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Abstract 

When modeling the population of a species, the logistic equation is 
the first that is invoked; however , this model has some shortcomings when 
predicting actual population change. This has led to the search of a model 
that will be able to help predict population change using the current 
technology, which means that more population-affecting parameters, such 
as space, density, altitude and interaction, could be included into the 
model. When adding additional parameters, the complexity of the model 
is increased dramatically; thus we encounter another problem: not having 
technology that is able to solve the model. Therefore, one needs to be able 
to find a model that considers additional parameters while maintaining 
the integrity of the computer system. This paper will summarize the 
results that were obtained and possible future directions that could be 
explored. 

1 INTRODUCTION 

This past summer, I participated in a Research Experience for Undergraduates 
Program at Texas A & M University. Under the supervision of Dr. Jay Walton 
and Paulo Lima-Fihlo , I worked with two other students, one graduate and 
one other undergraduate. There, we studied previous population models and 
their shortcomings. Dr. ·walton gave us the problem of incorporating different 
parameters into a model, mainly height and migration. During the REU , we 
wrote computer programs using MATLAB that would graph these population 
models. When I returned to Washington and Lee, I decided to focus more on 
the mathematics behind the models and did so under the supervision of Dr. 
Alan McRae and Dr. Michael Evans. The following paper is a synopsis of this 
research. 

Species interaction affects the population dynamics of all species involved. 
A trophic web, or a web of interacting species, exists and makes structurally 
complex communities. In this paper , we will focus on two-species systems that 
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are competitive in nature. In competitive interaction, two or more species com­
pete for the same limited resource , hence inhibiting each others ' growth. Thus , 
the question lies in whether these species can coexist or will one species become 
extinct? By using mathematical modeling, one hopes to predict how the popu­
lations will change over time. Unfortunately, there are many parameters which 
if not taken into account make the model unrealistic. This has been the case 
with many of the simplier models historically applied to this problem. In this 
project , we shall attempt to improve the model by incorporating two additional 
parameters: space and migration 

1.1 BACKGROUND 
As early as 1925 , mathematicians have been trying to model population growth . 
Two of the first were Lotka and Volterra. The Lotka-Volterra two-species com­
petition model is a simple model where each species has logistic growth in the 
absence of the other. The model is the following: 

{
x = x (t) J( x(t), y(t)) 

y = y(t) g(x(t), y(t)). 

Here x and y are the growth rates of the two species , x(t) and y(t) are the 
densities of the two species, and f(x(t) , y(t)) and g(x(t) , y(t)) are functions of the 
two species' birth and death rates which incorporate their carrying capacities. 
What this model does not account for is the space that the species live in and 
their migration. These parameters are what we shall look into. 

1.1.1 Underlying Definitions for Problem One: Space 

When talking about a species , it is common to discuss its migration patterns . 
Obviously, a species can only travel a certain distance in one day and might 
not be able to live beyond a certain elevation. Thus, knowing the terrain that 
the species resides in is very important. The problem is that when looking at a 
plot of space, the length between two points can be deceiving since the three­
dimensional world is being projected onto a flat surface, for example a piece of 
paper. Thus , we lose the depth, or height , of the area in question; this raises 
problems with the migration of the species. Hence, we must be able to find t he 
path on the surface where the species can live. 

Definition 1.1.1. A surfa ce SC ffi.3 is regular if every point in S has an open 
set with a coordinate chart in ffi. 2

1 where a coordinate chart is a way of expressing 
the points of a small neighborhood, usually on a mainfold, as coordinates in 
Euclidean space. In our case, the coordinate chart is a function that maps a set 
in S to ffi.2 • 

Next , we need to define a tangent vector and tangent plane. 
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Definition 1.1.2. A tangent vector, iJ, to the regular surface S C IR3 at point 
p E S is a velocity vector of a curve a : (-E, E) --t S satisfying a(O) = p and 
a'(O) = v. 

The collection of all tangent vectors to S at p E S is called the tangent plane 
to S at p, denoted TpS. 

Knowing this, we can define the First Fundamental Form, which will be 
needed later. 

Definition 1.1.3. The First Fundamental Form, Ip : TpS --t IR, is defined by 

We can specialize the previous definitions to incorporate a height function 
into our model by doing the following: in local coordinates , let X : U C IR2 

--t S, 
then v E TpS is written as 

Hence, 

IP ( iJ) = ( u'X: + v'X-:) · ( u'X: + v'X-:) 

= (x: · x:)(u') 2 + 2(x: · x-:)u' v' + (x-: · x-:)(v') 2 (1) 

= IE( u') 2 + 21F( u', v') + G( v') 2
. 

In our case, X : U --t S, where U is the unit square and X is given by 
(u, v) --t (u, v, h(u, v)), where h(u, v) is a function of u and v that pertains to the 
height of the surface. Thus, by equation 1 above, we see that IE = 1 + ( hu ( u , v)) 2 , 

lF = hu(u, v)hv(u, v), and (G = 1 + (hv(u, v)) 2
. 

Now that we have a function that can give us the height of a surface, we 
need to know the length of a given section of the surface in order to model how 
far a species can travel on a given terrain. 

Definition 1.1.4. Given a : [a, b) --t S , where S is a smooth surface, then its 
length is given by 

L(a) = [ la'(t)I dt 

= [ jia(l)(a'(t)) dt. 

This is our function that defines length; hence, if we know the maximum 
elevation that a species can survive on and the distance it can travel per unit 
time, we will be able to model that species' interaction more accurately. vVe 
can now incorporate our height and length functions into the model, but first 
we must also be able to model the migration patterns of the species. 
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1.1.2 Underlying Definitions of Problem Two: Migration 

Obviously, we need to take into account the fact that species will move through­
out their terrain. In order to model this, we must first go back to Multivariable 
Calculus. 

Definition 1.1.5. The gradient vector, denoted 'v f , of a differential function, 
f(x,y,z), at the point (a,b,c) is given by, 

grad(f(a , b, c)) = f x(a, b c)i + Jy(a , b, c)J + f z(a, b, c)k. 

Once we have the gradient of our function , we can use it to model migration, 
but first we need to know the following from Linear Algebra: 

Definition 1.1.6. If A is an x n matrix, then the trace of A is the summation 
of the principle diagonal entries, or trace(A) = a11 + a22 + ... + ann · 

The divergence, div(W) , of a vector field, W, at a point p E S is the trace 

of the linear map, D (W) : TPS ~ TpS given by 

where the projection is a linear transformation from one vector space to a sub­
space of that given vector space. 

Definition 1.1.7. Given that f(p) : S ~ JR, where p E S, the Laplacian of 
f (p), denoted 6 f (p) 1 is given by the function 

6 f (p) = div(grad f) 

= div(v f (p)) . 

If we we use t he information from the First Fundamental Form in the previ­
ous section and we let S be the graph of a function h : U ~ JR, where U c JR2 , 

f : S ~ JR is smooth, and we define X : U ~ JR3 as the parameterization 
X(u,v) = (u,v , h(u,v)), then we can prove [1) that 

(2) 

[
l + h2 -h2 h2] 

where B = -h2 h~ 1 +\2 is a two-by-two matrix of first order partial deriva-
u V U 

tives of X(u, v) and c5 = v~JE-G---IF-2 = J 1 + h~ + h~. If we plug B and c5 into 
equation 2 above, we see that [1] 

f( ) 
_ lEfuu + Gfuv + 2IFfvv 

6s U, V - ]E(G _ JF 2 . 
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ow that we have an equation for the Laplacian , we hope to be able to 
account for the movement , or flux , of the species . To do this mathematically, 
Dr. Walton suggested t hat we use the Differential Equation of Heat Conduction, 
or the Heat Balance Equation, as a guide. The energy-balance equation states 
that the rate of heat entering through a boundary added to t he rate of energy 
generation equals the rate of storage energy. Mathematically: 

Rate of heat entering through the boundary of V = - l q( r, t) • n dA 

= - i divq(r,t) dv 

Rate of energy generation= i g(r, t) dv 

f BT(r, t) 
Rate of storage = J v pGP Bt dv 

where A is the surface area of the volume element V , n is t he normal unit vector 
to the surface element dA, q(r, t) is the heat flux vector at dA, g(r, t) is t he heat 
generation per unit volume per unit time, p is t he density, Gp is the specific 
heat , and T(r, t) is the temperature distribution. Since all the rates are being 
integrated over V, we see that 

i [- div q'(i', t) + g(i', t) - pCp aTt, t)] dv = O. 

Since the previous equation is derived for an arbitrary small volume element , 
V , within the given solid, the volume may be chosen so small that the integral 
becomes obsolete, thus we can rewrite t he equation as 

d . ....( .... ) ( .... ) G BT ( f', t) 
- wq r' t + g r' t = p p at . 

Since the Fourier Law of Heat Conduction states that the heat flux vector 
equals negative thermal conductivity, k, multiplied by the temperature gradient , 
or q(r, t) = -kvT(r, t), we can rewrite the equation once again as 

div [kvT(r, t)] + g(r, t) = pGp ar~;, t) . 

This equation is intended for temperature or space dependent k and temper­
ature dependent Gp; thus if the thermal conductivity is assumed to be constant, 
we have the following equation: 
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8Tr, t) - a D. T(r, t) - g(rC~, t) = 0, 
t p p 

(3) 

where the thermal diffusivity is a = + [3]. Equation 3 is the heat balance 
p p 

equation that accounts for the temperature diffusion through a given volume. 
Dr. Walton thought this equation could be altered, specifically by replacing the 
equation for temperature distribution with one for population density, so that it 
would mathematically model the migration, or flux, of the species on its terrain. 
We shall pursue this in the next section. 

2 MODELING INTERACTION OF SPECIES 

Let q;(x, t) be the population density of a species on S; we will denote q;(x, t) 
as ¢ for the rest of the paper. Taking Equation 3 as our model, we write our 
differential equation as: 

8¢ 
- - {36.¢ = g(q;) at 

where f3 = a and g( ¢) = g(r
0
~,t) in Equation 3, and g( ¢) is the net birth and 

p p 

death rate. We assume Neumann Boundary Conditions, in other words there 
is no migration at the boundary; thus V s<P · X u = 0 and ¢(u , 0) = ¢0 (u) where 
u E S. If we take N to be the carrying capacity of the species, we define 
g(q; ) = µ(N - ¢) - bq;, whereµ is the birth rate and bis the death rate. Hence, 
by using Equation 2 and the equation above, our equation to model a species 
becomes 

(4) 

But, since we are dealing with two species, we must modify the model one 
last time to get the following system of differential equations: 

(5) 

where Fi = µ1(N1 - ¢ 1) - v1 ¢ 2 and F2 = µ2(N2 - ¢2) - v2¢1 when µi is the 
birth rate of the ith species , vi is the death rate of ith species, and <Pi is the 
population density of the ith species. 

6 



2 .1 Mathematical Modeling of Two Species in a "One Di-
mensional" World 

We will first assume that our species lives in a "one dimensional" world , let 
us say the interval [a, b] on the real line. Since we are now dealing with the 
one-dimensional case, we can rewrite Equation 5 as 

{ 

8 ¢ 1 (3 8
2

¢1 _ F (/4 /4 )/4 at - l ax2 - 1 'f'l, '1-'2 'f'l 
8!t2 - f32 °;!l = F2(¢1, ¢2)¢2. 

To simplify matters, we will let ¢1 = U and ¢2 = V. Thus, our model for 
the one dimensional world is the following: 

{ 
~~ = f31 i:~ + (µ1(N1 - U) - v1 V)U 

~~ = f32 i:i; + (µ2(N2 - V) - v2U)V. 
(6) 

In order to simplify the above equations, we will non-dimensionalize the terms 
[2] . We will have our newt = µ 1t, u = U, v = V , µ = µ,

2 v = 2 b = v2 

/J,1 ) /J,1 ) /J,1 ' 

f3 = ~~, and our new x = x( ~~ )½ . Thus we have 

(7) 

We will now solve for the steady states of these equations. First , we will set 
u(x, t) = u(x - ct) = u(z) where z = x - ct and c is the wave speed. Thus , 
au _ du d au _ du s· ·1· l ( t) _ ( t) _ ( ) av _ dv 8t - -cdz an OX - dz . 1m1 iar Y, V x, - V X - c - V z , so 8t - -cdz 

and g~ = ~~ [2] . Now, we let T = u' and W = v'. Thus we have 

!
T' = ((N1 -u)~;v)u+cT 

W' = (µ(N2 - v) - bu)v + cW 

T ~ u' 

W=v' 

If we set these four equations equal to zero and represent the solution in the 
form ( u, v, T, W), we can easily see that three of the steady state solutions are 
(0, 0, 0, 0), (N1, 0, 0, 0) , and (0, N2, 0, 0). We still need to find the fourth steady 
state. Because we set all equations equal to zero, we automatically know that 
W and T equal zero. Now we will assume that u and v are not equal to zero. 
We have 

W' = 0 = (µ(N2 - v) - bu)v. 

We solve for v and find that 

µN2 - bu 
v =----

µ 
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We also know that 
T' = O = ( ( Ni - u) - vv )u 

. -(3 . 

We can disregard the -(3 , and when solving for u, we have 

u = Ni - vv. 

If we substitute the expression we have for u into the equation we got for v, and 
solve for v, we get 

Thus, 
u=Ni-vµN2-6Ni 

µ-5v 

Hence, our final steady state is (Ni - v µ,:2~/,;11
, µ,;,~/,;1 1

, 0, 0). 
We now must check to see if these steady states are stable or unstable. For 

each steady state, we need to use the following matrix of partials: 

[

- 2u+N1 -vv _ A 
-{3 
-5v 

0 
0 

vu 
7F 

-2µv + µN2 - 5u - >.. 
0 
0 

C 

-{3 
0 

1 - >.. 

0 

If we substitute (0 , 0, 0, 0) we see that the matrix becomes 

[

!:!i - >.. 0 
-{3 

0 µN2 - >.. 
0 0 
0 0 

C 

-{3 
0 

1- >.. 

0 

Solving the matrix for lambda, we see>.. = 1 ⇒, µN2 . Thus, the trivial solution 
is unstable. We do the same for (Ni , 0, 0, 0) and find 

vN1 
T 

µN2 - 5Ni - >.. 
0 
0 

C 

- {3 
0 

1- >.. 

0 

and>..= 71' , 1, µN2 - 5Ni and is again unstable. Similiarly, for (0, N 2 , 0, 0) , we 
have 

0 

-µN2 - >.. 
0 
0 
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- {3 
0 

1 - >.. 
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and>.= Ni='/JN2 , 1, -µN2 , thus (O , N2, 0,0) is an unstable steady state. Finally, 

£ (N µ,N2-8N1 µN2-8N1 0 0) h Or 1 - V µ-8v , µ-8v , , , we ave 

C 

-(3 
0 

1 - >. 
0 

ote that >. = 1 is a solut ion; therefore, this steady state is also unstable . 
We have found that all four steady states of this "one dimensional" model 

are unstable. ow, it would be beneficial to have graphical representations of 
the population densities over space and time. 

2.2 Computer Modeling of Two Species in a "One Dimen-
sional" World 

Knowing what the mathematical model is allows us to solve for steady states , 
but in order to understand how the species interact on their terrain, we must 
plot these equations. Using MATLAB, we were able to plot the population 
density of both species on the region [0 , 1] on the real line throughout t ime. 
Remember t hat right now we are assuming that the land is flat, in other words , 
there is no height function. 

We will first look at Species 1 and Species 2 and how they survive in the "one­
dimensional" world. Recall Equation 6; in our first example, we set µ 1 = 40 
µ 2 = 35, v1 = 35 , v2 = 17, N 1 = 150, and N2 = 100. ote that all of these 
figures pertain to the population density of the species. 

We start with Species 1 having and initial population density of 48 and 
Species 2 having an initial population density of 53 on the whole terrain. We 
then see how the species will interact over time. Figure 1 shows the population 
density of Species 1 and Figure 2 shows the population density of Species 2. 
Note that Species 1 and Species 2 are in coexistence, even though the population 
density of Species 1 is larger than that of Species 2. 
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Figure 2 

Recall that this model was unstable; thus we hope to see this from the 
computer program. We do this by changing one or more of the parameters 
slightly in order to see how it will transform the population densities of the 
two species. Hence, we kept everything the same except we made µ 1 = 45 and 
v2 = 20, thus increasing the birth rate of Species 1 by five and the death rate of 
Species 2 by three. Now Species 1 reaches its carrying capacity whereas Species 
2 becomes extinct (see Figures 3 and 4, respectively). This makes perfect sense 
since Species 2 already had a small population density compared to Species 1 
and we increased its death rate. 
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Figure 3 
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Figure 4 

Therefore, we have seen that our model is exemplifying what we have mathe­
matically shown: the values of the variables can drastically change the outcome 
of the species interaction due to the unstable nature of the model. 

2.3 Modeling of Two Species in a "Two Dimensional" 
World 

Now that we saw how the model would work in a "one dimensional" world, we 
will incorporate a height function into our model, allowing the species to live on 
a "two dimensional" world . Recall that the model we are using is the following: 

{ 
8tt' - /316.s¢1 = (µ1(N1 - ¢1) - v1¢2) ¢1 
0t/ - /326s¢2 = (µ2(N2 - ¢2) - v2¢1) ¢2 

In order to incorporate a height function into our model, the height function 
needed to be both continuous and smooth on the terrain. For our model, we 
used the following height function: 
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h(x) = 

0 
.0925+x(-l.94+x(ll.l-9.259x)) 

2 
1 
2 
-1215+x( 4320+x( -5100+2000x )) 

2 

0 

which gives us the graph seen in Figure 5. 
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Figure 5 
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if O ;;::; x < .l , 

if .1 < X < .7, 

if .7 < X < .8, 

if .8 < X < .9, 

if .9 < X;;::; 1. 

-...... 

Now that we have the terrain that the species will live on, we can see how 
they will interact. We first will specify that Species 1 cannot live above a certain 
altitude; whereas, Species 2 can live above that altitude. Using the MATLAB 
program, we set µ 1 = 0, µ2 = 4, v 1 = 3, v 2 = 1 for h(x) ~ .4, or .55 ;S x ;S .85 , - ~ ~ 
and µ 1 = 3, µ2 = 3, v1 = 2, v2 = 2 elsewhere. We also have N 1 = N 2 = 10 and 
the initial population density of each species is one on h(x) < .4. We see that 
Species 1 is approaching extinction whereas Species 2 survives on the whole 
terrain (see Figure 6 and 7, respectively). Also note that Species 2 reaches 
its carrying capacity on the region where h(x) > .4; this shows that Species 2 
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prefers the higher elevation, which can also be seen through the different birth 
and death rates. 

(HJ 
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Figure 6 
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Figure 7 

We also want to check the st ability of t he "two-dimensional" model. If we 
keep all else the same, but set 111 = 1 when h(x ) < .4, we see t hat Species 1 
survives where h(x) < .4 and almost acheives its carrying capacity (see Figure 
8) and Species 2 reaches its carrying capacity where h (x) > .4 and is still able to 
survive when h(x ) < .4 (see Figure 9) . Hence, these two species are coexist ing 
on the terrain. Thus, t his model also appears to be unstable. 

16 



)r 

10 

TTnH! t 
[l 0 

Figure 8 

17 



T1me 1 [l Ci 

Figure 9 

Therefore, this model gives us a more realistic outcome to how two species 
interact by including not only migration but also height . 

3 CONCLUSION 

We have shown that by adding both migration and space parameters into the 
population model, we have caused the model to be more realistic so that it 
parallels what we see happening in nature. Obviously, the addition of these 
paramet ers have also increased the complexity of the model causing us to rely 
on computer programming to plot the population density over time and space. 

The obvious next step would be to make the birth and death rates functions 
of the terrain and see how that changes the model; the height function could 
also be altered to see how different terrains could lead to other outcomes given 
the same birth and death rates. Next, the boundary conditions could be altered , 
unfortunately, MATLAB does not yet have the capability to solve this model 
with boundary conditions other than Neumann. Other parameters could also 
be incorporated into the model; for example, the size of the species. Of course, 

18 



other species could be included so there could be n number of species living on 
a given terrain. 

This area of Biomathematics is still developing, thus a variety of different 
aspects have yet to be investigated. This paper was simply an investigation 
into two problems that have not been previously addressed in other population 
models. 
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