
I

EXPLORING TEXT-BASED A ALYSIS OF TEST-CASE

// DEPENDENCIES OF WEB APPLICATIONS

by

amill C bb

2012

@ 2012 Camill Cobb
All Right R erv d

I

I

I

I

LIST OF TABLES . .
LIST OF FIGURES .
ABSTRACT

Chapter

1 I TRODUCTION .

2 BACKGROUND . .

2.1 eb Appli ations

TABLE OF CO TE TS

2.2 hallenge and Goal of Testing Web Appli ation
2.3 Gen rating ':D t a for V eb Application

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

Static Model
Concolic Te ting .

avigation 1odel
U r-Se ion-Based ':D ting .
tati tical ag -Based fodel

V

vi
viii

1

3

3
3
5

5
5
6
6
7

3 FOCUS: TEST CASE DEPENDE CIES 9

3.1 Problem 10

4 TEXT-BASED APPROACH TO ESTIMATING
DEPENDENCIES . 12

4.1 Ob rvation 1: tatic Exten ion lmpl Independence . 13
4.2 Ob rvation 2: Action Word Sugg t a Writ , R ad Edit, or Kill to

the Appli ation State . 13
4.3 Ob rvation 3: Direct Obj ct Rev al the Portion o tpe Data Store

Being Affected . 14
4.4 Key In ight: ction ord and Dire t Obj ct Imply D p ndencie 15

iij

4.5 Methodology for Determining Dependencies . . . 16
4.6 Alternative Approach: Monitoring Data Acee ses 17

5 FEASIBILITY STUDY, RESULTS A D OBSERVATIONS 19

5. 1 Subject 20
5.2 Experiment: Methodology and Re ult 21

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

Parsing Unique Re ource
Manually Ident ifying Action Words
Cla ifying Re ources by Static Exten ions and Action Words
Identifying Direct Object
As urning Dependencies

21
22
25
27
29

5.3 Fea ibility Stud Conclu ions . 32

6 AUGMENTING THE TEST CASE GENERATION PROCESS
TO UPHOLD DEPENDENCIES 33

7 CONTRIBUTIONS AND FUTURE WORK 36

7.1 Contribut ions 36
7.2 Future Work . 37

BIBLIOGRAPHY . 38

JV

5.1

5.2

5.3

LIST OF TABLES

Subject application characteristics

U er ession set characteri ti

Action word found in each appl ication

5.4 Percent of unique resource and requests in user accesses that contain

20

21

23

a static exten ion or action word. 27

5.5 Direct objects found in each application 28

5.6 Number of dependent resources identified in unique re ources for ea.ch
application . 30

V

2.1

2.2

3.1

LIST OF FIGURES

Typical t ructure of a web application.

Example of a typical request.

Example of a Dependency.

3.2 Dependence relationship between writes, reads, edi ts, and kills to the

4

7

10

same data in shared application state. 11

4.1 A human could easily a ume dependencies between these resourc 13

4.2 Methodology for estimating dependencies. 16

4.3 A set of resource names wi th action words, static e>..'i;ension , and
direct objects found . 17

5.1 Manually ident ified "read,, action words and which applications they
are in.

5.2 Manually ident ified "wri te action words and which application t hey
are in.

5.3 Manually ident ified edi t ' action words and which applications they
are in .

5.4 Manually ident ified ' kill ' action words and which application they
are in .

6. 1

6.2

6.3

Sprenkle et al. 's test case generation proce [16].

Example of augmentation proce .

Propo ed updat to the test case generation proces .

vi

24

25

25

26

34

34

35

6.4 Example of test cases with no alid ordering that upholds all
dependencies.

...

vii

35

ABSTRACT

Web applications mu t be reliable a the number and popularity of web applica­

tion increases. Web application are difficul t to test becau e of the large input pace

and frequent changes. Thus, their characteristic demand an effective way of automat­

ing the test ca e generation proce . Web application test cas often depend on what

happened to the shared per i tent application tate in previou te t cases- I call this

an inter-test-cas dependency, or simply a dep ndency. Current test uite generation

processes do not represent dependencies, and generated te t suites often violate de­

pendencies, which negatively impacts the effectiveness of t he test suite. This thesi

explore the feasibility of computing dependenci from an application 's r ources. I

propose a novel text-based approach to analyzing resources based on the insight that

resources contain embedded context since they were written by human developers. In

a feasibility study of five deployed web application , I correctly identi fy several de­

pendenci and how the promi e of a text-based approach. I propose a proce for

augmenting the te t ca e generation proces to produce test suites that better uphold

estimated dependencies. I identify several avenue of future work , including sugge -

tions for improvements to the text-based methodology for estimating dependencie to

improve the accuracy of dependency estimates and implementation of the proposed

augmented test case generation proce .

VlJJ

Chapter 1

INTRODUCTION

Web application are application t hat are accessed over a network generally

through a web browser on th Internet , to accomplish ome ta k. Unlike tatic web

site web application dynamically generate many of the pages t hat u ers see based on

variou factors such as the user ' ession history or the content of a common databas .

Since web applications are acce ed in a web brow er, they are compatible with a variety

of operating systems and can be updated and maintained without requiring u er to

acquire or install new software. Well-known web application include search engine

like Google, online t utorial application like Sakai and WebAssign financial ervices

like TurboTax and online banking, and onlin tore like Bay and Amazon.

Web application are becoming increa ingly common , and people are b coming

more and more dependent on these applications to accompli h ta k uch as manag­

ing money and buying good . It i therefore imperative that web applications work

properly and consi tently, which means they must be thoroughly tested · however test­

ing web applications is difficult and expensive because of their large input space and

frequent changes.

One approach to ma.king the testing of web applications cost-effective and easier

to automate the testing proces . Although thi is promising current au tomated

testing method are not effi cient or accurate enough. The goal of my thesi i to

improve an existing automated te t case generation proces by modeling dependencies

between test case .
The contributions of my work are:

1. the identification of t he inter-test-case dependency probl em

1

2. a methodology for finding dependencie based on a text-based approach to ana­
lyzing an application re ources

3. a feasibility t udy that how the promi e of a text-ba d approach to t imating
dependenci

4. an augmented te t case generation proce to produc te t uite that uphold
inter-test-case dependencie .

The remainder of t hi thesis i organized as foll ows: in Chapter 2, I con ey

background information about web applications, t he important factors in generating

good test cases for web applications pr viou approaches to generating te t ca e for

web application , and t he Jimjtation of t he current state-of-th -art . Chapter 3 de­

tail the te t-case dependency problem, which my th is aim o improve. I propo e

a text-based approach to estimat ing test-case d pendencie in Chapter 4 and di cu

t he methodology I have developed to automatically find dependencies. I designed and

implemented a feasibili ty study summarized in Chapter 5, which shows t he promise

of t he text-ba ed approach. In Chapter 6, I propo e an augmented test case gener­

ation proce s to produce test suite that adhere to inter-test-ca e dependencies. The

conclu ion of thi work and suggested areas of fu t ure work are di cussed in Chapter

7.

2

Chapter 2

BACKGROUND

In this chapter, I expound on what constitutes a web application. I explain

what makes web applications particularly difficult to test and the goals of a set of test

cases for web applications. I discuss previous approaches to testing web applications

and t he limitations of these approaches.

2.1 Web Applications

A web application is a set of web pages and components that form a system in

which user input (navigation and data input) affects the system's state. Users interact

with a web application in a browser, making requests over a network using HTTP,

as shown in Figure 2.1. When a user 's browser transmits an HTTP request to a

web application server, the application produces an appropriate response, typically an

HTML document t hat t he browser displays . A response can be eit her static, in which

case t he content is the same for all users, or dynamic such that its content depends on

a user 's behavior and input from the current session (session state) or the contents of

the application 's shared data store (application state).

2.2 Challenges and Goals of Testing Web Applications

Web applications present unique testing challenges. Often, frequent changes are

made to web application code to correct errors and update the functionality of the

application. These changes must be made without making t he application unavailable

for any significant amount of time because users expect the application to be avail-
,

able at a ll times. Addi t ionally, web application components ~ he browser, server, and

data store) are often geographically distributed , and errors can occur in any of these

3

Clln
Browser

•• Users

Figure 2.1: Typical structure of a web application.

components, which makes testing more difficult . Finally, web applications have a large

input space. That is, there is an especially large set of user behaviors that impact

the execution of the web application since responses are often generated dynamically

based on the session state and application state. Since it is impractical to test every

possible scenario of use, it becomes important to concentrate on testing behavior t hat

is typical of real users. These propert ies of web applications make traditional software

testing methods difficult, expensive ineffective, and infeasible when applied to web ap­

plications. Thus, effective, automated, and cost effective testing solutions are needed

for web applications.

The process of testing the functionality of a web application involves generat­

ing effective test cases, executing t he generated test cases, and using oracles to t he

compare expected and actual results of the executed test cases. My work focuses on

automatically generating effective test cases.

Measuring the effectiveness of a test case is nontrivial. The goal of testing a web

application may be to determine how the application responds to heavy loads, ensure

that there are no security vulnerabilit ies, or expose faults in the web application code.

My re earch concentrates on testing the fun ctionali ty of a web application , rather

t han testing security or excessive loads. Measuring fau lt detection requires faults to

be seeded into the application code. Unfortunately, this introduces problems such as

faults t hat are unrealistic or biased toward certain types of test cases . Code coverage,

a measurement of how much of the application's source code will be executed when a

test suit e i executed , is a widely accepted and much simpler metric of a test suite 's

4

effectiveness.

2.3 Generating Test Cases for Web Applications

Previou research ha examined v ral approache to generating test ca for

web applications including tatic model concolic te ting navigation model u er­

ses ion-based testing, and statistical usage-based models.

2.3.1 Static Models

A tatic model seek to model the structure of a system , whick is genera.lly

achieved by examining application code. Static models have been ucces ful for cre­

ating test cases for many kind of software and were also effective for testing some

of the fir t web applications which had fewer dynamic features compared to newer

web applications. Dynamic features of modern web applications, particularly the dy­

namically generated page and non-traditional control flow make it difficult to create

effective te t cases based on a static model of a web application [1 5, 11, 12]. Ap­

proaches based on modeling web application with finite tate machine (FSMs) and

using coverage criteria based on FSM test sequences are not meant to represent invalid

inputs and suffer from the state explosion problem which has been partially addressed

by constraining inputs [2].

2.3.2 Concolic Testing

S veral groups propo e applying concolic testing to w b application testing to

generate whjte-box-based test cases with the goal of achieving branch or bounded path

coverage [3, 19] . Concrete and ymbolic execution and con traint solving are combined

to automatically and iteratively create new input value to explore additional control

flow paths through a PHP script. While this approach achieve good code coverage it

i not nece arily an accurate representation of real users.

5

2.3.3 Navigation Models

Application navigation is a challeng unique to web applications. Unlik tradi­

t ional GUI-based application user can circumvent the application ' de ired naviga­

t ion constraints by ut ilizing the brow er ' features uch as t he back button location

bar, bookmark , or mult iple window . Torrella and Ric a [17] found t hat 4 7% of u er

se ion included an infeasible navigation, which i a navigation that doe not fol­

low any edge in t heir ext racted model of t he web application, presumably cau eel by

brow er-based navigation. Proper enforcement of navigation con traint i important

and hould be te ted in addit ion to legal navigation paths through the application.

ome r carcher proposed building a navigation model of t he appli cation [10,

17, 13, 18] for use in te ting and application under tanding, among other t ask . Wang

et al. proposed e entially pidering the application from a defined start page and using

a combinatorial approach to input values into the application's form to generate t he

navigation model [18]. Tonella and Ricca's navigation i imilarly generated by spider­

ing the application from a tart page and inputting values from equivalence cla es into

form [17]. They augmented their navigation model with u age information , adding

usage-ba ed probabilit ies to t he edge .

Neither Wang et al. nor Tonella and Ricca' navigation model generation is

complet ly automated . Both require t he values to be input into forms to be known

beforehand. Another limitation of both approache is that neit her eem to explicit ly

handle navigation t hat may depend on different application state (e.g. , if a search fail

to find any matche because of t he contents of the database) .

2.3.4 User-Session-Based Testing

A promising approach that is more representative of real u er behavior is user-

es ion-based testing. U er-se ion-based testing records t he actual user acces es to

older version of t he application and par es them into user ses ions, which are t hen u ed

a te t cases. Each user e ion is a sequence of user request in the form of re ource

and parameter name-value pairs as in the example requ t hown in Figure 2.2. Often,

6

Resource Path Resource Name

logi c / Student/CreateQuiz?qnum=B
L,-1 y

Resource Parameter Name Parameter Value

Figure 2.2: Example of a typical requ t.

t h re ource contain path information. I refer to the non-path part of the r ource a

t he r ource name. The requ st recorder treat hidd n parameters the same as regular

parameters. We ay a u er es ion begin when a requ t from a new Internet Protocol

(IP) addre arrives at th erver and ends when the u er lcav t he web it or t he

es ion t imes out, after a 30 minute gap between two request from a user [15].

While user-session based-te t ing i inexpen ive and creates test cases t hat are

repr entative of actual users, it generate too many test case , many of which are

redundant. Addit ionally, direct replay of collected u er access is limited to user

behavior , which might not produce good ode coverage.

2.3.5 Stat istical Usage-B ased Mode ls

A stati t ical model i bas d on t he frequencies of the user ' usage patterns,

a r corded in t he user se ions which are inexpen ive and simple to obtain. U age

information i important to model becau e user behavior does not follow exactly a

tatistically det rmined model and , when given everal opt ion , user tend not to choose

between t he opt ions equally [16] .

Sant et al . [13] proposed generating test ca es using a model of user sessions

t hat requir les space t han t he ori ginal user e ions. The model bas two part :

a navigation model (called a cont rol model by Sant et al.) that repre ents a u er s

navigation through a web application and a data model t hat represent t he parameter

values associated wit h the e requests.

Sprenkle et al . [1 6] proposed modularizing navigatio mod l and data model ..

7

to allow tester to choo e navigation and data model that are appropriate to the p&

cific application being te ted. Tuning the navigation model configuration- including

how requests are represented and the amount of hi tory u ed- affect the re ulting

navigation model and generated ab tract te ca es [16]. A te ter can generate many

test ca from one ab tract test case by adding parameter value generated from dif­

ferent data models to th abstract t t ca e [13]. Alternatively to u ing the whole et

of u er es ions to generate t he statistical u age-ba ed model , the original et of u er

e ion can be partit ion d based on user privilege and u ed separately as input to t he

test case generation proce to generate te t case pecific to certain types of u er as

described in previous work \vith coauthor [14] .

These approacbe have advanced the tat&of-the-art of testing web application ,

but still present significant limitation . In t he remainder of this the i , I focus on one

limitation , inter-test-cas depend nci , and my approach to ad tressing this limitation.

Chapter 3

FOCUS: TEST CASE DEPENDENCIES

One property of web application test cases is that their execut ion is often affected

by what has happened to the shared, persistent application state in a previous test case.

Consider t he example of an online t utorial application shown in Figure 3.1. Professors

must create quizzes before students can t ake them. If a student attempts t o acces a

quiz before it has been created, then t he student will be unable to access the quiz and

t he application will correctly execute error code rather t han application code. In t his

case, errors in t he source code for accessing the quiz could not be detected , and t he

test suite has diminished code coverage. We call this an inter-test-case dependency, or

simply a test- case dependency.

Current ly, navigation models represent the intra-test case dependencies but faH

to represent inter- test case dependencies. That is, the current navigation models ac­

count for t he history wit hin a single user session, which ensures that dependencies that

come from session state are upheld . For example, a user must log in before accessing

restri cted pages. The session state contains a token represent ing that a user has logged

in which is checked when a user attempts to access a restricted page. Since t he current

navigation and data models concentrate on a user 's navigation of the application in­

dependent of other users [10, 17, 13, 18], t hey are unable to account for dependencies

t hat come from application stat dependencies that are based on the contents of a

shared data store or database. Dependencies between test cases wit hin the generated

test sui te t hat are not upheld negatively impact t he ability of the test suite to cover

code and expose faults. When a dependency is not upheld , t he application should
,

execute error code. While t he error case should be tested it d01es not need to be tested

repeatedly. Test cases executed in an order that upholds inter-test ca e dependencies

9

Figure 3.1: Example of a Dependency.

execute application code that represents valid, although not necessarily correct, func­

t ionality and likely increases the amount of code covered. In previous work evaluating

automatically generated test suites, our lab group observed that this was a significant

problem that prevented effective test suites in terms of code coverage.

Thus, t he goal of my thesis project is to estimate inter- test-case dependencies

automatically and adapt the test case generation process to uphold dependencies.

3.1 Problem

Inter- test-case dependencies resul t from changes to the shared data store (ap­

plication state) . Since these changes are caused by clients ' requests to the server, an

inter-test-case dependency is actually a dependency between requests, which make up

a test case. These requests can be in the same or different test cases. Dependencies

between two requests in the same test case can be represented by current navigation

models regard le s of whether t he request impacts session state or application state. I

focus on finding dependencies between requests in different test cases.

A request can result in data being written, read, edited , or deleted (killed) in

the shared data tore or could be independent of t he application state. Although more

ophisticated relationships between writes, reads, edits, and kills could be explored

more extensively in future work, I estimate dependence based on t he int uit ive assump­

tion about dependencies that (a) data cannot be read, edited , or killed until it has

been written to the application state and (b) once it has been deleted (kHled) from the

application state, data can no longer be read or edited. Figure 3.2 represents this de­

pendence relationship. Although an edj t or kill could al o involve a read to t he shared

Read

Write Kitl

Edit

Figure 3 .2: Dependence relationship between writes, reads, edi ts, and kills to t he
same data in shared application state.

data store, this does not impact the dependence relationship and is not represented

separately.

Manually determjning al l dependencies is tedious and error prone even for some­

one who is very familiar wit h the application. Thus, an automated approach to esti­

mating dependencies is necessary. In order to automatically determine dependencies

between requests, we must know two t hings: (1) if a request results in a write, read ,

edit , or kill and (2) what specific port ion of the data store is being affected by the

request. With this information, we can augment an automated test case generation

process to uphold dependencies in generated test suites.

...

11

Chapter 4

TEXT-BASED APPROACH TO ESTIMATING DEPENDENCIES

My hypothesis is t hat a text-based approach to analyzing test cases can be used

to estimate test-case dependencies, which can be incorporated into a data model to

generate test cases that are more representative of actual usage and better adhere to

inter- test-case dependencies.

I propose a novel text-based approach to estimating test-case dependencies. My

key insight is t hat URL requests contain embedded content, which may be leveraged

to identify dependencies between test cases without requiring source code and at a low

cost. Resources are likely to contain useful information since they are written by a

human web application developer so that the source code is easier to develop and

easier to understand later. For example, a human can easily make assumpt ions about

dependencie between the set of resources shown in Figure 4.1: ViewQuiz is dependent

on CreateQuiz because a human could infer that CreateQuiz writes a quiz to t he

shared data store and ViewQuiz reads the quiz from the shared data store. This

example illustrates the int uition behind my approach. The text content of resource

names often reveals the developer 's intent. In the previous example, t he verb "create"

suggests a write to the application state, and the direct object "quiz" establishes what

is being written to the application state. I call words, generally verbs, that suggest

whether a request is a write, read, edit, or kill action words. Direct objects in the

resource name reveal which portion of t he shared data store is being affected. A shared

direct object among a set of requests suggests a dependency among t hose requests.

Although resource names often have intuitive meaning to humans , it is difficult for a

computer to automatically detect t his meaning and assume dependencies.

12

Index .html

ViewQuiz

CreateQuiz

EditQuiz

RecordQuiz

RernoveQuiz

Figure 4.1: A human could easily assume dependencies between these resources.

4.1 Observation 1: Static Extensions Imply Independence

Many resource names end in static extensions like html , ico , js , and pdf. This

suggests that the request results in a read to a static file and will not change or be

affected by the application state. With very high confidence, we can assume that

requests whose resource names end in a static extension are independent of any other

requests. Once a request is known to be independent, it can be ignored for the rest of

the dependency estimation process.

4.2 Observation 2: Action Words Suggest a Write, Read, Edit, or Kill to

the Application State

Action words within a resource name suggest whether the request results in a

write, read, edit , or kill to the application state. Because of the ambiguity of words'

meanings and the limited context from resources alone, I propose manually identifying

action words that can be classified as write, read, edit, or kill with high confidence as

a firs t step and consider the challenges to automating this step later.
'

In a preliminary study (see Chapter 5), I found a relatilvely small set of action

13

words, which was essent ially uruversal aero a broad range of applications. The clas­

sification of action words is t he only manual aspect of my proposed methodology for

est imating dependencies, and since action words are universal, a tester would generally

not need to perform this manual tep. Although incorrect clas ification of action words

could severely impact t he effectiveness of t his approach, a tester could easily configure

the set of classified action words to fi t a specific application- presumably with only ba­

sic knowledge of the application's source code or domain (ex. banking, t utorial, etc.).

I expect that manually configuring the set of action words would also enable testers to

estimate dependencies for applications written in languages other t han Engli h.

4.3 Observation 3: Direct Objects Reveal the Portion of the Data Store

Being Affected

Direct objects wi thin a resource name reveal which port ion of the shared data

store a request affects. As with action words, current software tools are insufficient in

determining which words are direct object . Unlike t he action words, direct objects

are application-specific, which necessitates an automated approach to finding direct

objects. Direct objects wi thin a resource name are only useful once we know how t he

request is changing the application state, so we look for direct objects in resources

t hat have been classified as write, read , edit , or kill. As a first approach, I assume

that every non-action word in a resource is a direct object- I refer to t his set of words

as "potential direct objects." A word could be assumed to be a direct object based

on its part of speech or the word ordering within the resource, but this is difficult to

determine and not necessarily unambiguous. My approach resul ts in t he most inclusive

set of direct objects.

Not every potent ial direct object suggests which port ion of the application state

is being accessed. For example, words like "to ' and "in" may be common among several

resources without suggesting a dependency. Linguists refer to these unimportant words

as "stop words" and have established widely accepted li sts of the most common stop

words. We do not consider a stop word to be a direct object. In computer science and ,

14

specifically, in the web application domain there are several addi tional stop words.

For example, a servlet is a commonly used Java class that receive client requests and

generates appropriate responses so the word "servlet" has no significant meaning in a

web application context . Wit hin a given application, the name of t he application i also

t reated as a stop word. The application's name would presumably not be revelatory

of which part of t he data store is being accessed since it refers to the application itself.

Finally, the meaning of words in the resource path is different from the meaning of

words in the resource name, so we do not consider words in the resource path direct

objects. When a potential direct object is found in only one unique resource name, it

may reveal what port ion of the data store is being affected, but since no other resource

names suggest access or changes to t he same port ion of t he shared data store, it cannot

suggest a dependency and is not considered a direct object .

As with the set of action words, a tester could configure the stop words or even

t he fin al set of direct objects to be application-specific by specify ing stop words.

4.4 Key Insight: Action Words and Direct Objects Imply Dependencies

Given a set of resources classified as wri te, read, edi t , or kill and a set of direct

objects, we can create groupings of resources that access or change t he same portion of

t he shared data store and assume that t he dependency pattern from Figure 3.2 holds

within each grouping of resources t hat have a di rect object in common.

Optionally, if a di rect object is found in a resource name that does not contain

one of the manually classified action words, a tester could manually examine t he re­

source to determine whether a dependency estimate could be made within the context

of the reque t . An area of fu ture work is to explore the po ibility of iterat ively deter­

mining the meaning of unclear action words and finding more direct objects to make

additional dependency estimates.

...

15

Action
Words

Unique
Resources

Methodology
for finding ..

Dependencies

Test-Case
Dependencies

Figure 4.2: Methodology for estimating dependencies.

4.5 Methodology for Determining Dependencies

I have developed a methodology for estimating dependencies that leverages t he

above insights. The set of unique resources for an applicat ion and the manually ident i­

fied and classified action words are taken as input , and a set of test-case dependencies

are output as shown in Figure 4.2 . The int ui t ion behind this methodology is to handle

the resources for which we have t he most confidence in the classification first.

1. Classify resources with known static fi le extensions as independent.

2. Identify resources t hat contain one of the manually ident ified and classified action
words.

3. Identify direct objects within the resources from step 2.

4. Assume dependencies between resources from step 2 with shared direct objects
from step 3.

5. Opt ionally, use the direct objects from step 3 to make more assumptions about
dependencies.

For t he set of resources in Figure 4.1 and a set of action words that includes

view (read) , create (write) , edi t, and remove (kill), this methodology will estimate the

same dependencies that a human would assume, as shown in Figure 4.3. The circles

in t his figure represent nodes in the dependency graph for these resources. In step

1 of t he methodology, the resource index. html would be classified as independent

since it ends in the static extension html. ext, in step 2, t he resources ViewQuiz ,

16

Q Index. html
Static Extension

Re
Vie

Direct Object

Figure 4.3: A set of resource names with action words, static extensions, and direct
object s found .

CreateQuiz, Edi tQuiz, and RemoveQuiz would be classified as indicating a read , wri te ,

edit , and kill , respectively. In this case, Quiz is t he only non-action word in these

resources and would be ident ified as a direct object in step 3, indicating that these

resources access or change the port ion of t he application state represent ing a quiz.

The dependencies indicated by the arrows in Figure 4.3 would be assumed in step 4 of

t he methodology and follow the dependence relationship proposed in Figure 3.2. The

resource RecordQuiz in this example also contains t he direct object Quiz . In step 5,

a tester could manually determine that the context of the word "record" implies that

it is an action word indicating a write t o the application state, thereby assuming an

addit ional dependency.

4.6 Alternative Approach: Monitoring Data Accesses

An alternative approach to estimating test-case dependencies involves instru­

menting application code to monitor data accesse or changes and execut ing test cases

to determine t he type of access or change and t he por tion of the data store t hat each ,
request maps to. This approach could be explored in fu ture ~ ark, but would likely

17

have many of the arne limitations as t he text-based approach. For example a de­

pendency i likely to be violated in any te t sujte executed for t hi purpose (since t he

dependencies are t ill unknown). If a request violate a dependency, the usual access

or change to t he data store could not occur, and a single resource would be mapped

to different accesses or changes to the data store. Determining which of t he mappings

represent correct functionality and t herefore imply a dependency would be difficult .

Static analysis of the source code could be performed to ident ify t he parts of

t he code that result in accesses to the database, and an applicat ion 's re ources could

be mapped to its source code to estimate dependencies; however, static analysis of

t he source code is costly, and mapping resources to ource code is not straightforward.

This method wou ld likely result in overestimates of inter-test-case dependencies, which

would substantially limi t the amount of user behavior t hat could be represented in test

suites without violating dependencies and could result in diminished code coverage.

18

Chapter 5

FEASIBILITY STUDY, RESULTS AND OBSERVATIONS

I designed an empirical study to determine t he feasibili ty of the text-based

approach. The goal was to answer these research questions:

1. Can we automatically parse resources into words? The answer to this question
tells us if a text-based approach to estimating dependencies between resources is
possible.

2. Can we manually identify action words in resources that indicating a write, read,
edit , or kill? If so, is the set of action words a reasonable size-large enough to
have breadth in a variety of applications but manageable to manually find and
reasonable to store?

3. How common are action words in resources across a wide range of applications?
If they are universal, then manually ident ifying action words is not inhibit ive to
t he proposed methodology.

4. How many resources can be automatically classified as independent or as indicat­
ing a write, read, edit, or kill using action words and static extensions? How often
are t hose resources used in the collected user sessions? If action words are found
in common resources, t he dependencies found with the text-ba ed approach are
likely to handle dependencies between the most common requests.

5. Can we automatically ident ify di rect objects in resources?

6. Are direct objects universal across a wide range of applications? If direct objects
are universal, we can use a Ii t of direct objects rather than going through t he
process of programmatically identifying direct objects.

7. Can we correctly assume dependencies based on classified action words and direct
objects? If not, what additional information is required to assume dependencies?

....

19

Subject # of Classes NCLOC # of Unique Resources
Masplas 9 609 20
Book 11 5279 29
CPM 76 7430 83
Logic 106 10704 90
Logicv2 135 16491 120
DSpace 291 29430 215

Table 5.1: Subject application characteristics

5.1 Subjects

I studied five publicly deployed web applications on servers administered by

Sprenkle et al. s research group [16, 14]. The applications are written in J ava using

servlcts and JSPs and consist of a backend data store, a Web server, and a client

browser. Since my testing techniques are language-independent- requiring resources

but not source code for test ing, t hese techniques can easily be extended to other web

technologies.

I used 9 subj ect u er-session sets from user requests to t he applications, col­

lected by Sprenkle et al . [16, 14]. The applications were of varying sizes (1K-50K

non-commented lines of code) , technologies, and representative of web application ac­

t ivit ie and usages: an e-commerce bookstore (Book) [8]; a course project manager

(CPM) used as part of computer science courses at t he University of Delaware; an on­

line symbolic logic t utorial (Logic and a significantly revised version, Logicv2) used as

part of philosophy courses at Washington and Lee University; and a customized digital

library (DSpace) used by our research group to make our publications easily search­

able and accessible [6]. Table 5. 1 summarizes t he applications' code characteristics

including t he number of unique resources in each applicat ion.

Book was t he only application for which an email was sent to local newsgroups

asking for volunteer users. These user requests were also used by Sant et al. [13]. For

t he remaining applications, users accessed t he applications naturally, i.e., t hey were

not solicited for experiment . Accesses for each application were collected over a long

period of t ime: CPM: 5 academic semesters, Logic: 2 academic semesters, DSpace: 3.5

years.

20

Subject # User Sessions # Requests o/o Lines Cvd
Masplas 169 1107 89o/o

Book 125 3564 61 %
CPM 890 12352 78%
logic 497 16,179 80%

Logicv2 374 16 ,052 78%
DSpacel 1087 12 ,277 74%
DSpace2 5012 14,110 46%
DSpace3 3853 15 ,126 45%
D5pace4 7687 38,155 49%

lotal 19,525 127,827 -

Table 5.2: User session set characteristics

I had access to user sessions, that is t he original user accesses converted into user

sessions using Sprenkle et al. 's fram ework [15], useful in answeri ng question 4. Before

processing user accesses , acces es from IP addresses t hat are known to be spiders, bots,

or malicious were removed to red uce the noise from non-users and better create models

of human users' navigations. The DSpace user sessions are partit ioned by the time

periods in which they were collected to provide more sets of user session subjects to

model and compare.

Table 5.2 shows t he characteristics of t he coll ected user sessions, m terms of

the number of user sessions (totaling over 19,000 sessions) , the number of user requests

(totaling nearly 128K), and the percent of application code covered by the user sessions

using Cobertura [4]. I report line coverage to show that t he user ses ions cover a large

portion- but not all- of the application.

5.2 Experiment: Methodology and Results

5.2.1 Parsing Unique Resources

To answer question 1, I created a script to automatically spli t t he unique

resources into words by splitting at camel cased transitions and on non-alphanumeric

characters (ex. / , _ and?). These scripts took on t he order of a second to execute for

each application.

In our applications, only 15 of the 557 total unique resources contained words ,

21

t hat arguably should have been spli t and were not. Fourteen of t hose contained com­

pound words t hat represented a single concept- ex. "myd pace" and "callpapers."

Only one unique resource-masplas05/ submi tf ile . j sp----contajned a word (submit­

fi le) that definitely should have been split but was not. o resources were incorrectly

split when they should not have been.

For t he purposes of this study, I manually corrected the "submitfile" parsing

error , but tools such as AMAP [9] could be used to automatically expand abbreviations

and Samurai [7] could be u ed to automatjcally split words t hat were not split with

camel casing and non-alphanumeric characters if necessary.

Since Camel casing and punctuation correctly split words in all but a few re­

sources, t his fundamental part of t he text-based approach can be implemented at a

very low cost, answering question 1.

5.2.2 M anually Identifying Action Words

The fi rst part of my methodology for estimati ng test-case dependencies is man­

ually ident ifying and classifying action words as write, read , edit, or kill . My goal is to

find a set of action words that can be classified with high confidence in any context .

To answer question 2 , I began by looking at the parsed resource names for

all of t he applications except Logicv2, which was added to t he set of applications

later. I noted words t hat seemed to have an obvious classification; however, many of

t hese words' classifications no longer seemed obvious without t he context of the re­

source. For example, the word fo r mat suggests an edit in t he context of the resource

dspace/dspace- admin/format-registry but could also be used as a noun . To view

the words out of context, I wrote a script that generated t he list of unique words in

each application. Even without context information , ident ifyi ng and classify ing words

as wri te, read , edit , or kill was difficult and somewhat error prone. For example, I

ini tially assumed that the word record indicated a write, but I later realized that it

hould not be considered an action word because it i used as a noun in the book appli­

cation (ex. in t he resource bookstore/Edi tori alRecords . j sp). Some words clearly

22

Subject # Action Words # Write # Read # Edit # Kill
Masplas 3 2 1 0 0

Book 2 0 2 0 0
CPM 9 3 2 2 2
Logic 13 4 4 3 2

Logicv2 12 4 4 3 1
DSpace 11 2 6 2 1
Total 22 5 10 3 4

Table 5.3: Action words found in ea-eh application

indicate an interaction with the application state but have an unclear classification.

For example, logi n must indicate at least a read , since logging in requires t he pass­

word to be checked against the database but could also include an edit if information

about t he login is recorded to the database. I did not include these words in the set of

action words, but fu t ure work could explore classifying t hese to produce a conservative

dependency estimate. Ot her words seemed ambiguous in the init ial pass at ident ifying

and classify ing action words but were actually acceptable action words. For example,

view could be used as a noun or a verb but indicates a read in eit her case. Even

the final set of action words that was used to estimate dependencies contained a word

t hat was not used as my classification predicted: rather than implying a change to t he

application state (i .e. , an edit) change was used in t he Logic application to proceed to

t he next question in a quiz and therefore meant a read. In fu ture work, a researcher

could examine the resources in a larger set of applications to find a more exhaustive

set of classified action words, which could be given to testers so t hat t hey do not need

to manually identify or classify action words t hemselves. Thus, manually identifying

and classifying action words is possible, albeit very difficult , which answers question 2.

Answering question 3 I found and classified 22 action words in the resources of

t he subject applications; the breakdown of how many write, read , edit , and kj)] words

are in the unique resources of each application is shown in Table 5.3. Figures 5.2,

5.1, 5.3, and 5.4 show which action words were contained in t he applications, broken

down by t he classification of t he action words. The grey words are in an application's ...
resources but not in the collected user access logs (i.e., none of the resources containing

23

Figure 5.1: Manually identified "read" action words and which applications they are
in .

the gray action words were accessed by real users). The high degree of overlap between

action words in various applications suggests that action words are universal across a

variety of applications.

Some action words may seem to be conspicuously absent. For example, read ,

write , download, and store could easily be classified with high confidence a.s read ,

write, write, and write, respectively ; however, none of the resources that I examined

contained these words, and I chose to only include action words t hat were actually

present in the resources for the examined applications. I believe t hat a slight ly larger

sampling of applications would provide a more exhaustive list of the most common

action words. In fact , just adding Logicv2 to t he set of applications that I manually

examined for action words would have revealed t he action word read. I did not include

t he words undo or import , because, like login, t heir classification is ambiguous. It is

unclear if undo is an edit or a kill , and import could be a write or a read depending

on whether it indicates an external or internal import.

All of these issues point to the need for a configurable set of action words. With

basic knowledge of an application, in the context of a specific application, testers could

ident ify additional action words with a clearly defined classification or remove action

words that were incorrectly classified.

24

Figure 5.2: Manually identified "write" action words and which appl ications they am
in.

Figure 5.3: Manually identified "edit" action words and which applications they are
in .

Thus , action words are relatively universal across a variety of applications, and

manually ident ifying and classifying action words is not inhibit ive to the proposed

methodology for estimating dependencies, answering question 3.

5.2.3 Classifying Resources by Static Extensions and Action Words

To answer question 4 , I wrote scripts to automatically classify resources in each

application ba ed on the static extensions or action words they contained. Given Hsts

of static extensions and write, read, edit , and kill action words, the scripts generated ,
a text file for each application with a list of resources denoted ~s independent , write,

25

Figure 5.4: Manually identified "kill" action words and which applications they are
in .

read, edit , kill , or unclassified. The execution of these scripts took on the order of a

second for each application .

Table 5.4 show the percent of unique resources and the percent of requests in

t he original set of user sessions containing a static extension or action word. The total

percent handled indicates t he percent of unique resources and the percent of requests

t hat contain eit her a static extension or an action word- that is, t he maximum percent

of resources for whlch a dependency could be found . Although the lists of resources

and collected user sessions that I analyzed had been scrubbed of many of the resources

or requests with with static file extensions, classifying resources wi th static extensions

as independent handles a sizable port ion of t he resources and user requests even in

t he scrubbed files n average, 12.4% of unique resources and 12.5% of user requests

in the collected user accesses. Overall , this small set of action words is present in a

large percentage of the resources and user requests across all of t hese applications- on

average, 47% of unique resources and 57.7% of user requests, at least 6.9% of unique

resources and 24.59% of the user requests , and as much as 75% of the unique resources

and 93% of the user requests. This adds further a surance that action words are

universal across a variety of applications. Since these action words are present in such

a large percentage of t he requests in user acces es, the re ources containing action

words are commonly used.

26

-

Resources

CPM

II: Masplas
0 ;,
i,
~ I.ogle
.t

l.oglc2

DSpace

Average Across Apps

Static
Extensions

Action Words Total
Percent
Handled

Table 5.4: Percent of unique resources and requests in user accesses that contain a
static extension or action word.

One remaining open question i whether we could address t he possibility of

requests with static extensions t hat generate files with static extensions. For exam­

ple, t he resource 1 ogi c2/Prof essor /ExportGrades . xl s generates a spreadsheet from

students' grades in . the data store.

A large percentage of unique resources and user requests in collected access logs

across all of t he subject applications that I examined contain a manually identified

action word, which suggests t hat the text-based approach will estimate dependencies

between resources that are representative of the most common user behavior.

5.2.4 Identifying Direct Objects

To answer question 5 I took a semi-automated approach to finding direct

objects because it was easier given the format of the data (i.e. , the intermediate text

file representations generated to be interpreted by a human) . I expect the process

could be fully automated by generating more consistent interm~diate file (or by not

generating intermediate files and just passing the data directly between scripts). I

27

Subject # Potential Direct Objects # Direct Objects
Masplas 4 1

Book 3 0
CPM 18 9
Logic 15 7

Logicv2 28 11
DSpace 74 53

Table 5.5: Direct objects found in each application

wrote scripts that found all of the word in the resources classified as write, read , edit ,

or kill that were not action words and refer to these as potent ial direct objects. These

scripts executed in les than one second fo r each application. Then, I manually deleted

potential direct objects that were stop words and potential direct objects t hat were

only in one resource name unt il I was left wit h only actual direct objects. The stop

words I used were: servlet, catch to, for by, and all file extensions.

Table 5.5 shows the number of potent ial direct objects and direct objects found

for each application. The number of direct objects is small compared to the total

number of unjque resources, and t he elimination process for potent ial direct objects

significant ly reduces the number of direct objects found. Since t he number of direct

objects for each application is much smaller t han the number of unique resources, t he

direct objects are much easier for a te ter to examine t han the entire set of unique

resources and seems to indicate that words are commonly reused throughout an appli­

cation , thereby defining t he vocabulary of the application.

For each application, t he direct objects are some of t he most common words in

t he collected user sessions. This shows t hat resources containing these direct objects,

which this methodology is likely to find dependencies for , are commonly used. The

direct objects ident ified for CPM, Logic, Logicv2, and DSpace made sense given the

domain of t he application. For example, quiz is a direct object in Logic and Logicv2,

online tutorial applications, and collection is a direct object in DSpace, a document

repository. Although no direct objects are found for Book and only one direct object

was found for Masplas, this is not surprising si nce both are small applications and

ince Book was automatically generated, meaning t hat our intuition that a human

28

developer would create resource names with int uit ive meaning does not necessarily

hold for this application. This methodology successfully identifies direct objects in t he

ubject applications, answering question 5 .

As I expected, the direct objects are not universal , answering question 6. T here

is only a small amount of overlap of direct objects in different applications (except

between Logic and Logicv2, which is not urprising) and t he overlapping direct objects

seem relatively generic or domain-speci fic for applications wi thin similar domains: File

is a direct object in Masplas, Logicv2, and DSpace; course is a direct object in Logicv2

and CPM; password is a direct object in Logic, Logicv2, DSpace; group is a direct

obj ct in CP 1 and DSpace; and t he direct object question in Logic and Logicv2 is

t he singular of t he direct object questions in DSpace.

Thus, t he proposed methodology for find ing direct objects, which could easily

be automated , find direct objects that are applicat ion- or domain-specific.

5.2.5 A ssuming Dependencies

I wrote a script t hat creates a text file wi th t he unique resomces- classified as

write, read , kill, or edit- grouped by t he direct object contained in t he resource name

for each application. This script executed in less than one second. I manually assumed

dependencies between these grouped resources to answer question 7 . The number of

direct objects determines the number of groupings of resource names and , thereby, t he

number of sets of dependent resources.

My methodology found several dependencies that were confirmed to be correct

based on a manual check, confirming question 7, that we can correctly assume de­

pendencies based on classified action words and direct objects. In Logic, for example,

this methodology correctly estimated that the resource Logi c/ Admin/CreateStudent

must occur before and cannot occur after Logic/ Admin/DeleteStudent , since t he lat­

t er resource represents a kill to the direct object quizzes being created by t he former

resource. ...

29

Subject # of Uependent Hesources Identified o/o of Unique Resources
Masplas 2 10

Book 0 0
CPM 28 34
Logic 36 40

Logicv2 60 50
DSpace 105 49

Table 5.6: Number of dependent resources identified in unique resources for each
application

Step 5 of the methodology for estimating dependencies, making assumptions

about the dependency of resources containing one of the identified direct objects but

no action word, would reveal several additional dependencies. For example, given that

quiz is a direct object in the Logic application, a tester could easily determine that

Take implies an access to t he quiz data in the application state based on the context of

the resource Logic/Student/TakePracticeQuiz and assumed dependencies between

other resources that contain the direct object quiz.

Figure 5.6 shows the number of unique resources identified within a set of de­

pendent re ources for each application , and the percent of unique resources in each

application for which a dependence relationship was found . The resources found to be

dependent is significantly smaller than the ent ire set of unique resources and would

be much easier for a tester to manually examine to confirm whether the estimated

dependence relationsh ips are correct.

The largest set of dependent resources is 17, found in Logic and DSpace (i.e.,

17 unique resources contained an action word and a shared direct object). Currently,

we assume that all of the reads within one of those sets of dependent resources are

independent of one another and have the expected dependence relationship with all of

the writes, kills, and edits. We make the same assumption for all of the writes , kills,

and edits as well. Whether this assumpt ion is valid is an open question that should

be addressed in future work. For example, must all of the writes for one piece of data

occur before any of the reads, edits, or kills for that data or can a piece of data be

read, edited, or killed after just one write?

30

Other open questions that should be an wered in order to more accurately esti­

mate dependencies include:

1. What do we do when t here are multiple action words in one resource? If t hey
are both the same classification? For example, in the resource
dspace/pubs/ submit/upload-file- list. j sp in DSpace, bot h submit and upload
are wri tes to the shared data store. If t hey are not t he same classification? For
example, in the resource dspace/pubs/ submit/ cancel. j sp in DSpace, submit
is a read, but cancel is a kill

2. What if a resource shows up in multiple groupings of dependent resources? For
example, the resource scheduler/servlet/ViewGroupGradesServlet in CPM
contains two direct objects- Group and Grades- and is, therefore, part of two
groupings of dependent resources.

Currently l assume t hat t here are no dependencies between different direct ob­

jects. Future work could examine relationships between direct objects. In Logic, for

example, the data refered to by the direct object question is contained within t he

data referred to by the direct object quiz , and dependence relationships exist between

resources containing these di rect objects (ex. deleting a quiz also deletes a question).

I expect t hat the dependencies found with this methodology could help improve

code coverage if the estimated dependence relationships were upheld in a generated

test suite; however , several of t he dependencies were over- or underestimates. For

example, if one resource was incorrectly assumed to belong to a set of dependent

resources, this methodology would overestimate that t he incorrectly grouped resource

had a dependence relationship with all of the other resources in that grouping. In Logic,

the re ource Logic/documentation/studentView. jsp was incorrectly associated with

several other resources, including Logic/ Admin/CreateStudent ; however , t he former

resource is independent of the latter , since it simply refers to documentation that shows

what a student user of the application would see rather than to an access of the student

direct object. In CPM, the dependence between t he resources containing the direct

objects demo and sched were underestimated- these words were used as synonyms in
~

t he application but seen as independent direct objects by this mi!thodology.

31

Since no direct objects were found for Book and since it was automatically

generated, it is not surpri ing that there were also no dependencies discovered for

Book. Similarly only one dependence relation was found in Masplas between t he two

resources that contain t he only direct object found for t he application. Maspla i

essentially a write-only application, so this i not surprising.

This methodology correctly identifies several dependencies. Although addit ional

questions must be answered to improve t he accuracy of t his approach I e:>.rpect t hat

generating test suites t hat correctly uphold the dependencies t hat this approach already

finds would more realistically represent user behavior and improve code coverage.

5.3 Feasibility Study Conclusions

The feasibility study confirmed my intuitions t hat a text-based approach is

promising. I have shown that it is possible to manually identify action words that

indicate accesses or changes to a shared application state and classify them as wri te,

read, edit, or kill. I found that action words are univer al across applications of varying

sizes from a wide range of domains and that di rect objects are application- or domain­

specific.

Although this approach can only estimate dependencies where the resource

names refl ect what t he application does in terms of t he data store, it does find de­

pendencies between resources t hat are commonly used by actual u ers. Since each of

t he scripts I wrote to find dependencies executes in less t han one second, my proposed

methodology quickly estimates dependencies and significantly reduces the dependency

results for a tester to check. This feasibility study also points to several ways that

t he text-based approach to estimating dependencies could be configured to improve

results, which could be explored in fu ture work .

32

Chapter 6

AUGMENTING THE TEST CASE GENERATION PROCESS TO
UPHOLD DEPENDENCIES

Dependency estimations can be used to generate test cases that uphold test case

dependencies and , therefore, achieve better code coverage. I propose augmenting the

test case generation process developed by Sprenkle et al [16] to uphold dependencies.

The process, shown in Figure 6.1, takes collected user sessions as input, builds naviga­

t ion and data models, and generates a suite of new test cases for the web application

that represent users. From a set of user sessions and a navigation model specification ,

the intra-session navigation analyzer uses the navigation model and abstract test case

cri teria to produce a set of abstract test cases. Each abstract test case represents t he

navigation of a single user. That is, an abstract test case is a series of partially specified

requests t hat include the resource and parameter names but not parameter values, like

t hose shown in Figure 6.2. A data model is constructed through analysis of t he original

set of recorded user sessions. The abstract test cases and the data model are input to

t he test case generator to produce a set of test cases- the test suite.

In the proposed augmented test case generation process, a set of dependency

estimates is input to the test case generator along with the abstract test cases and

t he data model as shown in Figure 6.3. Instead of using only the data model to fill

in parameter values in t he abstract test sui te, t he dependence relationships wou ld be

leveraged as shown in Figure 6.2. Since no reads, edits , or kills to a specific piece of

data can occur until it has been written , we use the data model to fil l in the parameter

value and anticipate a dependency violation if a read , edit , or kill request occurs before

a write request. We can u e the data model to determine the "f)arameter values for

write requests and keep track of t he parameter value for direct objects that have been

33

lnlra­
sesston

NaVigallon

~ MJl.yzer

User
5esslon

Paramele<
AnaifZel

Al>slract

.. Test-Case .. ntSUb
GeneratOf

Test-Case ..
.. General()(

Figure 6.1: Sprenkle et al. 's test case generation process [16].

viewQuiz?quizNUm- I+--- Anticipate a miss!

.i.. Use another data model to choose
oreateQuiz?quizNum- f parameter value.

ai +--- Can only view the quiz that has already
viewQu.iz?quizNUm-~ been created.

c reateQuiz ?quizNum-•lf,--- Use data model to complete wtth a different
quiz.

viewQaiz?quizNUm-

V iewQJiz ?quizNu.'11-

Figure 6.2: Example of augmentation process.

written. Subsequent reads, edits, or kills should only fill in parameter values that have

been used in previous write requests. We also keep t rack of parameter values for direct

objects that have been killed. Once a parameter value has been used in a kill , it should

not be used in subsequent reads or edits. In any case where there is no "live" parameter

value, t he data model or when there is no known dependence relationship for a request,

the data model is used to fill in t he parameter value.

Since generating test suites has a low cost terms of t ime and space [16], a large

number of test suites can be generated at a low cost. Knowledge of t he anticipated

dependency violations within a test suite could be used to choose test suites with the

fewest anticipated violations, which are likely to achieve better code coverage.

34

•

Abstract
Test&ite

Test-Case Test
cases Generator •

Dependency
Estilnates

F igure 6.3: Proposed update to the test case generation process.

Test Case X: TestCaseG:

viewQuiz?quizNum=2 viewQuestion?ques=1
createQuestion?ques=1 createQuiz?quizNum=2

Figure 6 .4: Example of test cases with no valid ordering that upholds all dependen­
cies.

Alt hough this proposed test case generation proces augmentation is for Spren­

kle et al. 's test case generation process, I believe that it could be applied to other

automated test case generation processes.

An alternative approach to generating test cases that uphold the estimated de­

pendencies is reordering the generated test ca es. This process should be analogous

to def-use in compilers, but it is complicated because a valid ordering is not always

possible because a test case may include multiple requests with contradicting depen­

dence relationships. For example, in Figure 6.4, the quiz cannot be viewed until it

is created, but the question also cannot be viewed before it is created. Determining

t he best possible ordering (i. e. , the ordering with the fewest dep'endency violations) is ...
difficult.

35

Chapter 7

CONTRIBUTIONS AND FUTURE WORK

In t his chapter , I reflect on the contributions of my work presented in this t hesis

and propose directions for fu ture work.

7 .1 Contributions
The contributions of my work presented in t his t hesis are:

1. Identification of the inter-test-case dependency problem- that depen­
dencies between test cases in automatically generated test suites are not repre­
sented by current te t case generation proces es and are often violated , which
significantly limits the code coverage of generated test suites.

2. A text-based methodology for estimating dependencies t hat leverages
the int ui t ion that web application requests contain embedded context since they
were wri tten by human developers. Action words within a resource can indicate a
write, read , edit, or kill to t he shared application state and direct objects within
a resource indicate which port ion of the application state is affected. My key
insight is that dependency estimates can be made based on these action words
and direct objects.

3. The design, implementation, and analysis the results of a feasibility
study t hat shows the promi e of a text-based approach to estimating dependen­
cies. I showed that action words are universal across a variety of applications,
and t hat a relatively small set of action words is contained in a large number of
t he resources of the applications t hat I studied. Direct objects are application­
or domain-specific, and can be found automatically given a set of resources and
action words. The direct objects found for t he applications I studied matched our
expectations of the applications' vocabulary relatively well. Finally, t his study
showed that correct dependencies can be discovered with this approach.

4. An augmented test case generation process to produce test suites that
uphold inter-te t-case dependencies or detect anticipated dependency violations.

36

7.2 Future Work
Futur work in estimating inter-test-cas dependenci includ s:

1. Methodology improvements uch as iden ifying and clas ifying a more ex­
haustive et of action word by examining more web applications, exploring con­
figuration options to allow te ter to more accurately e t imate dependencies in
be contex of a specific application,

2. Implementation of the alternative approach to estimating dependen­
cies proposed in Chapter 4, which involves in trumen ing application cod and
monitoring the databa e to determine which reque t r ult in a write, rea<l , edit
or kill to the database and what portion of the databa e is accessed or changed ,

3. Evaluating t he accmacy of dependency timates from th text-based approach
and the text-based approach compared to manually identified dependencie , and

4. Applying dependencies to the data or navigation model and to test suite
reduction. Evaluate test suites generated using the augmented test case g ner­
ation process in terms of code coverage relative to te t suites generated without
knowledge of inter-te t-case dependencies.

37

-

BIBLIOGRAPHY

[1] Manar H. Alalfi , James R. Cordy, and Thomas R. Dean. l\llodelling methods
for web application verification and testing: state of the art. Software Testing,
Verification, and Reliability 19(4) :265- 296, 2009.

[2] Anneliese A. Andrews, Jeff Offutt Curtis Dyreson, Christopher J . Mallery,
Kshamta Jerath, and Roger Alexander. Scalability issues with using FSMs to
te t web application . Information and Software Technology, 2009.

[3] Shay Artzi, Adam Kiezun , Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar,
and Michael D. Ernst. Finding bugs in dynamic web applications. In Int'l Symp.
on Software Testing and Analysis, July 2008.

[4] Cobertura. http: //cobertura. sourceforge . net/, 2012.

[5] G Di Lucca, A. Fasolino, F. Faralli and U.D. Carlini . Testing web applications.
In International Conference on Software Maintenance, 2002.

[6] DSpace Federation. http://www.dspace.org/, 2012.

[7] Eric En len Emily Hill, Lori Pollock, and K Vijay-Shanker. Mining ource code
to automatically pli t ident ifiers for software analysis. In 6th IEEE Working Con­
ference on Mining Software Repositories {MSR), May 2009.

[8] Open source web applications with source code. http:/ /WT.1W . goto code. com, 2003.

[9] Emily Hill , Zachary P. Fry Haley Boyd, Giriprasad Sridhara, Yana Novikova,
Lori Pollock, and K. Vij ay-Shanker. Amap: Automatically mining abbreviation
expan ions in programs to enhance software maintenance tools. In MSR 2008: 5th
Working Conference on Mining Software Repositories, May 2008.

[10] Chaitanya Kallepalli and Jeff Tian . Measuring and modeling usage and relia­
bility for statistical web testing. IEEE Transactions on Software Engineering,
27 (11): 1023- 1036 2001.

[11] Chien-Hung Liu, Kung D. C. , Pei Hsia, and Chih-Tung Hsu. Structural testing of
web application . In International Symposium on Software Reliability Engineering
(ISSRE) , 2000.

3

[12] Filippo Ricca and Paolo Tonella. Anal i and t ting of web application . In Int_'l
Conf on Software Engineering (ICSE), 2001.

[13] Jessica Sant, Amie Souter , and Llo d Gre nwald. An exploration of tatistical
mod I of automated test ca e generation. In International Work hop on Dynamic
Analysis (WODA), May 2005.

[14] Sara Sprenkle Camille Cobb and Lori Pollock. Leveraging user-privilege cla i­
fication to customize u age-based tati tical model of web applications. In In­
ternational Conference on Software Te ting, Verification and Validation (!CST).
IEEE, Apr 2012.

[15] ara Sprenkle, Emily Gibson Sreed vi Sampath, and Lori Pollock. A case study
of automatically creating test ·uites from web application field data. In Workshop
on Testing, Analysis, and Verification of Web Services and Applications, 2006.

[16] Sara Sprenkle, Lori Pollock, and Lucy Simko. A study of usage-based navigation
model and generated abstract test cases for web applications. In International
Conference on Software Testing Verification and Validation {!CST). IEEE Mar
2011.

[17] Paolo Tonella and Filippo llicca. Statistical testing of web applications. Journal
of Software Maintenance and Evolution 16(1-2):103- 127 2004.

[18] Wenhua \ ang, Yu Lei, Sreedevi Sampath , Raghu Kacker, Rick Kuhn , and James
Lawr nee. A combinatorial approach to building navigation graphs for dynamic
web applications. In International Conference on Software Maintenance {ICSM)
2009.

[19] Gary Wassermann, Dachuan Yu , Ajay Chander, Dinakar Dhurjati , Hiroshi Ina­
mura, and Zhendong Su. Dynamic te t input generation for web appHcations. In
Jnt 'l Symp. on Software Testing and Analysi , 2008.

39

564 1(c81b7 I
06/13/13 16396 ~ • -- --· - - ----

	RG38_Cobb_thesis_c2012_0001
	RG38_Cobb_thesis_c2012_0002
	RG38_Cobb_thesis_c2012_0003
	RG38_Cobb_thesis_c2012_0004
	RG38_Cobb_thesis_c2012_0005
	RG38_Cobb_thesis_c2012_0006
	RG38_Cobb_thesis_c2012_0007
	RG38_Cobb_thesis_c2012_0008
	RG38_Cobb_thesis_c2012_0009
	RG38_Cobb_thesis_c2012_0010
	RG38_Cobb_thesis_c2012_0011
	RG38_Cobb_thesis_c2012_0012
	RG38_Cobb_thesis_c2012_0013
	RG38_Cobb_thesis_c2012_0014
	RG38_Cobb_thesis_c2012_0015
	RG38_Cobb_thesis_c2012_0016
	RG38_Cobb_thesis_c2012_0017
	RG38_Cobb_thesis_c2012_0018
	RG38_Cobb_thesis_c2012_0019
	RG38_Cobb_thesis_c2012_0020
	RG38_Cobb_thesis_c2012_0021
	RG38_Cobb_thesis_c2012_0022
	RG38_Cobb_thesis_c2012_0023
	RG38_Cobb_thesis_c2012_0024
	RG38_Cobb_thesis_c2012_0025
	RG38_Cobb_thesis_c2012_0026
	RG38_Cobb_thesis_c2012_0027
	RG38_Cobb_thesis_c2012_0028
	RG38_Cobb_thesis_c2012_0029
	RG38_Cobb_thesis_c2012_0030
	RG38_Cobb_thesis_c2012_0031
	RG38_Cobb_thesis_c2012_0032
	RG38_Cobb_thesis_c2012_0033
	RG38_Cobb_thesis_c2012_0034
	RG38_Cobb_thesis_c2012_0035
	RG38_Cobb_thesis_c2012_0036
	RG38_Cobb_thesis_c2012_0037
	RG38_Cobb_thesis_c2012_0038
	RG38_Cobb_thesis_c2012_0039
	RG38_Cobb_thesis_c2012_0040
	RG38_Cobb_thesis_c2012_0041
	RG38_Cobb_thesis_c2012_0042
	RG38_Cobb_thesis_c2012_0043
	RG38_Cobb_thesis_c2012_0044
	RG38_Cobb_thesis_c2012_0045
	RG38_Cobb_thesis_c2012_0046

