DESIGN
of a
THROUGHRAIIROADBRIDGE
PRATT TRUSS SINGLE TRACK
PIN CONNECTED

RESPECTFULLY SUBMITTED TO
 the
 DEAN OF ENGINEERING SCHOOL
 08

WASHINGTON \& LIRE UNIVERSITY
as a
THESIS
for the
DEGREE OF BACHELOR OF SCIENCE
in
CIVIL ENGINEERING.

LERMETON, VIBEANAA 244DO
JAN 131977

MHESIS.

SUBJECT: RHROUGH PRATT RAIIROAD BRIDGE.

 SIITGIE RRAOK.

PIIT COIIECTED TRUSSES.

Span 144 feet.
Depth 28.6 ft.

Panels 6. Panel length 24 ft.
Length of Diagonal 37.335 ft.
Width center to center of Trusses 16 ft .

Dead Ioad.
Dead load per panel 30 Kips.
Top panel point $1 / 3$ of 30 or 10 Kips. Bottom panel point $2 / 3$ of 30 or 20 Kips .

Iive Ioad.
Cooper's Class E - 50 Loading.
(Iterriman \& Jacoby Part I pp.121.)
$\operatorname{Tan} \theta=\frac{24}{28.6}=0.8391 \quad \theta=40^{\circ}$
Sec. $\theta=37.335 / 28.6=1.3054$

IRPTH USED $=28.6 \mathrm{ft}$.

Part 1, page 233. (Merrinan and Jacoby)

Depth should be about $1 / 3$ span for four panels, and about $1 / 6$ span for twelve panels, therefore for six panels the depth should be about $1 / 5$ panel length or $1 / 5$ of $144=28.9 \mathrm{ft}$. or, by another method:

We have $h / p=\sqrt{\frac{m+1}{3}}$ therefore $h / 24=$ $\sqrt{\frac{6+1}{3}}$ therefore $h=24 \sqrt{2.33}$, then $h=36.6 \mathrm{ft}$. which is the conomic depth, but economic depth is generally regarded as too large, as there can be considerable variation in depth without increasing the quantity of material.
part 3. (Merriman and Jacoby.)
The depth may vary 10% from economic
depth, without affecting the quantity of materiaf 1%. Therefore depth is about 36 ft. which is too large.

Froin (I.C.S.) Bridge Specification. The diago-
nal should not make an angle with the vertical over 40°, i.e., the diagonal should not make an angle less than 50° with the lower chord, therefore we will take the angle as 40 degrees. Therefore $\tan .40^{\circ}=24 / 8$; therefore $h=28.6 \mathrm{ft}$.

From Cooper's Specification.
HEADROOM. Clear head room from base afil is 21 feet, fora width of 6 feet over each track.

CLEAR WI DTH.
Clear width of bridge must be 14 feet, i.e., about 16 feet frim center to center of truss.

DEAD LOAD.
A.

Dead Load.
Part I. $w=1100+71$ where $w=$ weight of bridge in 1 bs, per linear feet, 1 =a 144 ft.

Therefore, $w=1100+7 \times 144=1100+1008=$ $2108 \frac{105}{\text { t. }}$

From Cooper's Specificationa.
Track weight 100 2b, per foot or track, ties, guard timbers shall be taken as 400 lb . per linear foot as minimun. Therefore, suppose we take 440 Ibs . per foot as total weight.

From A we have $W=2108$ 1bs.per inear foot.
Therefore total dead load for bridge per linear foot is $W+440$ or $2108+440=2548 \mathrm{lbs}$. per linear foot.

Therefore, for one truss, we have $2548 \div 2=1274$ Ibs per linear foot. Therefore, dead panel load $=1274 \mathrm{X}$ $24=30570 \mathrm{Lbs} .=30.57 \mathrm{Kips}$.

We have from A the Dead Panel load to be equal 30.57 Kips. From B we have the Dead Panel Load to be equal $28.03 \mathrm{Kips}$.

Part III.
B. $\quad W=6001+91$ where W equal weight of bridge in pounds i.e. for a pin connected bridge (weight not including cross ties, guard-timbers and rails)

Therefore $W=600 \times 144+9(144)^{2}=86400+$ 9 X 20736.

Therefore, $W=86400+186624=273024 \mathrm{Ibs}$. em qual weight of bridge.

Therefore weight of truss $=136512 \mathrm{ibs}$.

* . " one panel $=136512 \div 6=$
$2275210 \mathrm{~s}=22.751 \mathrm{Kips}$.
Weight of track equals $\frac{440}{2}=2201 \mathrm{bs}$ per
linear foot; therefore for one panel of truss equal 220 X $24=5280 \mathrm{Lbs} .=5.28 \mathrm{Kips} . \quad$ Dead Panel Load $=22.75+$ $5.29=28.03 \mathrm{Kips}$.

Seeing that these two different calculations range close 30 Kips per panel point, we will take the Dead Load per panel as 30 Kips .

Now one-third of this goes to upper panel point, 度 and two-thirds to 2ower panel point (Part III. p 306)

Dead Load $=\left\{\begin{array}{l}\text { Top } 10 \text { Kips. } \\ \text { Bottom } 20 \text { Kips. }\end{array}\right\}$ Total 30 Kips.

Dead Ioad Stresses.

Factor numbers.

Stresses.

To find the factor numbers, load each panel point with one Kip, therefore total load is equal to five Kips. Therefore $R_{1}=R_{2}=5 / 2=2.5 \mathrm{Kips}$.

Compression is noted by and tension by +
See diagram for factor numbers.
(Ref. Art. 27, part I)
The factor numbers* on the web members represent their vertical shears due to the panel loads on diagram. i,e. 1 Kip.

To find Stresses in upper and lower chords multiply factor numbers by panel loads and then by tangent θ.

Stresses in chords.
Stress $B C$ equals $-4.0 \times 30 \times .8391=-100.69$
kips.

To find stresses in verticals, multiply the total panel
foad by its factor number and then subtract the upper
panel load from this. The upper panel load is 10 Kips.
Stresses in verticais.

Stress $\mathrm{Bb}=(+1.0 \times 30)-10=+20 \mathrm{kips}$.
Stress Cc $=(-0.5 \times 30)-10=-25 \mathrm{Kips}$.
Stress $D d=(0.0 \times 30)-10=-10 \mathrm{Kips}$.
Stress $\mathrm{Dd}=(40.5 \times 30)-10=+5 \mathrm{Kips} \delta$

To find stresses in diagonals multiply factor numbers by panel load and then by Sec. θ.

Stresses in diagonals.
Stress $\mathrm{aB}=-2.5 \times 30 \times 1.3054=-97.91 \mathrm{Kips}$
End Post.
Stress $\mathrm{Bc}=+1.5 \times 30 \times 1.3054=58.74 \mathrm{Kips}$.

Streee Cd $=+0.5 \times 30 \times 1.3054=+19.58 \mathrm{Kips}$.

Stress $\mathrm{De}=-0.5 \times 30 \times 1.3054=-19.58 \mathrm{Kips})$
Stress $\mathbb{E f}=1.5 \times 30 \times 1.3054=-58.74$
Counterz

Stress $\mathrm{Fg}=-2.5 \times 30 \times 1.3054=-97.91 \mathrm{Kips}$,
End Post.

Stresses due to Iive Load.

To find stresses due to Live Load in diag-
nnals.
Diagonal aB.
For first panel, i.e. Stress $a B$ try wheel
4 at b.
Froin tables $\underline{\underline{1}}=120$ \#18 $=138$ feet length
of train on bridge.
5.

$$
\text { Therefore } W=420+3 \times 2.5=42.75 \mathrm{Kips} \text {, weight }
$$ of train on bridge. (Beiow P^{1} means P prime.)

at left panel point due to panel load.

$$
\begin{aligned}
& V=R-v_{b}=220.84-25=195.8 \\
& \text { Stress } \mathrm{aB}=195.8 \times 195.8 \times 1.3054=-255.6 \mathrm{Kips},
\end{aligned}
$$

Compression piece.-
Diagonal BC.
Try wheel (3) at c.
From table $\underline{1}_{\mathrm{t}}=24 \times 4+13=109$ feet length of train.

$$
\begin{aligned}
& W=355 \text { Kips weight of train of bridge.(Engines.) } \\
& \text { For Shear } P=1 / m W=\frac{355}{6}=59.13 \quad\left\{\begin{array}{l}
(2)=37.5 \\
(3)=62.5
\end{array}\right. \\
& \text { Requals } \frac{M}{I}=\frac{M,+V_{1} X+\frac{W x^{2}}{2}}{I}=
\end{aligned}
$$

$$
20455+355 \times 0+0=142.05
$$

$$
\Phi_{c}=\frac{287.5}{24}=11.98
$$

$$
V=142.05-11.98=130.07=130.1
$$

$$
\text { Stress } \mathrm{Bc}=130.1 \times 1.3054=+169.8 \mathrm{Kips} \text { Tension }
$$

$$
\begin{aligned}
& R=\frac{M}{1} \quad v_{b}=\frac{M_{4}}{p} \quad V=R-v_{b} \quad S=V \times \text { See } \theta \\
& M=M_{1}+V_{1} x+\frac{W^{2}}{2} \\
& =30530+420 \times 3+\frac{2.5 \times(3)^{2}}{2} \\
& =30580+1260+1625=31801.25 \\
& R=\frac{31801.25}{144}=220.84 \quad v_{b}=\frac{600}{24}=25 \text { reac. }
\end{aligned}
$$

$$
\text { Therefore } V=87.82-11.98=75.84
$$

$$
\text { Stress } C d=75.84 \times 1.3054=+98.95 \mathrm{Kips} \text { tension }
$$ piece.

Line Load Stresses in Verticals.
Vertical Bb

$$
\underline{\underline{1}}_{t}=18+24=42 \text { feet. }
$$

$$
P=145
$$

$$
(3)=62.5
$$

$$
p^{\prime}=\frac{145}{2}=72.5\left\{\begin{array}{c}
\text { Whee } \\
\prime \prime
\end{array}\right.
$$

(4) $=8 \% .5 \quad$ loaded.
$F_{b}=\frac{M c-2 M b}{D}=\frac{2693.75-600 \times 2}{24}$

$$
=62.24 \mathrm{Kips}
$$

Stress $\mathrm{Bb}=+62.24 \mathrm{Kips}$ as stress equal to shear in verticals.

Vertical Cc
To get maximum shear in verticals load to right of section. Try wheel (3) at d $\underline{\underline{l}}=24 \times 3+13=85 \mathrm{ft}$. $W=290$
Therefore $z=\frac{290}{6}=48.3(\quad \prime \quad(3)=62.5+$ loaded.

$$
\begin{aligned}
& \text { Diagonal Cd. } \\
& \text { Try wheel (3) at d. } \\
& \text { From table } \underline{b}_{t}=85 \text { feet (Engines only) } \\
& \left.\begin{array}{l}
W=290 \text { Kips. } \quad\left\{\begin{array}{c}
\text { wheel }(2)=37.5 \\
P=\frac{290}{6}=48.3
\end{array}\right\} \quad \text { Correctly } \\
\quad n \quad(3)=62.5
\end{array}\right\} \text { loaded } . \\
& R=\frac{M}{3}=\frac{M_{1}+V_{1} X+\frac{W X^{2}}{2}}{1}=\frac{10910+290 \times 6}{144} \\
& =\frac{12650}{144} \\
& =87.82 x_{d}=\frac{287.5}{24} \quad=11.98
\end{aligned}
$$

7.

$$
\begin{aligned}
& R=\frac{W}{I}=\frac{\mathbb{K}_{1}+v_{1} X+\frac{W x^{2}}{2}}{2}=\frac{10910+290 \times 6}{144} \\
& R=87.82 \quad r_{G}=\frac{287}{24}=11.98 \\
& \text { Therefore } V=87.82-11.98=75.84 \\
& \text { " Stress Cc }=75.84 \text { Kips. (In verticals the } \\
& \text { vertical shear is the same as the stress.) } \\
& \text { Vertical Dd } \\
& \text { Try wheel (2) at e } \\
& \text { Fron table } \underline{1}_{t}=24 \times 2+8=56 \mathrm{ft} \text {. (Engines) } \\
& \mathrm{W}=190 \text { Kips (Weight of engines.) } \\
& P=1 / 6 \times 190=31.7\left\{\begin{array}{cl}
\text { wheel }(1)=12.5) & \text { Correctly } \\
"(2)=37.5) & \text { loaded. }
\end{array}\right. \\
& R=\frac{M}{\underline{I}}=\frac{5790}{144}=40.2 x_{d}=\frac{100}{24}=4.1
\end{aligned}
$$

Therefore $V=40.2-4.1=36.1 \mathrm{Kips}$.

Therefore Stress $\mathrm{Dd}=-36.1 \mathrm{Kips}$ Compression piece.

Live Load Stresses in Upper Chords.
(1) Assume some wheel at the center of moment
of the required chord.
(2) Find length of train on bridge $=1_{t}$
(3) " weight of train " " = w t
(4) Then for chord stresses $p \frac{1}{\frac{1}{m}} \frac{n^{2}}{m}$ is that condition that must be fulfilled $n \geqslant$ number of panels from the lieft. (p^{1} means p^{\prime} i.e. $1=$ prime.)
(5) Find reaction at left support.
(a) find moment in about a point (about
right support.)
(b) $R=\frac{M}{2}$
(6) Find bending moment $\mathbb{M}_{b}=R\left(n^{1} \times p\right)-\mathbb{H}_{0}$

$$
\text { (} \mathrm{n}^{1}=\text { number of panels and } M \theta=\text { moment at wheel }
$$

found from table 41a)
(7) Therefore Stress $=\frac{M b}{d}$ where d is depth of truss.

Chord BC
Take center of moments
at c.
Try wheel (7) at c, the center of moments.

$\underline{1}_{\mathrm{t}}=4 \times 24+37=133$ feet length of engines and train.

Therefore $W_{C}=40.75+2.5 \times 3=415$.
$P=\frac{n^{2}}{m} W$ here $n^{1}=2 m=6$
$p=\frac{2}{6} \times 415=138.3\left(\begin{array}{c}\text { wheel } \\ "\end{array}\binom{6}{7}=128.75\right) \begin{aligned} & \text { Correctly }\end{aligned}$
$M=M^{2}+V^{2}+\frac{W X^{2}}{2}=28461.25+407.5 \times 3+\frac{2.5 \times 9}{2}$
$=28461.25+1222.5+11.25=29695$
$R=\frac{29695}{144}=206.21$
$M_{c}=R \times n^{1}-M_{n}$
$=206.21 \times 2 \times 24-2693.75=7204.33$
Stress $\mathrm{BC}=\frac{\mathrm{Mc}}{\mathrm{d}}=\frac{7204.33}{28.6}=-251.0 \mathrm{Kips}$
Compression plece.
Chord CD
Take center of moments at d .
Try wheel (11) at d
$\underline{\underline{1}}_{t}=24 \times 3+64=136$ feet (Engines and train)

Therefore $W=420+2.5 \times 1=422.5 \mathrm{Kips} ; n^{\prime}=3$.
$P=3 / 6 \times 422.5=211.25\left(\begin{array}{c}\text { wheel }(10) \\ (190) \\ n(11) \\ =215\end{array}\right)$ Correctly loaded
$M=30530+420 \times 1+\frac{2.5 \times(1)^{2}}{2}=3095.25$.

9。
$R=\frac{30951.25}{144}=214.93 \quad M_{11}=7310$
$M_{d}=214.93 \times 3 \times 24-7310=8164.96$
Stress $C D=\frac{8164.96}{28.6}=-285.4$ Kips Compression piece.
Live Load Stresses in Lower Chords.
To find stresses due to live load in lower chords apply the same rule as for upper chords assuming the wheel directly under the center of moments.

Chord be
Take center of moments
at B
Try wheel (4) at b below

the center of moments.
$\underline{1}_{t}=24 \times 5+18=138$ feet (Engines and train)
$\mathrm{w}=420+2.5 \times 3=427.5 \mathrm{Kips}$
$P=\frac{n^{1}}{m} w=1 / 6 \times 427.5=71.25\left\{\begin{array}{c}\text { wheel }(3)=62.5 t \text { Correetly } \\ "(4)=87.5) \text { loaded. }\end{array}\right.$
$M=30530+420 \times 3+\frac{2.5}{2} \times 9$
$=31801.25$
$R=\frac{31801.25}{144}=220.84 \quad M_{4}=600$.
$M_{b}=220.84(1 \times 24)-600=4700.16$
Therefore Stress $b c=\frac{4700.26}{28.6}=+164.34 \mathrm{Kips}$
Tension piece.
Stress in $a b=$ Stress bc.
Therefore Stress $a b=+164.34$
Chord ed
Stress in cd is the same as the stress in upper chord BC

Stress cd $=+251.9 \mathrm{Kips}$ (Tension piece)
Impact.

$$
I=s\left\{\frac{300}{L^{t}+300} \quad S\right. \text { is the computed live load }
$$

10.

that produces the greatest stress in the member.

Impact in diagonals.
$I_{a B}=-255.6\left(\frac{300}{138+300}\right)=-173.8$ End Post.
$I_{B C}=+169.8\left\{\frac{300}{109+300}\right\}=+124.5$
$I_{C d}=+98.95\left\{\frac{300}{85+300)}=+77.1\right.$

Impact in verticals.
$I_{\mathrm{Bb}}=+62.24\left(\frac{300}{42+300}\right)=+54.5$
$I_{\text {Cc }}=-75.84\left(\frac{300}{85+300}\right) \quad z=59.1$
$I_{D d}=-36.1\left(\frac{300}{56+300}\right)=-30.4$

Impact Upper Chords.
$I_{B C}=-251.9\left(\frac{300}{133+300}\right\}=-174.5$
$I_{C D}=-285.4\left(\frac{300}{136+300}\right) \Rightarrow-196.3$

Irpact in lower chords.

$$
\begin{aligned}
& I_{a b}=I_{b c}=+164.3\left(\frac{300}{138+300}\right)=+112.5 \\
& I_{c d}=I_{c D}= \\
& +174.5
\end{aligned}
$$

To find wind stresses in upper and lower laterals:

Take wind load as 30 lb . per square foot. Consider all these members as being one foot wide.

Therefore, total length of all members in one tréss is $144+96+(8 \times 37.34)+(5 \times 28.6)=$ 681.7 foot.

```
\(681.7 \times 1=681.7 \mathrm{sq}\). feet.
\(681.7 \times 30=20451.0 \mathrm{lbs}=10.225\) tons.
Number of panels \(=6+4=10\).
Therefore panel wind load \(=\)
\(10.225 \div 10=1.02\) tons.
```

Stress in top laterad:
The top laterals are to be designed for a fixed horizontal force of $85 \mathrm{2bs}$. per linear foot $=\frac{1.02 \times 2000}{24}$ $=85 \mathrm{ibs} .$, and the bottom lateral for a fixed horizontal force of 440 pounds per linear foot, additional.
panel dead load for top and bottorn laterals $=$ $85 \times 24=2040 \mathrm{lbs}$. Panel live load for bottom laterals only $=440 \times 24=10560 \mathrm{lbs}$.

Length of diagonals $=\sqrt{28.6^{2}+24^{2}}=37.335$

Top Lateral stresses.

Shear in Panels.
$B C=2040 \times 1-1 / 2=30601 \mathrm{st}$.
$C D=2040 \times 1 / 2=1020$ 2nd .
Stresses in Diagonals.
$3060 \times \frac{37.335}{17.0}=2.2=6732 \quad 1$ st.
$1020 \times 2.2=-2244$ 2nd.

Bottom Lateral Stresses.
Shear in panels.
$a b=(2040 \times 2-1 / 2)+(10560 \times 15 / 6)=30582$.
$b c=\binom{2040 \times 1-\frac{1}{2} / 2}{c d=\left(\begin{array}{l}10560 \times 10 / 6 \\ 2040 \times 10560 \times \\ 10 / 6\end{array}\right)=20660}=11580:$

Stress in Diagonals.

$$
\begin{aligned}
& \text { 1st. } 30582 \times 2.2=-67280 \mathrm{Kips} \cdot\left(\frac{37.335}{17.0}=2.2\right) \\
& \text { 2nd. } 20660 \times 2.2=-45452 \\
& \text { 3rd. } 11580 \times 2.2=-25476
\end{aligned}
$$

Stresses in Portal Strut. (This is one method of working stresses, see second method in design of portal braces.)

There are $2 \frac{1}{2}$ panel loads of wind force applied at the top of portal struct $=2040 \times 2 \frac{1}{2}=5100$ pounds. This force is assumed to be resisted equally at the foot of each post. It is also assumed that each post is fixed at bottom, and that the plane contraflexure is half-way between the foot of posts and the lower extremities of portal struat. Then, for the purpose of figuring the portal stresses, the ends of the posta may be considered to lie in this plane, as shown in Plate I.

The horizontal reaction at the foot of each post $=$ $5100 \times \frac{1}{2}=2550$ pounds, and the bending moments at the knee connection due to these forces $=2550 \times 14.5=36975$ These monents are resisted by forces at the top of post acting with lever arms of 8.2 feet which forces equal $36975 \div 8.2=4509$. The force of 4509 pounds on the leeward side of portal induces a tensile stress of the same amount in this side of the top struct; and on the windward side, the force of 4509, combined with the applied force of 5100 pounds induces a compressiof stress $=4509+5100=+9609$ pounds.

The horizontal force at the lower end of each kneebrace is equal to the induced force at top of post plus the horizontal reaction at its foot $=4509+2550=7059$ pounds, and stress in the knee-brace is equal to the horizontal force at its foot multiplied by its length and divided by
one-hsif the width of portal $=7059 \times \frac{115}{8}=10147.3$ pounds. This stress will be tension on the individual side of portal and compression on the leeward side.

Floor Stringers.

The span of the stringer equals the panel length of the truss or 24 feet. The Dead Load on one stringer one sists of one-half the assumed weight of floor plus the weight of stringer, $=440$ pounds per linear foot. For the maximum live load reaction or end shear, wheel (2) is placed over one support with wheels $3,4,5$ and 6 on the stringer. Moments of these loads are then taken about the opposite support and divided by the span.

End Shear.
Dead Load $=440$ lbs. $\times 24 \times \frac{1}{2}=5280$
Live Load $=2500(9+14+19+24)=68750$
$I_{\text {mpact }}=\frac{(68750)^{2}}{68750+5280}$

63750
1377801 bs.

For the specified shearing stress of 10000 pounds per sf. in. by Cooper's Specifications.
$137780 \div 10000=13.78 \mathrm{sq}$. in. Area., required for web plate.

A $42 \times 3 / 8$ in. web plate $=15.75 \mathrm{sq}$. in. will
be used. (Page 305 Cambria.)

Suppose we try wheels (2), (3), (4) and (5), Section
of maximura moment.
As these loads are same the C. G. is midway between (3) and (4). Therefore section of maximum moment passes through wheel (3) which under the condition must be placed 1.25 feet to left of center of beam. Therefore section of maximum moment is $12-1.25=10.75$ feet from left reaction. Therefore moment about (3) is $H_{B}=R \times 10.75$

- 2.5×5, but $R I=M$; therefore $R=\frac{M}{I}$

$$
\begin{aligned}
& M=M_{5}+V_{5} X+\frac{w X^{2}}{2} \\
& =1037.5+172.5 \times 3.25-12.5 \times 26.25
\end{aligned}
$$

$$
=1075.0
$$

$$
R=\frac{1075.0}{24}=44.8
$$

$$
M_{B}=44.8 \times 10.75-2.5 \times 5=356.6 \mathrm{Kips} \text { feet. }
$$

$M_{B}=356600$ 1bs, feet.
Moment
Dead Load $=1 / 8 \mathrm{WI}^{2}=\frac{440 \times(24)^{2}}{8}=31680$
Live load $=44800 \times 10.75-(23000 \times 5=366800$
Impact $\frac{(366600)^{2}}{366600+31680} \quad$ Total $=\frac{337800}{736080 \mathrm{ft}}$. Lbs.
The effective depth of stringer or distance C to
center of gravity of flanges will be about 3.25 feet
Flange stress $=736080 \div 3.25=2264801 \mathrm{bs}$.
Flange area required $=226480 \div 1600=14.16 \mathrm{sq}$. in.
Then $1 / 8$ of $42^{\prime \prime} \times 3 / 8$ in. web plate $=1.96$ sq.in.net
2 angles 6 "x 6 "x 5/8 in. $=14.22 \mathrm{gr}$.
 hole 1 in. diameter in each angle.)

Intermediate floor beams.
The effective length of floor beam is assumedto
be equal to the distance center to center of trusses $=16$
feet. The stringer concentrations 6.5 feet apart and 4.75
feet from center of trusses. The weight of floor beam is
assumed to be 3000 lbs., which is a distributed load. The Dead Load concentrations from stringers $=440 \times 24=10660$ pounds. The Live Load concentrations from stringers, which are equal to the maximum panel. Concentration at b is found by the following method:

Panel length $=24$ feet. Placing wheel
(5) at b the load p^{1} in the panel ab varies from 87.5 to 112.5 kipg and $2 \mathrm{~m}^{1}$ from 175 to 225 Kips . The total laad P on both panels varies from 261.25 to 177.5 , thus satisfying the criterion $P=2 P^{1}$
$\mathrm{R}_{\mathrm{b}}=(4370-2 \times 103 \% .5) / 24=95620$
End Shear

$$
\begin{aligned}
& \text { Dead Load }=\left(3000 \times \frac{1}{2}\right)+10560=12060 \\
& \text { Live Load }= \\
& \begin{array}{ll}
\text { Impact }=\frac{(95620)^{2}}{95620+12060} & =\frac{85200}{192780} 1 \mathrm{lbs}
\end{array}
\end{aligned}
$$

Area required in web plate $=192780 \div 10000=19.28$
sq.in. We will use this.
Moment.
Dead Load $=\frac{3000 \times 16}{8}+10560 \times 4.75=56160$
Live Load $=95620 \times 4.75=454000$
Impact $\frac{(454000)^{2}}{454000+56160} \quad=403000$ 913160 1bs.

Assuming an effective depth of 53 in . or 4.25 feet
and using the specified unit stress.

```
Flange stress = 91360\div4.25=214800 1bs.
Flange area required =214800 \div26000=13.43 sq. in.
Then 2/8 of 54 in.x 3/8 in.web plate = 2.53 sq.in.ndt.
2 angles 5 in. x 4 in. = 7.5 sq.in.gro=6.60 " m "
1 plate }13\textrm{in}.x3/8 in. =4.8
                            Net area,mom-m=14.00 gq. in.
```

2 holes I in. in diameter in each angle is accounted

End Floorbeams.
The effective length and location of stringer noncentration are the same as for intermediate floorbeams.

The weight of floorbeams $=3000 \mathrm{ibs}$.
Dead Load concentrations from stringers $=440 \times 12$
$=5280$ pounds.
Live Load concentration fram stringers as detemined in connection with stringer = the maximum panel concentration at a is found by the following method: Panel length $=24$ feet. placing wheel (4) at a.

$$
R_{a}=\frac{2050-2 \times 100}{24}=77080
$$

End Shear
Dead Load $=\left(3000 \times \frac{1}{2}\right)+5280=6780$
Live Load $=\quad 77080$
Impact $\frac{=(77080)^{2}}{77080+6780}$

Area required in web plates $=154710 \div 10000=15.4 \%$ sq. in.

We will use this
Moment
Dead Load $=\frac{3000 \times 16}{8}+5280 \times 4.75=31080$
Live Load $=77080 \times 4.75=366100$
Impact $=\frac{(366100)^{2}}{366100+31080}$
$=\frac{337800}{734980}$
Assuming an effective depth of floorbeams $=4.33$
feet. Flange stress $=734980 \div 4.33=169500$ pounds.
Flange area $=169500 \div 16000=10.05$ sq.in.
Then
$1 / 8$ of $54 \mathrm{in} . x 3 / 8$ in web plate $=2.53 \mathrm{sq} . \mathrm{in}$. 2 angles $3 \frac{1}{2}$ in. $x 3 \frac{1}{2} \mathrm{in} .=4.22$ sq. in. gx. $=3.42 \mathrm{M}$ I plate $13 \mathrm{in} . \times 3 / 8 \mathrm{in} . \quad=4.87$ Net 10.82 sq.in.
(1 hole ne in. in diameter in each angle.)

The connection angles for stringers or floor beans shall have no leg less than $3 \frac{1}{2}$ inches or be of less thickness than $\frac{1}{2}$ inch. (See blue prints for angles used.)

Design of Merbers.

In designing compression verticala you want the lightest channels possible with the greatest stiffness possible, and also the web cannot be less than $3 / 8$ in. or .38 inch thick.

The least width of posts from Cooper's Specifications is 10 inches.

The vertical suspender Bb is designed to take tension as it receives stress only from loads on first two panels, and also designed to take compression as it receives impact more directiy, and this design reduces the excessive vibration. Therefore $1 \pm s$ composition will be nade on order of other verticals.

For tension allow one hole in each flange and two holes in web of channel. In suspender 4 holes in angles and 4 in webs will be requixed.

Required web section area
$=\frac{136740}{15000}=9.2$ sq. in. approx.

2 channels $12^{\prime \prime \prime}: 25 \mathrm{lb} .=14.70 \mathrm{sq} \cdot$ in. $t=.39$
4 holes in web $4 \times .39 \times 7 / 8=1.36$
4 . in flange $4 \times .50 \times, 7 / 8=\frac{1.96}{3.12}$
Therefore a web sectional area $=14.70-3.12=11.58$ sq. in., which is greater than 9.2 sq . in., but will use this cormination as the channels may be weakened some where floor beam is riveted to it.

Neglecting the wind stresses, which are relatively small, in accordance with the specified unit stresses, the total stress to be considered is 159940 pounds. A trial shows that 15 in. channels are required, (from Cambria pp.256.25\%)

15 in channel $40 \mathrm{Ib} . \quad s=5.44 t=.52$ gross area $=23.52 \mathrm{sq}$. in.

$$
\frac{I}{x}=\frac{28.6}{5.44}=5.25
$$

Ultimate strength in lbs. per sq. in. from
Cambria pp. 202-203

$$
\frac{I}{\Gamma}=5.25=40967
$$

Therefore to obtain safe unit stress for moving loads as in bridgea, divide 40967 by $5=8193.4$

$$
\frac{259940}{8193.4}=19.52 \text { sq. in = net area. required. }
$$

Area of two $7 / 8$ inch holes in web $=2 \times 7 / 8 \times .52=.91$ sq. in.

Area of 4 flange rivet holes $=4 \times 7 / 8 \times .65$ $=2.28 \mathrm{sq}$. in. Total area to be deducted for $x x x x$ holes is. $.91+2.28=3.19 \mathrm{sq}$. in.

Gross area of channels $=23.52$
Net " " " \quad " $23.52-3.19=20.33$
Net area required is 19,52 . There is an excess of 0.81 sq. in. therefore we will use this combination.

Now turning the backs out and spacing the channels, go as to have the sane strength both ways. The moment of inertia must be the same about both axes. Using tables on pp. 227, Cambria, we have $\mathrm{E}=22.3$ in.

The total stress iz 76500 1bs. Trying a 10 in .
25 1b. $t=.53 x=3.52$

$$
\frac{I}{T}=\frac{28.6}{3.52}=8.1
$$

The ultimate strength from table in Cambria
$=32790$ and the gafe unit atress $=\frac{32790}{5}=6558$
$\frac{76500}{6558}=11.7$ net area required to stand this stress.

Now 2(10 in: 25 lbs .) beams have section area $=7.35 \times 2=14.7 \mathrm{sq}$. in. Deducting area of 4 unit holes as this is as many as can come in one section $=\left\{\frac{.62+24}{2}+24\right\}$ $\times 7 / 8 \times 4=1.52$ sq. in., also one rivet for each web $=$ $.53 \times 7 / 8 \times 2=.94$

Now $14.7-(1.52+.94)=12.24 \mathrm{sq}$. in. web area left.
$12.24-11.7=0.54 \mathrm{sq}$. in. . which is an excess. We will use this. $E=12.3$ as E has to be the same forall verticals in arder to make the floor beams the same length.

Design of Diagonals.

Since the maxinum stress in Bc is a tension of 353040 pounds, it may be composed of one or more pairs of eye bars. For a unit tensile stress of 15000 pounds per sq. unit, the sectional area must be $353040 / 15000$ $=23.53$ sq. inches. Two eye bars $8^{\prime \prime} \times 2 \frac{1}{2}$ " provides an area of 24 sq . in. The thickness of eye-bars ranges in practice from one-fourth to one-seventh of their depth or width. These bars come in the limits of these.

Sincethe maximum stress in Cd is tension of $195630 \mathrm{lbs.g}$ it may be composed of one oz more eye-bars. for a unit tensile strength of 15000 pounds per $s q$. in.. the sectional area must be $195630 / 1500=13.04 \mathrm{sq}$. in. $=$ required net area.

Take two eye-bars $7^{\prime \prime} \times 1^{\prime \prime}=14 \mathrm{sq}$. in. ${ }^{\prime \prime}$ therefore will be used. See page 339, Cambria Head of $15 \frac{1}{2}$ inches with $5 \frac{1}{8}$ in, pin hole.
the differences in areas due to the live load and dead load strains considered separately; the counters in any one panel must have a combined sectional area of at least three square inches, or else must be capable of carrying all the counter live loads in that panel.

Live Load Stress	$=47040$ pounds.
Impact	$=39510$
Total Stress in DC	$=86550$

$86550=5.7 \%$ sq. in. net area required. $\overline{15000}$

Take one eye-bax $6^{\prime \prime} \times 1^{\prime \prime}=6 \mathrm{sq}$. in.
Head $=15 \frac{1}{2}$ in. pin hole $=5 \frac{1}{2}$ inches. We will use this eye-bar.

Design of Lower Chosis.

The stresses which govern the design of $a b$ and bc are the same and hence a single member may be extended from a to c. The required net area $=339770 / 15000=22.65 \mathrm{sq}$. In., since the stress in $a b=339770$ 1bs. Let ac be composed of two built channels. "Since the eye-bar heads of the 8 inch eye-bars that will be used for cd are 17 inch deep according to the handbook, let the web plates be made 18 inches deep so as to avoid cutting the angles in order to pass the eye-bar head at c. Selecting two web plates $18^{\prime \prime} \times \frac{1}{2}^{\prime \prime}=18$ sq.in. 4 angles $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}=8.44$ sq.in.

Total area gross $=18+8.44=26.44$ sq. in. The riveta in the end Fin plates can be so arranged as not to deduct more than three rivet holes in each web plate, and one in each angle, giving a web area of 23.64 sq . in.

If the wind stress be neglected, the required net area for the lower chord member cd is $527090 / 15000=35.14$ sq. in., required web area, where $5270901 \mathrm{bs}$. , is the streas
in ed.
Take four eye-bars $8^{\prime \prime} \times 1-1 / 8^{\prime \prime}=36 \mathrm{sq}$. in. therefore we will use these.

The specifications also require that if the unit stress due to the weight of a member is greater than 10% of the safe value allowed/ the sectional area must be increased. Wo test this, use the formulafound in Mechanics of Materials, Art. 103. that; $\quad S .=\frac{M c}{I+\frac{n P I^{2}}{101}}$

Where $P=169885$ Ibs. $1=208$ in. $I=29000000 \frac{1 \mathrm{in}}{\mathrm{in}^{2}}$ Medium steel $\frac{M}{n}=96$. Vol. of bas $=$
$8 / 12 \times 1.125 / 12 \times(24+3)=2.25$ cu. ft. Therefore, weight of bar is 2.25×490 pounds per cu. $\mathrm{ft}_{\mathrm{t}}=1102.5 \mathrm{Ibs}$. $=\mathrm{wl} \quad \quad \quad \mathbb{M}=1 / 8 \mathrm{wl}^{2}=1 / 8 \times 1102.5 \times 24 \times 12=39690 \mathrm{ft}$. 1bs. $c=4 \mathrm{in} \quad I=.1 / 12 \mathrm{bd}^{3}=1 / 12 \times 9 / 8 \times 83=64 \mathrm{in}^{3}$

$$
s=\frac{39690 \times 4}{64+\frac{1 \times 16985 \times 2882}{9.6 \times 29000000}}=\frac{158 \% 60}{64+50.6}=1387
$$

$1 / 10$ per cent of $\frac{15000}{1}=1500$; thexefore 1387 comes within this limit, and the section area will not have to be increased. The same result is olotained for any thinkness of ber, hence this determination is all that will be required for all bars of the same depth.

Upper Chords Design.

Since the specified unit stress involvea the radias of gyration, an approximate value must be assumed. A convenient rule makes the radius of gyration about a horizontal axle equal to $4 / 10$ of the depth out to out. This depth is estimated to be 19.44 inches making $x=7.78 \mathrm{in} \cdot \frac{1}{x}=37.02$
$p=\frac{15000}{1+\frac{1}{13500}} \times\left(\frac{1}{x}\right)^{2} \quad=13550$ pounds.per square inch, and the required sectional area is 527090/13550
$=38.80 \mathrm{sq}$. in. where 527090 lbs . is stress in BC.
The composition of the section is as follows:

1 cover plate $26^{\prime \prime} \times 3 / 8^{\prime \prime}$	$=9.75$
4 sq. in.	
4 angles $3^{\prime \prime} \times 3^{\mathrm{m}} \times 3 / 8^{\mathrm{m}}$	$=8.44$
2 web plates $18^{\mathrm{m}} \times 3 / 8^{\mathrm{m}}$	$=13.50$
2 flats. $4^{\prime \prime} \times 1^{\mathrm{m}}$	$=8.00$
Total	39.69

In riveting thege together, we will use the minimum
spacing of rivets for two feet on each side of joint increasing spacing toward the micide, but never make the spacing greater than $g i x$ inches.

To find an appoximate value for the radius of gyration about a horizontal axis. Take $4 / 10$ of depth out to out of section. Estimated depth $=18^{\prime \prime}+7 / 16^{\prime \prime}+1$ in. $=19.44$ in. Therefore $r=4 / 10$ of $19.44 \mathrm{in}=7.78 \mathrm{in}$. Then $\frac{I}{x}=\frac{(24 \times 12)}{7.78}=37.02$

$$
p=\frac{15000}{1+\frac{1}{13500}}\left(\frac{1}{x}\right)^{2}=\frac{15000}{1+\frac{1}{13500}(37.02)^{2}}
$$

$=13550$ unit stress to be used in this piece.

Total stress in $C D=594980$ 1bs.
Therefore, section area $=\frac{594980}{13550}=43.91 \mathrm{sq} \cdot \mathrm{in}$. Net area required.

Width of cover plate $=18.5^{\prime \prime}+6^{\prime \prime}+1^{\prime \prime}=25.5^{\prime \prime}$. there* fore will use cover plate $=26$ inches.

Composition of section.

1 cover plate $26^{\prime \prime} \times 3 / 8^{\prime \prime}=9.75 \mathrm{sq} \cdot$ in.
4 angles $3^{\prime \prime} \times 3^{\text {N }} \times 3 / 8^{\prime \prime}=8.44^{\prime \prime}$
2 web plates $18 " \times \frac{1}{2}{ }^{n} \quad=18.00 \mathrm{~m}$
2 flats $4^{\prime \prime} \times 1^{\prime \prime}$
$=8.00 \mathrm{~m}$
Total
44.19 (

This composition is required in order to receive the verticals and the heads of the eye-bars.

Design of End Posts.

The maximup direct compression in the end post
$a B$ is 527310 1bs. Its length is 37.335 feet $=$ 448.02 in. Using the value obtained for BC of $r=$ $7.78 \frac{L}{T}=\frac{448.02}{7.78}=57.5$

12500 pounds per sq. inch, and the approximate sectional area is $527310=42.18 \mathrm{sq}$. . in. 12500

Therefore, the following composition will be used.
1 cover plate $26^{\prime \prime} \times 3 / 8^{\prime \prime}=9.75$ sq. in.
4 angles $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}=8.44{ }^{\prime \prime}$
2 web plates $18^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime} \quad=18.00 \mathrm{~m}$
2 f1ata $4^{\prime \prime} \times 1_{\text {Total }}^{\prime \prime} \quad=\frac{8.00}{4 \underline{4.19}} \quad \%$

Pin Plates.

Specification rivets shall not be counter sunk in the plates less than seven-sixteenths of an inchin thickness. We will use pressure on bearing surface as $\$ 3500$ 1bs. per sq. in. (Combined dead and live load.)

Shearing strain on rivets shall not exceed 9000 per sq. in., therefore, will use 7500 pounds per sq.in.

Pin plates shall be used at all pin holes in built members, for the double purpose of reinforcing the metal cut away, and reducing the unit pressure on p in and bearing, to or below the specified limit.

Fach plate shall distribute properly, through the rivets, its pressure to the web and Ilanges of each mernber.

In riveted tension numbers the net section through any pin hole shall have a net sectional area 40% in excess of net section of body of member.

The net section outside pin hole and along the line of stress shall be at least 70% of net section through the pin hole.

Design of ain plates for all members at the

Panel Point C.
At the upper panel point for Post Cc, the maximum bearing value on the pin is the full working strength of post, which is 160,000 pounds. Then (from page 323 Cambria) the bearing value of a 1 in. plate on a 5.5 in pin is 74250 lbs.

Therefore $160000 \div 74250=2.15$ inches, the required thickness of pin plate and webs for post.

```
Therefore \frac{1}{2}}\mathrm{ of 2.15 = 1.075 ; web = .52 in.
```

thick. Therefore, $1.075-.52=.55$ in. of pir plates required for each channel post. The minimum plates allowed
are $7 / 16^{\prime \prime}$ outside for counter sunk rivets, and $3 / 8^{\prime \prime}$ on insice, which is greater than $.55^{\prime \prime}$ but will be used.

Bearing value for $5.5{ }^{\prime \prime} \mathrm{pin} \mathrm{l}^{\prime \prime} \mathrm{plate}=67500 \mathrm{ibs}$. therefore for $.813^{\prime \prime}$ plate $=54878$ lbs., bearing value of a $7 / 8^{\prime \prime}$ rivet in web is $.875 \mathrm{x} .52 \times 13500=6142 \mathrm{ibs}$.

Therefore, $\frac{54878}{6142}=8.9$ rivets or 9 rivets.
Use minimum spacing in pin plates. Two additional rivets are placed above the pin to keep the plates in contact. Pitch should not be less than three diameters of rivet $7 / 8^{\prime \prime} \times 3=2.6 \mathrm{in}$. say 3 in . is pitch to be used.

Pin bearing at point C in upper chord is to be designed to take the horizontal component of the full tensile strength of the diagonal Cd or $195630 \times \operatorname{Sin} 40^{\circ}=$ 125751. Therefore thickness required for $5 \frac{1}{2}$ in. pin is $125751=1.70 \mathrm{in}$. Now thickness of plates is 74250
$\frac{1}{2}$ of $1.7=.85 \mathrm{in}$. = linear bearing on each sice. As the web plate is $\frac{1}{3}$ "piate on will use outsice of web.

Bearing value of 1 in . plate of 5.5 in . plate
is 74250; therefore, $\frac{1}{2}$ in. plate the bearing value is 37120 lbs., which is pin plates share of bearing, and this must be transferred to web plate. Bearing value of $7 / 8^{\prime \prime}$ rivet in web is

$$
.875 \times \frac{1}{2} \times 13500=5900 \mathrm{Lbs} . \text {, which }
$$

is greater than single shear 4510 for $7 / 8^{\prime \prime}$ rivet. (Unit shear 7.500 2b. sq.in. Cambria, pp.272)

$$
\begin{aligned}
& \text { Therefore, } 37120 \div 4510=8+\text { rivets. } \\
& \text { Therefore, } \frac{37120}{5900}=6.3 \text { rivets. It }
\end{aligned}
$$

will take seven rivets. Most of them must be placed on the right hand side, but will make other side symmetrical for appearance sake. Use minimum spacing in pin platesabout 3 inches. The head of the eye-bars at this joint are the
26.
same thickness as body of bar, and 15.5 in . in diameter.

DESIGN OF HIP JOIENT
At the hip joint B, the center stress in the upper chord member $B C$, and that in the end post $a B$ are transferred to the pin; 2.11 the plates and shapes, except the hinge or lap plates being faced parallel to the bisecting plane of the angle and about $1 / 8$ inch from it. The hinge plates of each member consist of two plates, located on the inside in one case, and on the outside in the other, and extend past the pin. Their purpose is to prevent any accidental blow from displacing these members, and to facilitate the erection of the truss. The combined pin plates on both members must be arranged with respect to each other, so as to provide a clearance of at least $1 / 8$ inch between them.

CHORD BC For this joint, we will use the limit of a bearing talue of $15000 \frac{1 \mathrm{bs}}{} \frac{1}{2}$. The full strength of upper chord is $39.69 \times 13550=1 n^{2} 7800 \mathrm{ib} / \mathrm{in}$. Full strength required in upper chord is 527100 1bs., the mean is 532500 Ibs. There* fore the thickness of pin plates and web combined for a $5 \frac{1}{2}$ " pin is by Cambria pp. 323. for $1^{\prime \prime}$ thickness we findin table 82500, therefore $\frac{532500}{82500}=6.45 \mathrm{in}$.
therefore thickness required on each inch is FiN』 POST.
3.22 in.

$3 / 8^{\prime \prime}+3 / 8^{\prime \prime}+3 / 8^{\prime \prime}+7 / 8^{\prime \prime}+7 / 8^{\prime \prime}+3 / 8=\frac{26}{8}=3.25^{\prime \prime}$
27.

Chord BC the bearing of plates is as follows:
(1) $5.5 \times 15000=30900 \mathrm{ibs}$.
(2) $=30900 \mathrm{~m}$
(3) $=72150$ "
(4) $=72150$ "
(5) filler $=30900$ "
web $_{\text {Total }}=\frac{30900}{2}$

Directly from pin bearing web takes 30900 lbs.. but web will take 89500 1bs.

Therefore $89500-30900=58600$ Ibs., more stress than it gets directly from bearing.

Considering only one side of the members, the division of stresses is as follows:

Gross area. stresses.
$\frac{1}{2}$ of $3 / 8^{\prime \prime}$ cover plate
4.87 sq. in.

1 upper angle
i web plate
1 lower angle
I flat

$$
\begin{gathered}
\frac{2.21}{6.98} \\
\text { " }
\end{gathered} \text { " " }_{2} 93800 \text { Ibs. }
$$

3/8" filler is not directly connected to angles, and it will take $5.5^{\prime \prime} \times 3 / 8^{\prime \prime} \times 25000=30900$ dbs., which is transferred to web. Therefore, 58600-30900 = 17700 lbs., the web will stand yet, and this will be transferred through the extra rivets in webs from other plates, which are alof rivets
ways more than the number/here required to transmit this amount to web.

Bearing value of $7 / 8^{\prime \prime}$ rivet in $3 / 8^{\prime \prime}$ web is $7 / 8^{\prime \prime}$ $\times 3 / 8^{\prime \prime} \times 13500=4350$ lbs., which is less than the shear

Plate (1)

Plate (2)

Plate (3)
plate (4)

Plate (5)
for a $7 / 8^{\prime \prime}(4.510)$ rivet, so will use this.
Bearing value $=4350$ 1bs.
Therefore $\frac{30900}{4350}=7.1$ or 8 rivets, or 4 in shorter angle as its stress must be divided about equally betmenn angles.
$\frac{30900}{4350}=7.1$ or 6 rivets, as web takes one rivet from each plate or say 3 rivets to angle beyond extremity of plate (1) to make symmetrical.
$72150=16.6$ or 17 rivets used, beyond end of plate 2.
$72150=16.6$, therefore, will use 14 extra 4350 rivets for symmetry beyond extremity of plate (3)

Number of rivets required to carry stresses fyom the filler plate to web is $\frac{30900}{4350}=8$ rivets, but many more than this number must be inserted to keep the plates in contact, and give necessary stiffness in compression. One rivet from plate (2) and three from plate (4) through the web will transmit $4 \times 4350=17400$ Ibs., to the web, which is about what the web was able to take (17900), bee sides the filler.

End Post, Joint B

Full strength of end post is $44.19 \times 12500=552400$ 1bs. Full strength required in end post is $527400 \mathrm{Ibs.,say}$ 540000 (i.e., a mean between the two) and will use this. Therefore, $\frac{540000}{02500}=6.54 \mathrm{in}$. Therefore, for each web $=3.27$ in.
$3 / 8^{\prime \prime}+3 / 8^{\prime \prime}+\frac{1}{2 n}+3 / 8^{\prime \prime}+7 / 8^{\prime \prime}+6 / 8^{\prime \prime}=\frac{26}{8}=3.25 \mathrm{in}$.
Distance out to out of web of end post is 19% :
therefore, $19^{\prime \prime}-\left(2\right.$ webs $\frac{1}{2} "+4$ plates $\left.3 / 8^{\prime \prime}\right)=19^{\prime \prime}-2.5=$
16.5\%. Distance out to out of diagonals BC is 16.4\%;
therefore the diagonals will fit between these pin platss.
Considering only one side of the member, the di-
vision of stresses is as follows:
$\frac{1}{2}$ of $3 / 8^{\prime \prime}$ cover plate
1 upper angle

1 weh plate
1 lower angle
1 flat
4.87 sq.in.
$2.11 \frac{10}{6.98} 84500$
$9.00 \mathrm{sq} . \operatorname{in} .111500$
2.21
4.00 6.12 $\quad 74000$
22.092700000

Total

Stress in half end post is 270000 3bs.
Directly from pin bearing, web plate gets 41250
lbs., therefore web takes $211500-41250=69250 \mathrm{Ibs}$. more
stress than it gets directly from bearing andfiller, wlll
also transfer 30900 to web bearing $69250-30900=$ 38350 Ibs., that the web will still stand, and which will be transferred by the extra rivets in plates through the we?.

The bearing of plates are as follows:

(1) $=5.5^{\prime \prime} \times 3 / 8^{\prime \prime} \times 25000=309001 \mathrm{bs}$.
$(2)=5.5+3 / 4 \times 15000=61800 \mathrm{~m}$
$(3)=30900 \mathrm{~m}$
(4) $=5.5 \times 7 / 8^{\prime \prime} \times 1500=72150 \quad \%$
(5) = filler $=30900$
web $5.5 \times \frac{1}{2} \times 1500=41250 \mathrm{~m}$

Bearing value of $7 / 8^{\prime \prime}$ rivet in $\frac{1}{8}$ " web is $7 / 8^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime} \times 13500$, $=5900 \mathrm{lbs}$.

The sheaxing value of a $7 / 8^{\text {" }}$ rivet is 4510 using unit shearing stress as 7500 lbs . per sq. in.

Therefore, when the pin plates are thicker than the web, we will have to use this shearing stress, as it is less than bearing value in $\frac{1}{2}$ plate, but when the pin plates are thinner than the web, we will have to use the bearingvalue of $7 / 8^{"}$ web in plate under consideration.
30.
web, we will use bearing value of rivet for this thickness of plate. This is $7 / 8^{n} \times 3 / 8^{n} \times 13500=43501 \mathrm{bs}$.

Therefore, $\frac{30900}{4350}=7.2$: therefore 8 rivets will be placed, four of these being placed in shorter angle as stress must be equally divided between the angles.

These rivets will also take 4510 (shearing Value of $7 / 8^{n}$ rivet) - 4350 (bearing value in the $3 / 8$ piate) or 160 lbs. per rivet from another plate, say plate (2); therefore, the total bearing value remaining in these 8 rivets is $8 \times 260=1280$ 1bs.

This plate is thicker than web, therefore, will use shlearing value for rivets.

Then plate (2) will
require $\frac{61800-2280}{4510}=73.4$ use 14 rivets.
Will use 8 rivets through the angles beyond end af plate (1), and the other 6 through the web.

Now the web will still stand a iittle more, i.e.,
$38350-(6 \times 4510)$ or 11290 10s.
Plate (3)
This plate is same as plate ong, and will require 7.j rivets. Will use $s i x$ of them in the angles beyond end of plate (2), and one in the web, which leaves 11290 - 4350 or 6940 lbs of excess strength in web.

These rivets will also take 1280 lbs., pressure from another plate, say plate (4) (See calculation for plate (1)-)

This plate is thicker than web, therefore,
will have to use shearing value for rivets.
Then plate (4) will require
$\frac{72150-1280}{4510}=75$ rivets.
Will use ten of these rivets in angles beyrond
end of plate (3) and the web will take $\left(\frac{11290}{4510}\right)$ or about three of them while the other two can be located at the
end of post through the larger angle.

Filler
(5)

Number of rivets required to carry stress from filler plates to web are 8 , but many more than this number will be used to keep all the pin plates in contakt with themselves, and with the web, also there must be enough used to give the necessary atiffness in compression.

Diagonal
At. joint B, the connection for the diagonal Heads. Be is two eye bars whose body is 8 in. x it $\frac{1}{2}$ in. The heads of Hye Bars.on these bars are the same thickness as the body of the bar, and of 17 inches in dianeter. (See Cambria pp. 339.)

Buapender Bb , Pin
plates.

The net section area of suspender Bb is 140 sq. in., i.e., (2 channels, $12 \mathrm{in} .25 .2 \mathrm{~b}, \mathrm{t}=89 \mathrm{in}$.) Since this is a tension nember , its net sectional area at the pin hole must be 40% in excess of the net area in its main body. The area of each side is, therefore, $14.7 \times \frac{1.40}{2}=10.28 \mathrm{sq}$. in.

Using a pin plate $12^{\prime \prime} \times \mathrm{m} / 26^{\prime \prime}$ on outside, and $9-2 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$ on inside. Net area of these pin plates is 2.62 sq . in, and 2.62 sq . in. Web area of channel pin hole is $7.35-(39 \times 5.5)=5.20 \mathrm{sq}$. in., therefore $5.2+2.62+2.62=10.44$ sq. in., therefore, tensile strength in web $\frac{5.2}{10.44}$ of $\frac{136800}{2}=34000 \mathrm{lbs}$.
in 7/16" plate $x 12 " \quad=17200 \mathrm{"}$
" $3 / 4$ " " x 9ํㄹ" $=17200{ }^{\prime \prime}$
Total -.-....................... $=68400$ n
Bearing value of rivet in web of channel is $7 / 8^{\prime \prime}$
$\times .39 \times 13500=4607$ lbs., which is less than single shaaring value of rivet.

Therefore, $3 / 4^{\prime \prime}$ plate will require $\frac{17200}{4607}=$
3.7 or four rivetis to transfer stress to web of channel
likewise (7/16" $\times 12^{\prime \prime}$) plate will require $\frac{17200}{4607}=3.7$
32.
or four rivets; therefore, will make both plates same length, and put 8 rivets through them, which will transmit the stress to the channel, also there will be a few extra put in beyond pin to hold plates and web in contact.

Web section through pin is 10.44 sq . in. Web section outside of pin along center line of stress shall be 70% of this,

Therefore, $10.44 \times \cdot 7=73 \mathrm{sq}$. in. As the thickness of flates and webs are $\left(7 / 16^{\prime \prime}+3 / 4^{\prime \prime}+.39^{\prime \prime}\right)=$ 2.57, we have,

$$
7.3 \div 1.57 \text { or } 4.65 \text { in. as length beyond the }
$$ pin hole:

Therefore, $4.65+\frac{5.5}{2}=7.4$, or use 7.5 in . from center of pin hole to end of suspender.

Now since allowance was made for two rivet holes in flanges, and also two in web of each channel, oniy two rivets will be placed in any one section of pin platas after going between the tie plates, shown in the detaid drawing .

```
Joint
    (a)
Pin
Platesas at panel point large B, but must also take the reaction,
of aB.
    or the additional vertical load transferred by the end
    floor beam (See details on blue print)
The vertical load due to end floor beam is
126.720 1bs. (Unit bearing value \(15000 \frac{1 b}{i n^{2}}\) Cambria, pp.323)
Fnd post at panel point (a), is the same Platesas at panel point large \(B\), but must also take the reaction, of aB .
or the additional vertical load transferred by the end floor beam (See details on blue print)
```


Abstract

Fron table we have bearing value of $2^{\prime \prime}$ plate on 5.5 in pin $=82500$, therefore $\frac{126720}{82500}=1.54$ in additional. thickness of of pin plates to be added to those of upper end of End post 1.54 divided by $2=.77$ in. or about $3 / 4^{\text {m }}$ plate to be connected to each web.

Let these plates extend down to the pin, then
they would not necessarily need to be riveted to the end post, but it is a better plan to fasten them and abowt 126720 or \mathcal{I} ourteen additional rivets will be used. The 4510×2 other pin plates at this joint are arranged a little dif. ferent from those at upper end of post, and also the flanges of the angles turned off in order to let end post in between the bottom chords.

New arrangenent of pin plates.

Plate (1) will require sixteen rivets; plates (2), (3) and (4), about fourteen rivets each; about 48 of these rivets will be put through the angles, and the rest through the web. (See blue print for detail)

The floor bean will have to be fastened to these extra pin plates extending up from end post and will require $\frac{126720}{4510}$ or 28 rivets in single shear. (See blue print for connection.) pin on outside of web in order to let the end post extend Plates of ab. down between the channels. Stress in this chord is $3397701 \mathrm{bs}$. . therefore $\frac{339770}{82500}=4^{\prime \prime}$ nearly required thick. ness of plates. 4 divided by $2=2$ in for each half of member. $2^{\prime \prime}-\left[\frac{1}{2}\right.$ "(web) $+3 / 8^{\prime \prime}$ (1iller) $]=2-1 / 8^{\prime \prime}$;

Therefore will use one $5 / 8^{\prime \prime}$ and one $\frac{1}{2}$ " pin plate both on outside of web; the $\frac{1}{2 "}$ piate takes $42250 \mathrm{lbs}$. of stress, and the $5 / 8^{\prime \prime}$ plate takes 51552 bs of stress from the pin.
ten rivets, while the $5 / 8^{\mathrm{m}}$ plate requires $\frac{51250}{4570}$, or twelve rivets.

There would also be a pedestal at this joint, but have not designed it.

Joint
b

This end of suspender Bb would have the same design as at end B. (For this see joint B).

The lower chord is continuous at this point, and would be reinforced to the anount cut away by a 5.5 亩 in. yin. Use plate $\frac{1}{2}$ in. thick. (See the blue print for details.)

The end (c) of the lower chord bc, would be designed exactly the same as the end at panel point (a) (See point a)

There are four eye bars connected to this joint representing the lower chord cd. The body of these baws is $8^{\prime \prime} \times 1-1 / 8^{\prime \prime}$, therefore, the heads of the bars are $1-1 / 8{ }^{\prime \prime}$ thick, and 17 " in diameter. (Cambria, pp. 339) See blue print for arrangement)

There are two eje bars connected here from the diagonal BC ; the hads of these are $1 \frac{1}{2}$ thick by $27{ }^{\prime \prime}$ in diameter.

The maximum pin bearing at the botton of the cal Cc
at $c \quad B C$, and according to the rule, the value to be used in designing the pin plates of the post is the vertical component of the full working strength of Bc, which is $24 \times 15000 / 1 . \ldots \ldots$ $3054=275700$ pounds, the sectional area of Bc being 24 . inches, and 1.3054 the secant of the angle which it makes with the vertical. As the dianeter of the pin is 5.5 inc ches, the bearing required on each side of post is
channel web is .52 inches, and hence two pin plates are required whose thickness are respectively $7 / 16^{\prime \prime}$ and $3 / 8^{\prime \prime}$ If both plates be extended the same distance above the pin the number of rivets required to connect then will be deternined entirely by their bearing value in the channel web, or $.875 \times .52 \times 13500=6141$ pounds for each rivet. This is less than for double shear of rivet, therefore will be used.

Then the full bearing in the two plates is $(7 / 16+3 / 8=.813) ; 0.81 \times 5.5 \times 13500=$ 54810 pounds.

Therefore, the required number of rivets
is then 54.810 divided by $6242=9$ nearly, therefore will use ten rivets for this plate.

Panel Point d Pin plates D equals the maximum vertical shear in diagonal $C d$ the at d on vertical Dd. value to be ind is the vertical component of the full working strength of Cd , which is:

$$
\frac{14 \times 15000}{30 c 40^{\circ}}=\frac{14 \times 15000}{1.3054}=159000
$$

By use of Cambria, we find
$\frac{259000}{42500}=2.1$ in. of thickness, which is a little less than that used at panel point C; therefore, we will have to use the minimum thickness of pin plates, i. e. 7/16" on outside, with counter sunk rivet heads and a $3 / 8^{\prime \prime}$ in. plate on inside of web; from calculation at (C), we find that it takes 9 rivets for these plates.

Next, we have 8 eye bars coming into this joint from the two lower chords cd and de. These bars have a body of $8^{\prime \prime} \times 1-1 / 8^{\prime \prime}$, therefore, thickness of heads of each of these eye bars is $1-1 / 8^{\prime \prime}$, while diameter of head is $17^{\prime \prime}$ (Cambria, pp.339) Likewise we have 4 eye bars coming into this same joint from the two diagonals Cd and dE. These bars have a body of 7 " $\times 9^{\prime \prime}$

Therefore, thickness of head is $I^{\prime \prime}$ and diameter of head is $15 \frac{1}{2 \prime \prime}$ (Cambria.)

Panel
Point D

At this upper panel point the maximum bearing value on the pin is the full working strength of post which is $\quad 12.24 \times 6558=78700$ 1bs., this is smaller than the stress which gives the minimum sized plates, therefore will use same pin plates as at bottom of this post, a 7/16" outside and $3 / 8^{\prime \prime}$ inside.

The pin bearing at D in upper chord is designed to take the horizontal component of the full tensile strength of De, ox $\frac{86550}{5.305}=66200$ 1.30544

A stress of 66200 lbs . does not require quite an inch thickness of platea. Here the two webs of the upper chord are $=2^{\prime \prime}$, and therefore no pin piate is needed on account of pin bearing, but the upper chord needs to be reinforced to the amount of web cut away by a 5.5 in. pin; therefore will use a plate $\frac{1}{2}$ in. thick, and about 12 in. wide, which will increase the web by thatcut away. The compressive stress in this plate would be about 5.5 x $13500 \times \frac{1}{2}$ or $37125 \mathrm{Ibs}$. , therefore use $\frac{37325}{4510}=8+$, 1.e., use 8 rivets om each side of the pin hole. Note(if pin fit closely there would be no need of reinforeing as it would make up for the part cut away in the compres. sion piece).

There are also extending to this panel point two counter bars, whase body is $6^{\prime \prime} \times 1^{\prime \prime}$, (the stress in them being 86550 lbs .) therefore, the head of these bars is $1^{\prime \prime}$ thick and $15 \frac{1}{2}$ in dianeter. (Cambria)

Portal bracing.

From previous calculations the panel wind load at top chord is 1.02 tons or $2040 \mathrm{lbs} .$, therefore, the reaction from the wind load at the end of panel is $\frac{2040 \times 4}{2}=4080$ 1bs., which represents W on portal.

Since the moment is 0 in the middle section through M of $B B^{1}$, there is no stress in $S^{l} S$, and hence there can be no stress in $B^{1} S$ or B. The object of insetting these pieces is to hold the diagonal in line and to inprove the appearance. Same sections will be used for these as for the diagonals.

Now passing a section cutting the members B^{l} and $n^{2} m$, and taking moments about B^{1}, we have for stress n^{1} m

> - Stress $n^{2} m \times 5.8+H \times 18.6=0$ Therefore Stress $n^{1} m=\frac{4080 \times 18.6}{5.8}=130001 \mathrm{bs}$ Likewise Stress $n=13000 \mathrm{lbs}$. Next taking center of moments at n^{2}, we can find the stress in $B^{1} m$

Therefore Stress $B^{1} m=-\frac{4080 \times 26.8}{8,2}=$ 13350 1bs.

Likewise, Stress $B \mathrm{~m}=+13350$ 1ba.
These members must be designed to take compression.

Therefore from Cooper unit strain in comp. members is $p=13000-60 \frac{1}{5}$ where $\frac{1}{T}$ shall not exceed 120 for lateral systems. Let $\frac{l}{\mathrm{r}}=110$ in this case. 1 for $m n=138$ in.

$$
\begin{aligned}
& \text { Therefore } r=\frac{110}{138}=0.8 \\
& P=13000-6600=6400 \mathrm{lbs} . \text { the }
\end{aligned}
$$

unit comp. strain that we will use.
Therefore, Section area of m $n=$
$\frac{13000}{6400}=2.03$ sq. in.
By specifications, no angle shall be less than $3 \times 2 \frac{1}{2} \times 3 / 8$ in., and the area of two such angles is 3.86 sq. in.

Deducting two rivet holes 1 sq. in.,
we have left 2.86 sq.in., which is over the required area.

But the least radius of a struct built up of two pairs of these angles, with one system of lacing between the pairs, the angles being placed $3 / 4^{\prime \prime}$ apart, is 2.63 , therefore $\frac{1}{x}=\frac{138}{1.63}=85$, which is within the limit for $\frac{1}{x}$.

Likewise using the same combination $\frac{1}{5}$ for $B^{1} m$ is found to fall with the limit 120.

Now the net strength of the sections making up the portal members is.

4 angles $3 \times 2 \frac{1}{2} \times 3 / 8=7.72 \mathrm{sq}$. in.
deducting for four rivet holes we have
$7.72-2=5.72 \mathrm{sq}$. in.
Therefore $5.72 \times 13500=71000 \mathrm{lbs}$.
Taking bearing value of rivet in $3 / 8$ plate, as 5000 lbs. we have.
$\frac{71000}{5000}=14$ rivets to section or 7 rivets to each connection.

A section area of $\frac{6.32}{2}$ or 3.16 in. will be required of each connecting plate.

The lacing to be used between these angles 182 in. $x 3 / 8$ in., with $5 / 8$ in. rivets.

Upper lateral Systen.

The diagonals in the upper lateral are 37
feet or 444 in . long, but considering thern stayed at the middle 1 would be 222 in., therefore, $\frac{1}{x}=\frac{222}{1.63}=136$, this does not cone in limit of 120 and therefore the angles $3 \times 3 \frac{1}{2} \times 3 / 8$ cannot be used.

From tables in Cambria, we find that $r=1.92$
for 2 angles $3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{2}$ with the $2 \frac{1}{2}$ in. flanges $3 / 4^{\text {N }}$ apart, therefore $\frac{1}{5}=\frac{222}{1.92}=115$, which falls within the limit, therefore will use this combination.

Net strength of section making up the top
lateral 4 angle $=11.0$ sq. in. $11-2=9$ in $\times 13500=$ 121500 lbs. $\frac{121500}{6013}=22$ rirets (unit shear being 100001 bs)

Therefore will be 11 rivets to each connection. Each connection plate in this case will require $\frac{10}{2}$ or 5 sq . in. for each member connected.

The struts in the upper lateral system have various stresses, and therefore will use $4 .\left\langle s 4 \frac{1}{2} " \times 3 \frac{1}{2} "^{\prime} x^{\prime} "\right.$ latticed.

The bottom Laterals.
For the bottom strut we just use the floor beams.
The diagonal can be riveted to the stringers at the points where they cross them, and this will reduce the value of 1 ; therefore here we will consider 1 as the longest part of free lateral. Let $1=13 \mathrm{ft} .=156 \mathrm{in}$.

Here we will use two angles.
$4 \frac{1}{2} " \times 4 \frac{1}{2} " \times 5 / 16^{\prime \prime}$ placed back to back. For this combination the last radius of gyration is 1.40
$\frac{1}{r}=\frac{256}{1.40}=1.11$, which falls within the limit of 220 , therefore area of this section is 5.44 x $13500=73300$ los., the greatest stress in any of the bottom laterals is 67280 lbs., therefore, this section is sufficient all around for the diagonals, but they must be riveted to the floor stringers where they cross them, and also riveted together in the center at intersection.

$$
\frac{73300}{6013}=12 \text { rivets at a connection. }
$$

The area of connecting plate must be 5.44 sq . in., net for each connecting member.

See the blue print for the remainder of details.

