of the bits of a chromosome are randomly chosen and 

flipped with a small probability. Figure 1.3 shows the implementation of the 

mutation operator. The mutation rate is the probability of modifying each gene in 

the chromosome. 
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Offspring 

Mutated Offspring 

Mutation point 
y 

00 1001 1011 

00 1001 1010 

Figure 1.3: Single mutation 

1.5 Theoretical Aspects of GAs 

GAs are simple to describe and implement. ·However, the reason why 

they work is more difficult to explain. John Holland's Schema Theorem and other 

hypotheses have been put forth and help us comprehend better the theoretical 

aspects of the GAs. 

The Schema Theorem was first formulated in 1975 by Holland to explain 

how the GAs work. A schema is a set of bit strings which are created from the 

alphabet A= {O, 1,*}. The* symbol represents the "don't cares" which means that 

it can match anything. For instance, the schema H = *1 *11 matches four strings: 

{01011, 01111, 11011, 11111 }. These four strings are instances of H (Mitchell 

27). Similarly, some of the schema contained in the chromosome 00011 are 

0~**1, 000**, ***11, and *0*1 *. The number of non-* symbols in a schema is 

called the order of the schema. In other words, the order is the number of fixed 

positions in a schema. Schema H is of order 3. The defining length of the 

schema is the distance between the outermost fixed positions. For schema H, 

the defining length is 3. 
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The defining length and the order of a schema are important in calculating 

probabilities for survival of the schema during reproduction (Michalewicz 44 ). Let 

us assume that in a population containing strings of length 8, chromosome x = 

01100110 and chromosome y = 10001011. Now chromosome x matches, 

among others, the schema S1 = 0******0 and S2 = **1 0****. Assume further that 

both x and y have been selected for crossover and the crossover point is at 

position 6. Thus the offspring produced from x = 011001110 and y = 100010111 

will be x1 = 01100111 and Y1 = 10001010. S2 is kept intact in offspring x1. S1 is 

destroyed because the fixed positions were at the front and rear of the schemata, 

and no offspring contained it after crossover. A shorter defining length, as in the 

case of S2 , will give a greater chance to the schemata to survive crossover. With 

mutation, the order of the schema is important to its survival. Let us assume that 

x1 = 01100111 undergoes mutation and the mutation point is at position 2. Then 

x 11 = 00100111 and the mutated offspring still preserves schema S2 . If S2 had a 

bigger order, then the probability of destroying the schema would be higher. 

Thus, it can be seen that short, low order schema have a better probability 

of surviving reproduction. According to Holland, a chromosome's high fitness 

results from the good schemata it has, and passing this good schemata to the 

next generation will enhance the likelihood of finding better solutions. Holland's 

Schema Theorem concludes that short, low-order schemas with above-average 

fitness will receive an exponentially increasing number of reproductive 

opportunities in successive generations (Michalewicz 51 ). 
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David E. Goldberg's Building Block Hypothesis asserts that the GA is 

powerful because it is able to find good building blocks that are schemata of 

short defining length and low order (41-42). The idea behind this hypothesis is 

that the GA tries to construct better strings with each generation based on the 

good schemata from the previous generation. The GA does not try outright to 

achieve the optimal solution by experimenting with all combinations of solutions. 

This leads to improved performance of the population as they evolve for many 

generations. 

1.6 Applications of GAs 

GAs have been used for solving a wide variety of problems. Some of the 

applications are listed below and illustrate the flexibility of genetic algorithms. 

Optimization GAs have been used extensively for research 

purposes in this area. For numerical optimization, GAs have proven to be better 

than conventional optimization techniques on difficult, discontinuous, multimodal 

functions. GAs have been applied to combinatorial optimization problems such 

as the traveling salesperson problem, bin packing, job-shop scheduling, and 

circuit layout (Beasley, Bull, and Martin, "Part 1" 13). 

Machine learning GAs have been used to evolve rules for machine 

learning systems such as neural network weights, maze solving, sensors for 

robots, and classifier systems. 

Economics Models of the development of bidding strategies and 

economic market emergence have been implemented using GAs. 
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Image processing With x-rays and satellite pictures, two images of the 

same area, which are taken at different times, are aligned by the use of GAs. 

The GA finds a set of equations that can alter one image and make it fit onto the 

other. 

Evolution The study of individual learning, the evolution of species, 

and their effect on each other is conducted with the use of GAs too (Mitchell 15-

16). 
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Chapter 2: Steinhaus Graphs 

At Washington and Lee University, Dr. Wayne Dymacek, Dr. Thomas 

Whaley, and several undergraduate students participating in the R.E. Lee 

Summer Research Program have conducted research on various properties of 

Steinhaus graphs and their complements for many years. Among the graph 

properties investigated are the following: bipartite graphs, planarity, degree 

sequences, edge counts, chromatic number, and maximal clique size. 

In this chapter, we introduce the notion of a Steinhaus graph and address 

some related ideas. In particular, we discuss the occurrence of maximal clique 

size in Steinhaus graphs. 

2.1 The Definition and Organization of Steinhaus Graphs 

Steinhaus graphs are a special class of undirected graphs. Let T = 

a1,1a1 ,2 ... a1,n be a string of O's and 1 's of length n. T can be used to generate the 

Steinhaus matrix, A = [a;,j], of a Steinhaus graph as follows. All entries along the 

main diagonal contain a zero. So a1, 1,a2,2, ... ,an,n are zeroes. A Steinhaus 

triangle is the upper-triangular part of the Steinhaus matrix and excludes the 

main diagonal. Since the first row of the Steinhaus matrix is given by T, the 

remaining cells of the Steinhaus triangle can be computed using the Exclusive-Or 

operation. This operation is applied to the cell directly above and the cell that is 

northwest of the entry being calculated. If both these cells contain the same 

value, either 0 or 1, then the entry being computed receives a 0. Otherwise, the 

entry receives a 1. Since Steinhaus graphs are undirected, they are symmetric 
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along the main diagonal. As a result of this property, the lower-triangular part of 

the Steinhaus matrix is filled in by symmetry. Figure 2.1 is an example of a 

Steinhaus graph and its adjacency matrix. 

1 
2 
3 
4 
5 
6 

1 2 3 4 5 6 
0 1 1 0 0 0 
1 0 0 1 0 0 
1 0 0 1 1 0 
0 1 1 0 0 1 
0 0 1 0 0 1 
0 0 0 1 1 0 

Figure 2. 1: A Steinhaus graph (011000) and its matrix 

Since the adjacency matrix of a Steinhaus graph is determined by the first 

row [a1 j] from j=2 ton, this is called the generating string of the graph. Thus, a 

generating string of length n-1 identifies a Steinhaus graph with n vertices. 

Counting all possible generating strings for n vertices yields a total of 2n-1 

Steinhaus graphs. For example, the total number of Steinhaus graphs with 15 

vertices is 214
. The size of a Steinhaus graph is the number of vertices in the 

graph. The row number in the matrix corresponds to the vertex in the graph. 
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2.2 Cliques in Steinhaus Graphs 

A clique in an undirected graph G = (V, E) is a subset V' of V, each pair of 

which is connected by an edge in E (Carmen, Lieserson, and Rivest 947). It is, 

thus, a complete sub-graph contained within the graph G. The number of 

vertices contained in a clique is the clique size. An optimization problem 

involving cliques is finding a clique of largest possible size in graphs of a certain 

size. 

In general graphs, it is possible that a graph of size n will have a maximal 

clique of size n; i.e., a complete graph of n vertices. However, in the case of 

Steinhaus graphs, all vertices are not adjacent to each other. Hence, the 

maximal clique size of Steinhaus graphs with n vertices will be less than n. The 

size of the largest clique in Steinhaus graphs with n vertices, for n ~ 2, is bound 

by 1(n + 3)/31 (Lim and Kim 2). For example, for Steinhaus graphs of size 22, the 

maximal clique size is 9. 
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Chapter 3: Applying GAs to Steinhaus Graphs 

Let MCS(G) be the size of the largest clique is graph G. SMCS(n) is 

defined to be the maximum of MCS(G) where G is a Steinhaus graph with n 

vertices. Then, a Steinhaus graph of size n has the Maximal Clique Property 

(MCP) if MCS(G) = SMCS(n). In other words, G has the MCP if G is a Steinhaus 

graph whose maximal clique is as large as possible among Steinhaus graphs of 

its size. The objective of this research is to investigate the effectiveness of GAs 

at finding Steinhaus graphs with the MCP. 

Section 3.1 examines the reasons for choosing the problem of Steinhaus 

graphs with MCP to study GAs. The design of the program and implementation 

of the GAs is explained in Section 3.2. 

3.1 Why apply GAs to Steinhaus graphs with MCP? 

During their research in 1992, Dr. Dymacek and Dr. Whaley had gathered 

data on Steinhaus graphs with MCP. The data from this research is available in 

Appendix A. It shows, through size 26, the number of Steinhaus graphs with n 

vertices that have a maximal clique size of k. For n = 3m + 1, m ~ 4, the data 

suggests that there are four Steinhaus graphs with n vertices having MCP, and 

for these graphs, MCS(G) = m + 2. Thus, we know from Appendix A that there 

are only four Steinhaus graphs of sizes 13, 16, 19, 22, and 25 that have the 

MCP. This empirical information provided the basis for testing the GAs 

developed in this research. 
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In addition, during the period of this research, it was discovered that 

Daekeun Lim and Jin Hwan Kim have recently classified cliques in Steinhaus 

graphs. Their research determined the generating strings of the graphs with 

MCP. They proved that for n ~ 25 vertices, out of 2n-1 graphs, the number of 

graphs with the MCP is four if n = 3m + 1. Although they did not assert this fact 

for the smaller sizes, the identification of these Steinhaus graphs confirmed the 

empirical data gathered at Washington and Lee University. 

The generating string of the Steinhaus graphs provides a straightforward 

encoding for the chromosomes in the population of the GA. Additionally, the 

fitness function would calculate the MCS(G) where G was a Steinhaus graph of 

the given size. These are discussed further in Section 3.2 . The SMCS(n) was 

available from the previous research. It was also known that the targeted graphs 

were rare among the huge search space for larger sizes of Steinhaus graphs. 

Thus, this problem contained all the components for studying the 

application of GAs - good encoding, obvious fitness function, large search 

space, few individuals with optimal values and empirical data for confirming the 

results. 

3.2 Design and Implementation of the GAs 

Different tests were conducted to find the graphs with the MCP. These 

noted the effects of the different elements of the GAs, such as mutation and 

crossover, on the ability to find these graphs. The pseudo-code for the genetic 

algorithm used in this research is shown in Figure 3.1. 
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BEGIN /* Clique GA*/ 

END 

User input: graph size, maximal clique size, population size, 
number of generations, percentages for crossover and 
mutation, number of runs 

WHILE NOT completed_runs DO 
BEGIN/* Run GA*/ 

END 

Generate random initial population 
Compute clique size (fitness) of each individual 

WHILE NOT finished_GA DO 
BEGIN /* produce new generation */ 

END 

Reproduce through crossover 
Compute clique size (fitness) of offspring 
Mutate some offspring 
Insert new offspring in new generation 

IF best fitness is maximal clique size THEN 
finished_ GA := TRUE 

Print results from this run 
IF number of runs completed THEN 

complete.d_runs := TRUE 

Figure 3. 1: Algorithm using GA to find graphs with maximal clique size 

As indicated in this pseudo-code, the user has the responsibility of setting 

the population size and the number of generations to evolve this population. The 

user also controls the likelihood of applying crossover and mutation to the 

parents and offspring respectively. The user also inputs the size of the graphs to 

consider and the known optimal value. 

The binary generating strings serve as the encoding (chromosomes) for 

the graphs. In the fitness function, the chromosome is expanded to form the 

adjacency matrix for that particular graph, G. The fitness function then calculates 

MCS(G). The GA is seeking to find the graphs that have the MCP. The clique 
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size as the fitness function is correctly representative of the utility of the 

chromosome. 

The research involved the investigation of different ways of forming 

populations in each generation (overlapping versus non-overlapping), different 

methods of crossover (single point versus two-point), and the effect of the rate of 

mutation. The results will be discussed in the next chapter. 
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Chapter 4: Experiments and Results 

The experiments were designed to explore the effectiveness of genetic 

algorithms in finding the Steinhaus graphs with maximal clique size. In this 

chapter, five experiments will be described and their results will be discussed. In 

these experiments, results for all the sizes were very similar, and so, only results 

of Steinhaus graphs of size 22 are shown. 

For all the experiments, the new generations were created by (1) selecting 

individuals for reproduction according to fitness, (2) applying crossover to these 

selected individuals according to the crossover rate, and (3) applying mutation to 

the offspring according to the mutation rate. 

Any individual in the population has a probability p of being selected for 

reproduction where p is the fitness of the individual divided by the sum of the 

fitness of all individuals in the population (Michalewicz 32). Hence, individuals 

with higher fitness will have a higher probability of being selected for• 

reproduction. 

The crossover rate, which is the probability of crossover, is usually set 

between 0.6 and 1.0, and in these experiments, it was fixed at 0.9. The 

crossover rate gives the expected number of chromosomes that will undergo 

crossover after being selected for mating. This number is equal to the Population 

Size * Crossover Rate. A random real number between 0 and 1 is chosen for 

each chromosome in the mating pool, and if this number is less than the 

crossover rate, the chromosome is selected for crossover. Crossover is then 

applied randomly to these newly selected individuals (Michalewicz 33). The 
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chromosomes in the mating pool that do not participate in crossover are 

replicated to produce the offspring. In Section 4.3, single point crossover is 

compared to two-point crossover. 

The mutation rate, the probability of mutation, gives the expected number 

of bits to be mutated in each generation. This number is equal to the Mutation 

rate * Chromosome Length * Population size. For instance, if the population size 

is 128, and the length of the chromosome is 21, the total number of bits in the 

population is 2688. For each bit in the population, a random real number 

between 0 and 1 is chosen. If this number is less than the mutation rate, the bit 

is flipped (Michalewicz 33). If the mutation rate is set to 0.1, then the expected 

number of mutated bits in each generation would be 268.8. · Different rates of 

mutation were used, and their effect will be described in Section 4.2. 

Population sizes varied by powers of two from 32 to 128. Similarly, the 

number of generations was set in powers of two from 128 to 1024. This method 

was chosen to enable easier calculation of the total number of graphs computed 

by the GA and will be described in further detail in Section 4.4. 

In the first four experiments, the gathered data is the probability of finding 

one Steinhaus graph with the MCP; i.e., how often the GA will find one of these 

graphs, if it is run 100 times. For example, with the single point crossover rate 

fixed at 0.9, the mutation rate set to 0.1, and with a population size of 64, which 

is evolved for 512 generations, the GA found one Steinhaus graph with the MCP 

about 91 % of the times it was run. In all these experiments, the different success 

rates possible under the different circumstances are observed and discussed. 
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The last experiment, explained in Section 4.5, focuses on which Steinhaus 

graphs, of the above mentioned sizes, with MCP are found by the GA. 

4.1 Overlapping and Non-overlapping Populations 

The genetic algorithm evolves a population of individuals over a given 

number of generations. There are two methods to form the new population for 

each generation. The first experiment was to compare the GAs usage of these 

two methods and their effect on finding graphs with the MCP successfully. 

Firstly, non-overlapping populations were used in the GA. David E. 

Goldberg describes a GA as a simple GA when it uses non-overlapping 

populations (41 ). The simple GA creates an initial population, which is based on 

the specifications of the population size and the chromosome size entered by the 

user. The use of non-overlapping populations by the GA creates an entirely new 

population at each generation. Chromosomes from the previous population are 

selected for reproduction, and they undergo crossover to create offspring for this 

new population. The new population still has the same number of individuals as 

the previous population. The GA is stopped when the termination criteria, such 

as convergence of population or number of generations, is met. 

Overlapping populations was the second form of populations used. This 

type of GA is also known as a steady state GA. Similar to the simple GA, the 

steady state GA creates an initial population dependent on the input of the user 

and concludes when the termination criteria are achieved. The difference in this 

GA lies in the reproductive stage when the new population is formed for the next 
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generation. In each generation, the algorithm selects chromosomes for 

reproduction and creates a temporary population containing the offspring 

produce_d from the crossover. This population of offspring is evaluated according 

to the fitness function and is added to the main population. Then the population 

is truncated to the original size by discarding the chromosomes with the lowest 

fitness. It is possible that the newly generated offspring are discarded. Either a 

specified number of individuals can be removed each generation or removal may 

be based on a percentage of the population. All experiments conducted in this 

research used the replacement percentage. The replacement percentage is the 

percentage of the population that will be replaced each generation and was kept 

constant at 0.6. 

4.1.1 Results 

All the variables, such as crossover and mutation rates, were kept 

· constant, and then the simple GA and the steady state GA were run on the same 

population sizes for the given number of generations. Table 4.1 displays the 

data comparing the simple GA and the steady state GA. 

Table 4.1 clearly indicates the higher success rate of the GA with 

overlapping populations. Using a steady state GA, one graph with the MCP was 

found a very high percentage of the time while the simple GA found these graphs 

a much smaller percentage of the time. For all sizes that were tested and at 

different mutation levels for each size, the result was the same: the use of 

overlapping populations in the GA outperformed the use of non-overlapping 
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populations. This is possibly because in the steady state GA, the worst 

individuals in the populations are discarded in each generation and replaced by 

better ones. So the overall fitness of the population is higher, and the population 

is able to converge faster. Thus, the steady state GA finds the graphs with 

maximal cliques faster than the simple GA. Since the steady state GA was more 

successful, it was used in the rest of the experiments. 

Population Number of Overlapping Non-overlapping 
Size Generations Populations Populations 
32 1024 0.85 0.4 
64 256 0.91 0.1 
64 512 0.91 0.2 
128 256 1.0 0.13 
128 512 1.0 0.33 

Table 4. 1: Probability of finding one graph with MCP, using overlapping and 

non-overlapping populations (Size 22, Mutation = 0. 1) 

4.2 Effects of Mutation 

For the conducted experiments, the optimal level of mutation was not 

known. Hence, for all experiments, different levels of mutations were tested. 

Trial and error finally produced the best mutation rates for the GA. 

4.2.1 Results 

The results of the effects of mutation are shown below in Table 4.2. The 

population sizes and number of generations were kept constant, and mutation 

rates were changed. 
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Mutation Success 
Level Rate 
0.01 0.4 
0.05 0.96 
0.1 1.0 

0.15 0.7 
0.2 0.45 

Table 4.2: Probability of finding one Steinhaus graph with MCP, using different 

mutation levels (Size 22, Population = 128, Generations = 256) 

The mutation rate is just a small factor in the reproductive phase of the GA 

and is typically between 0.001 to 0.01 (Beasley, Bull, and Martin, "Part 1" 3). 

However, using such low levels of mutation is not helpful to our problem, and 

greater than normal levels of mutation have to be used to produce the best 

results. When very little or no mutation is used, the probability of finding graphs 

with the MCP is very low. As seen in Table 4.2, for the mutation rate of 0.01, the 

success of the GA is only 40%. With less mutation, the success rate is even 

lower. Similarly, for very high levels of mutation, the GA did not perform well. As 

the mutation level increased beyond 0.15, the performance of the GA fell rapidly. 

The experiments showed that the optimal levels of mutation for this 

problem were 0.05 and 0.1. Table 4.2 reiterates this fact. One would assume 

that for different population sizes as well as for different sizes of the Steinhaus 

graphs, the optimal mutation level would vary. However, this was not the case. 

For all population sizes, the best results were consistently found when the 
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mutation levels were set at 0.05 and 0.1. This observation also holds for all sizes 

of Steinhaus graphs that were considered in this research. 

4.3 Crossover: Single Point and Two-Point 

Single point crossover and two-point crossover are the most commonly 

used techniques of crossover. Other forms of crossover include multi-point 

crossover and uniform crossover. This experiment examines the use of single 

point crossover and two-point crossover in the GA and their effectiveness in 

finding Steinhaus graphs with maximal clique size. 

Single point crossover was explained in Chapter 1. Two-point crossover 

follows the same principle except for cutting the chromosomes in two points 

rather than one point as in single point crossover. Cutting the chromosome in 

two points divides it into three pieces. Offspring A will receive the first and the 

third pieces of the chromosome from the first parent while Offspring B will get the 

first and third pieces from the second parent. The middle pieces of the parent 

chromosomes are then swapped. Thus, two new offspring are created. This is 

illustrated in Figure 4.1. 

Crossover Points Crossover Points 

Parents 
00 1001 0011 00 1101 1011 

Offspring 

Figure 4. 1: Two-Point Crossover 
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With the addition of one more crossover point, more building blocks and 

schema are likely to be disturbed. However, the search space may be searched 

more thoroughly with this procedure. 

4.3.1 Results 

Table 4.3 compares the performance of the single point crossover and the 

two-point crossover. Again, all variables were kept constant, and only the 

crossover technique was changed in the GA. 

Mutation Single Point Two-Point 
Level Crossover Crossover 
0.05 0.88 0.8 
0.1 0.91 0.95 

Table 4.3: Probability of finding one graph with the MCP using 

different crossovers (Size 22, Population = 64, Generations = 512) 

The figures in Table 4.3 are representative of similar success rates of the 

two types of crossover techniques for different graph sizes, population sizes, and 

number of generations. Both crossover techniques were evenly matched for 

most levels of mutation. For higher mutation rates, single point crossover was 

slightly better. Since there was no significant difference in the performance 

between the two crossover techniques, the use of either technique by the GA 
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would have produced good results. All of our other experiments only used single 

point. 

4.4 Total Number of Graphs Computed 

An exhaustive search to find all Steinhaus graphs with the MCP would 

inspect all the graphs of the given size. Since the sizes of Steinhaus graphs that 

were considered in this research had only four graphs with the MCP, in order to 

find one of these graphs, one fourth of the number of graphs would have to be 

searched on average. For example, there are 221 graphs of size 22, out which 

there are four graphs that have the MCP. On the average, we would expect to 

inspect 219 graphs chosen at random before finding one with the MCP. 

In each generation, every member of the population of the GA has its 

fitness measured. As graphs are the members of the population, every graph's 

clique size is computed by the fitness function. Since a genetic algorithm 

evolves its population for a given number of generations, the total number of 

graphs evaluated in a genetic algorithm is as follows: 

Number of graphs evaluated = P * G 

Here, P represents the size of the population used in the GA, and G denotes the 

number of generations. 

Table 4.4 displays results gathered from tests where the population size is 

128 and the number of generations is 512. So the total number of graphs 

evaluated in this experiment is at most 27 * 29
, which equals 216

. 
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4.4.1 Results 

This experiment searched for the optimal combination of population size 

and number of generations that would yield a high probability of finding a graph 

with the MCP. 

The best performance of the GA for this problem is shown in Table 4.4. 

For the mutation rates of 0.05 and 0.1, the GA was able to find one graph with 

the MCP every time. So the combination where the population size is set to 27 

and the number of generations is 29 is very effective in finding these graphs. 

With this combination, the GA finds one graph with the MCP by computing at 

most 216 graphs. The combinations of population size and number of 

generations shown in Table 4.2 and Table 4.3 are not as effective but still have a 

good success rate. In Table 4.2, a population of 27 graphs is evolved for 28 

generations, while in Table 4.3, a population of 26 is evolved for 29 generations. 

Thus, at most, the total number of graphs the GA computes in these instances is 

215
. The use of the GAs gives a high probability of finding these graphs unlike 

the other method in which searching 219 random graphs might not yield the graph 

with the MCP. 

Mutation Success 
Level Rate 
0.05 1.0 
0.1 1.0 

Table 4.4: Probability of finding one graph with the MCP 

(Size 22, Population = 128, Generations = 512) 
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We observed above that the total number of graphs evaluated in the GA's 

best performance is 216. This figure, however, is an upper bound for the number 

of graphs evaluated. So, when the GA is executed with a population size of 128 

and the user inputs the number of generations as 512, this population does not 

necessarily evolve for all those generations. The GA stops when the graph is 

found, and this event usually occurs before 200 generations. Table 4.5 displays 

the average number of generations taken by the GA to find one graph with the 

MCP. It also indicates the average number of graphs that were actually 

evaluated by the GA. 

Population Number of Number of Graphs 
Size Generations Evaluated 
64 86 5504 
128 64 8192 

Table 4.5: Average number of generations to find a graph with the MCP and 

actual number of graphs evaluated (Size 22, Mutation = 0. 05) 

When a population size is set to 64, the GA finds the graph with the MCP 

in 86 generations on average. The actual number of graphs computed is 64 * 86, 

which is equal to 5504. This is a remarkable improvement on the exhaustive 

search, which would on average compute 524,288 graphs to find a graph with 

the MCP. For the larger population size of 128, the GA solves the problem in 

only 64 generations. In this instance, however, the actual number of graphs 
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computed is 8192. This figure, although slightly higher than when the population 

size is set to 64, is still significantly better than computing 524,288 graphs with 

the exhaustive search. 

In Table 4.5, it is noticed that the GA computes a relatively small number 

of graphs when the population size is 64. Table 4.6 shows the success upon 

using different population sizes for the mutation rate of 0.05. With the lower 

population size, the GA solves the problem 88% of the time, while evaluating 

only 5504 graphs on average. The population size of 128 is clearly better in 

finding a graph with the MCP as it has a 100% success rate. Although, fewer 

graphs are computed when the smaller population is used, the GA solves the 

problem more consistently using the bigger population size. 

Population Success 
Size Rate 
64 0.88 
128 1.0 

Table 4.6: Probability of finding one graph with MCP (Size 22, Mutation= 0.05) 

All the results shown are for size 22. Similar results were obtained for all 

the sizes that were tested in this experiment. Also, as the size of the graph 

increases, the performance of the GA is more effective because it is more 

successful in reducing the number of graphs computed. 
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4.5 Maximal Cliques Found 

The parlner of a Steinhaus graph is the graph with the generating string 

[an-i, n] from i=1 to n-1 (Lim and Kim 1 ). In classifying the cliques in Steinhaus 

graphs, Daekeun Lim and Jin Hwan Kim identified the four graphs that have 

maximal clique size with n ~ 25 where n = 3k + 1. These graphs are represented 

by the following generating strings: (a) 0(101 l, (b) 0(011 )\ (c) 0(1OOf1(101 ), 

and (d) 0(01 of\011 ). The partner of the graph with generating string (a) is the 

graph with generating string (b). Similarly, the graph with generating string (c) 

and the graph with the generating string (d) are partners (Lim and Kim 12). 

These four generating strings also hold for the smaller sizes of Steinhaus graphs 

that were tested in this research. This experiment attempted to find out which of 

these graphs were found by the GA and how often. 

4.5.1 Results 

The data in Table 4.7 shows how often the graphs with each generating 

string were found. These results were based on the first graph found with the 

MCP. 

Generating Times 
Strings Found(%) 

0(011 r 39 
0(101 r 31 
0(1oot·1(101) 18 
0(01 or-·1(011) 12 

Table 4. 7: Finding graphs with the MCP (Size 22) 

30 



The partners, (a) and (b), are found first more often than the other pair of 

partners. One of these two graphs is usually found first between 70% and 75% 

of all runs of the GA. The reason for this occurrence is unknown. 

These observations hold for all sizes considered in this investigation. In 

fact, for the other sizes, the percentage of runs these graphs were found differs 

from the figures in Table 4.7 by a very small amount. 
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Chapter 5: Conclusions 

This research suggests that GAs have to be greatly customized in order to 

apply it to the search for Steinhaus graphs with the MCP. The results described 

in Chapter 4 provide the parameters to be used in order to optimize GAs for this 

purpose. Overlapping populations and certain rates of mutation were found to 

improve the success of GA in solving the problem. Crossover technique did not 

affect the performance of the GA. 

The information from this study lays the groundwork for a variety of areas 

for further investigation. The possibility of computing fewer graphs can be 

explored. During each generation, the fitness function calculates the fitness of 

each chromosome. Since many of these chromosomes are retained for the next 

generation in the steady state GA, computing their fitness again is unnecessary. 

If possible, chromosomes could be labeled when their fitness is computed for the 

first time. Thus, in future generations, the GA would not need to compute the 

fitness of that particular chromosome again. This would considerably reduce the 

number of graphs being computed by the GA and would make it more effective. 

It is also not known why certain graphs with the MCP are found more often. 

More investigation is required on this subject. 
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Appendix A 

n 
1 1 
2 1 1 
3 1 3 
4 1 5 2 
5 1 8 7 
6 1 9 22 
7 1 12 47 4 
8 1 14 82 31 
9 1 18 131 106 

10 1 18 200 287 6 
11 1 20 277 693 33 
12 1 22 327 1558 140 
13 1 26 398 3132 535 4 
14 1 27 467 5830 1848 19 
15 1 30 552 9908 5804 89 
16 1 33 642 15304 16407 377 4 
17 1 38 771 22421 40874 1412 19 
18 1 37 899 30739 94223 5103 70 
19 1 38 1060 39831 203417 17558 235 4 
20 1 39 1155 48980 417028 56318 748 19 
21 1 42 1296 58250 818163 168444 2311 69 
22 1 43 1357 67234 1543595 477166 7554 198 4 
23 1 46 1492 74932 2811962 1281583 23741 528 19 
24 1 49 1614 80966 4940779 3288919 74852 1368 60 
25 1 54 1797 87772 8349480 8097792 236456 3699 161 4 
26 1 54 1907 95681 13538121 19185907 722476 9861 405 19 

1 2 3 4 5 6 7 8 9 10 
k 

The entry in the (n,k) position is the number of Steinhaus graphs with n vertices 

that have clique number k. 
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