DESIGN OF A WATER PIPESYSTEM
TO CREATE IMPROVED PRESSURES
IN
Lexingtons virginia
BY
H. J. COX
AND
M. P. LEVY --...----------
Submitted as part requirement for a Bachleor of Science Degree in Engineering, with special attainments in Civil engineering, at Washington and Lee University.
MAY, 1931.
WASHM日r luerary of LEXINGTON VA, 24450

BIBIIOGRAPHY

A Design of A Water Works System----W. T. Lyle. Cast Iron Handbook--Cast Iron Manufactures Assn. Water Supply Engineering-----Babbitt and Doland. Public Water Supplies----TTurneaure and Russell.

INDEX.

part 1. Introduction.
Part 2 Consumption andDistribution.
Part 3 Hydrants and Mains.
Part 4 Analysis.
part 5 Fire Streams.
Part 6. Investagation forallowable lost head.
Insert Population by districts.
Part 7. Design of Meins .
part 8. Design of ReservoirLines.Part 9... Investagation for maximumpressures in the middleof each district forMaximum Ordinary Con-sumption.
Part 10. Valves
Part 11 Fire Investagation.

DESIGN OF A WATER PIPE SYSTEM
 TO CREATE IMPROVED PRESSURES
 IN
 LHXINGTON, VIRGINIA.

Part 1.

IITRODUCTION

The need for a new design for the water pipes and mains in the town of Lexington is evident. There are no existing maps showing the plan of the system, nor is there any knowledge of the location of mains, hydrants, gate, blow off or waste valves, other than common knowledge of those men who have been connected with the water department of the town for a great many years. There is no engineer in charge of the water department, rather the head of the department is a man who is in his position because of his general knowledge of the existing system.

Upon investigation it has been found that the present system consists of a great number of dead ends, and that there is not proper pressure at the curb to supply some of the taller buildings in town. A map in the Supertendentsof Water Work's office showssnressures at

```
several points in the town to be less than twenty (20)
pounds.
```

The two edueational institutions located in the town do not have proper pressures and supply in case of fire and this points to a great need for improvement.

There ate three new developments in the town that have been added to the corporate limits of town since the present system of pipes and mains have been in existance. These, Davidson Park, owneddby Washington and Lee University, and the other two, Morningside Heights, and Monroeon Park, both located on a highllevel, do not receive the proper pressures. Some attempt should be made to take care of them.

With the present system of fire protection, Volunteer, there should be sufficient pressure at the curb and at the hydrants so that the efficiency of the fire department could be brought to a higher standard. There were two cases of fire losses this past year, when two fraternity houses burned beyond repair, because the water pressure was not great enough for sufficient fire streams.

The fire department would be far more efficient if the water supply were better. They are to be commended for the manner in which they fight fires under the present exixting conditions.

It is assumed by the writers that the present income of the town a will not take care of this added expenditure. Therefor, the only method possible to raise the required funds would be by bond issues.

The State Of Virginia limits the amount of bond issues of a city or town. The only way that the town could raise the limit of their bond issue would be to annex new territory to the town. This would have to be accomplished in the following manner. A committee of public spirited citizens would take it upon themselves to go to Richmond, to attend the sessions of the legislature, and try to lobby a bill through the house and senate for a new bonding district. It is advisable for the local civic clubs to back these individiuals to their fullest extent.

It is not the purpose of this thesis to show how the moneys are to be raised for the improvements, but to give a plan for a new water supply system that will benefit the town in giving better pressures at the curb.

Per Capita.

The town has a partial metered system, and by data obtained it is found that the consumption is as follows:

For domestic purposes $\quad 30$ gallons per capita per day.
For public purposes
Flushing, fire extinquishment,
etc 5 gallons per capita per day.
For leakage, 5 gallons per capita per day.
For Commericial purposes $\quad 10$ gallons per capita per day. TOTAL CONSUMPTION: 50 gallons per capita per day.

The total consumption is assumed to increase 50% in the next thirty years, thus amounting to 75 gallons per capita per day.

The maxium daily rate is 150% of the average, thus amounting to 112.5 gallons per capita per day. The maximum hourly rate is 50% of this or 168.25 gallons per capita per day.

However it is safe to assume a lower rate, say, 150% of the monthly maximum, which is 125% of the average. This maximum hourly rate is 75 gallons $\mathrm{x} 1.25 \times 1.50$, which equals 140 gallons per capita per day.

This is assumed as the maximum ordinary consumption.

Total.
The consumption per capita is assumed to be uniform throughout the town, therefore, the total maximum consumption.
thrity years hence will be 140 times the population as determined. In determining the size of mains and small pipes the densities of population in the different districts of distribution must be considered. Fire rate.

The consumption for fire extinguishment amounts to very little in the course of a year, but will determine the size of the distributing pipes. The total number of fire streams required at one time is determined Kuitchling's formula; $Y=2.8 \sqrt{X} ;$ or $Y=2.8 \mathrm{x} 2.4=7$ streams
where $Y=$ the number of streams. and $\quad X=$ the population in thousands.

Two thirds of this number are needed in the business districts. For the residential districts, from one fourth to one thrird of this number are required.

Streams of two hundred and fifty gallons are to be used in the business districts, and streams of one hundred and seventy five gallons in the residential districts.

Pressure:

Ordinary Service; The maxium pressure at the curb is thirty pounds in the residential districts and forty pounds in the business districts. The necessary pressure at hydrants for fire conditions should be one hundred pounds, but since the fire department is equipped with pumpers and it is impossible to obtain such pressures with the existing reservoir it will not be possible to maintain this pressure at hydrants. It will be necessary
however, to maintain a pressure of forty (40) pounds at the hydrants., For a two hundredand fixty gallon stream, with a nozzel pressure of forty five pounds, and a loss of head of eighteen pounds in each hundred feet of hose, the maxium length of the hose is three hundred feet. For a hundred and seventy five gallon stream, with a nozzфe pressure of thirty five pounds, the loss of head nine pounds per hundred feet of hose, the maximum length of hose is seven hundred feet

Source of Supply.
The source of supply is obtained 6rom an impounding reservoir a distance fourteen miles from Lexington, at Adcocks Knob. The water is then brought tio the distributing reservoir, located one mile southwest of the town. The elevation at low water is two hundred and ninety two and seven tenths (292.7) feet above an assumed datum plane. Its capacity is about one million and a half gallons

Distribution Districts.
Mains shall be laid in the bounding streets of each district, and the district filled with a network of smaller distributing pipes, in order to provide good circulation, and avoid dead ends. The distributing pipes shall be laid on the north side of east and west streets, the same distance form the curb, and on the east side of north and south streets. The depth of the covering shall be
four feet, to prevent freezing. The size of the distributing pipes will be determined principally by the fire demand. The town is divided into districts depending upon whether they are business or residential districts. The distributing disxicts are adopted as follows, indi世ated by bounding streets:

No. 1. Main street, Campbell Lane, Lewis Street, Massey Street, and Parry Lane.

No. 2. V. M. I. Road, Main Street, College Lane, and Letcher Ave.

No. 3. College Lane, Washington and Lee Road, Washington Street, Jefferson Street, and Main Street.

No. 4. Massey Street, Lewis Street, Preston Street, and Randolph Street.

No. 5. Randolph Street, Parmy Lane, Main Street, and McDowell Street.

No 6. Jefferson Street, Washington Street, McLaughton Street, White Street, and Main Street.

No 7. White Street, Main Street, Sellers Ave., Ross Road, and Woods Creek.

No. 8. Main Street, Houston Street, Taylor Street, and Wallace Street.

No. 9. Ross P . ad , Stonewall street and Lane.
No. 10. White Street, Jefferson Street, and Main Street.

Part 3.

HYDRANTS AND MAINS.

Hydrants.
The number and location of hydrants is determined by the number of streams in each district, which are as follows:

No. i.	1/4	the	total	number	of	streams,	2.
No. 2.	263	"	"	1	"	"	4.
No. 3.	2/3	"	"	"	"	"	4.
No. 4.	1/3	1	11	"	"	"	2.
No. 5.	1/3	"	"	"	"	"	2.
No. 6.	1/3	"	"	"	${ }^{\prime \prime}$	"	2.
No. 7.	1.6	11	1	"	"	"	2.
No. 8.	$1 / 3$	"	"	"	"	"	2.
No. 9.	$1 / 3$	"	"	"	"	"	2.
No. 10.	1/3	11	"	"	11	"	2.

The drips of all hydrants shall drain into the sewers. The bottom of all hydrants are to be set four feet below the surface of the ground to provide against frost.

Mains。
The size of the mains shall be made economical for the ordinary supply unless the loss of head be prohibited a.t times of fire. The pressures at the curb should not exceed one hundred and thirty pounds. The draught of the main bounding a district is asumed to be proportional to the number of small pipes in the districts which lead to the main in question.

ANALYSIS．

The following analysis shows the amount of water carried by each main．The principle artery is brought from the distributing reservoir，across Woods Creek，into Washington Street，Around Washington and Lee and V．M．I． roads，to Main Street，thence to Sellers Ave．，to Jackson Avenue，and Dwn White Street and Main Street．

Analysis：
Line around Washington and Lee Campus，from Washington Street to Letcher Ave．， 3／5 \＃3，all No． 2.

Line around V．M．I．Road，College Lane to Main Street． All of \＃2，minus Letcher Ave．，

Line in front of V．M．I．Commisary．
All of line from intersection of two V．M．I．roads to intersection of road with 欮ain street．

Line in Main Street，Campbell Ave．，from interection of V．IT．I．road and Main Street to Lewis Street．

3／13 \＃1，
Line on Washington Street，from Reservoir inlet，to Jefferson Street．

2／5 \＃3，all 泎1，1／8 \＃6，2／10 \＃10．
Line on Jefferson Street，from Washington Street to Main Street． 2／5 \＃3，2／10 \＃10，a11 \＃1．

Line on Lower Main Street，from Flatiorn to V．M．I．Road． 3／13 \＃1。

Line on Parry Lane，End Massey Street，from Main to Lewis． $1 / 2 \# 1,2 / 9$ \＃4．

Line on Lewis Street，from Massey Street to Campbell Lane． 4／13 \＃1，

Line from Reservoir Line to foot of Horden Street. All \#7, all \#8, all \#9, all \#5, 7/8 \#6, 8/10 \#10

Line along Woods Creek, from Jorden to White Street. 7/8 \#6, all \#5, 4/6 \#7, 8/10 \#10, 7/9 \#4.

Line along White Street and Main Street, from Woods Creek to Main and McDowell. 7/8 \#6, all \#5, 4/7\#7, 8/10 \#10, 7/9 \#4,

Line along Main Street, from Flatiorn to McDowél. 1/2 \#10, 1/2 \#5.

Line from McDowell and Main to Preston and Randolph, along: McDowell and Randolph. 1/2 \#5, 7/9 \#4.

Line along Preston Street, from Randolph to Lewis. 4/9 \#4.

Line along Randolph, from Preston to Massey. 1/2 \#5, 3/9 \#4.

Line along Woods Creek, south from Jordan to Ross Road. All No.9, all \#8, 3/7 \#7.

Line Along Ross Road, Stonewall to Jackson Ave., All \#8, $3 / 7$ \#7.

Line From Jackson and Ross Road to Sellers and Main, along Sellers and Jackson Ave. All \#8, 2/7 \#7.

Line along Main Street, Sellers to White Street. 1/8 \#8, 2/7 \#7.

Line along Wallace and Taylor Street. 1/2 \# 8.

Line along Houston Street, Main to Taylor. 1/4 \#8.

Line Along Ross Road, via Lane to Stonewall Street. 1/2 \#9.

Line along Ross Road, from Ross Road to Lane. 1/2 \#9.

Line from Nelson and McLaughton, to White Street. 3/8 \#6.

The above anaylsis is recommended for use, but by no means is the only one that can be used. There are many ways that it can be drawn up, but underconsideration of the topgraphy of the town it has been decided that this is best to use. A line taken from the reservoir line to the foot of Jordan street, and it is assumed that by adding this additional line pressures in the south partnof town can be improved. The smallest pipe used in the bounding districts were taken as six inch, and those in the district were taken as four inch. The economic size of mains are obtained from the formula: (T \& R, page lob)

$S_{1}: S_{2}: 1: n^{4}$

$$
\begin{aligned}
& \text { Where } S=\text { the loss of head in the main. } \\
& \text { and } S=\text { the loss of head in the small pipes } \\
& \text { and } n=\text { the number of small pipes. }
\end{aligned}
$$

The mains will be laid in the same location as the distributing pipes, but the depths of the ditch will not exceed three (3) feet. The covering is less than required for distributing pipes, which is proper, since the danger of freezing is much less in the larger pipes.

$$
\text { Part } 5 .
$$

FIRE STREAMS

The number of fire streams have already been determined and is equal to seven．The fire streams by districts are as follows：

District No． 1.
$1 / 4 \times 1500=375$ gallons per minute． Therefor，one 250 gallon strean and one 175 gallon stream shall be used．

District \＃2．
$2 / 3 \times 1500=1,000$ gallons per minute． Therefore，two 250 gallon streams and three $\mathbf{\$ 7 5}$ gallon streams shall be used．

District \＃3．
Same as 斯。
Bistrict \＃4．
$1 / 3 \times 1,500=500$ gallons per minute． Therefore，use three 175 gallon streams．

District \＃5。
Same as \＃4．
District \＃6．
Same as \＃4．
District \＃\％．
Same as \＃4
District \＃8．
Same as \＃4．
District \＃9。
Same as \＃4
Disrtict ${ }^{8} 10$ 。
Same a．s \＃4．
Investagation for ruling grade. (Worst condition at Corner of Taylor and Houston Street)
Surface Elevation at corner of Houston and Taylor 29s.7
Pressure head at curb line, 2.304 * $40 \quad 92.16$
Piezometric level at this point 286.86
Low water level in reservoir 292.7
Piezometric level at this point 286.86
Drop in Piezometric level 16.8
Distance in Thousand feet 10.0
Lost head per thousand \quad I. 68

To find the lost head in feet per, thousand for mains leading to each district.

District \#8.
Distance to Taylor and Wallace 8,000ft.
Surface elevation at Taylor and Wallace 193.8
Pressure head at the curb, 2.304 x 40 92. 玉6
Piezometric level at this point 285.96
Lost head in feet per thousand 6.73/8 . 84
Le区el of low water at reservoir 292.7
Piezometric level at this point 285.96
Drop in piezometric level
6.73

District \#7.
Distance to White and Main Streets. 6,875 ft.
Surface elevation at White and Main 200.1
Pressure head at the curb, $38 \times 2.304 \quad 87.55$
Piezometric leveZ at this point 287.65Elevation of low water in reservoir292.7Piezometric level at this pointDrop in piezometric level287.655.1
Lost head in feet per thousand 5.1/6.8 73
Bistrictryo.
Surface elevation, Jordan and White 184.3
Pressure head at the curb, 40×2.304
Piezometric level at this point 276.46
mlevation of low water in res ervior 292.7
Drop in piezometric level 16.24
Distance 5,360 ft.
Lost head feet per thousand 16.24/5336 3.04
District \#10.
Distance 6,380
Elevation corner Main and Wite Streets 200.54Piezometric level at this point, 2.304×38Piezometric level at this point288.09
Water elevation at reservoir 292.7
Piezometric level at this point 288.09Drop in Piezomttric level4.61
Lostbhead in feet per thousand 4.61/6.38 72
District \#5.
Distance 6,340
Elevation at corner Randolph and McDowell 181.3Piezombtric level at this point, $2.304 \times 40$92.16
Piezometic level at this point273.46
Elevation of low water at reservoir 292.7
Piezomteric level at this point 273.5
Drop,in piezometric level19.2
Lost head per thousand feet 19.2/6.3

District 巽4

Distance 9,500 ft
Surface elevation at Lewis and Massey
Surface elevation at Lewis and Massey Pressure head at curb, 2.304×40 92.16
Diezomttric level at this point 267.86
Elevation of low water at reservior 292.7
Piezometric level at this point 267.86
Drop in piezometric level24.9
Lost head in feet per one thousand,24.9/9.5 2.6
District \#3.
Distance 6,110 feet
Surface elevation on W. L.T. road 150.7Pressure at cubb, 2.304 x 4092.2
Piezometric level at this piint 242.9
Elevatíion of lowwwater at reservoir 292.7
Piezometric level at this point 242.9
Doop in piezometric level 49. 8
Loss head in feet per thousand, 49.8/6.11 8.1
District \#
Distance 8,104 feet
Surface elevation at V.M.I. Lane 144.3
Pressure head at the curb, 40 x 2.304 92.2
Piezometric elevation at this point 236.5
Elevation of water in reservior 292.7
. Piezometric level at this point 236.5
Drop in piezomtric level56.2
Loss head in feet per thousand 56.2/8.1 6.9
District \#l.
Distance 9,560 Feet
Surface elevation at Lewis and Massey 175.7
Pressure head at this point, 2.304 x 40 92.2
Piezometric level at this point 267.9
Elevation of low water at reservior 292.7
Piezomteric level at this point 267.9
Drop in piezometric level 24.8
Lost head pn feet per thousand, 24.8/9.56 2.6

Population by Districts.

Number 1. 700
Number 1,300
Number 500
Number 610
Number 1,305
Number 690
Number 1,055
Number 400
Number 50
Number 10. 1,085.-----Total population 7,695

DESIGN OF MAINS.

Analysis: $4 / 13$ \#l
$4 / 13 \times 700 \times \cdot 0972$
Size of pipe
MASSEY STREET, MAIN TO LEWIS.
$2 / 9 \times 610 \times .0972$

$$
\begin{aligned}
\frac{140}{\overline{1440}=}= & .0972 . \\
& 20.9 \text { g.p.m. } \\
& 6 \text { inch }
\end{aligned}
$$

MASSEY STREET, MAIN TO LEWIS.

Analysis: 1/2 \#1, 2/9 \#4.
Analysis: 1/2 \#1, 2/9 \#4.

$1 / 2 \times 700 \times .0972 \quad 34.0$
$1 / 2$ x 700 x.097213.1

$$
47.1
$$

Size of pipe
Size of pipe6 inch
MAIN STREET, FROM LEWIS STREET TO V.M.I. ROAD.
Analysis: 3/13 \#1,
$3 / 13 \times 700$ x . 0972 15.6
Size of pipe 6 inch
LOWER MAIN STREET, FLATIRON TO V.M.I. ROAD.
Analysis: 3/13 \#1.Same as one abdve, use 6 inch pipe.
LINE AR OUND V.M.I.
Analysis; All \#2, minue Letcher Ave.
(1,300-175) 0972 109.35
Size of pipe 6 inch
IINE AR OUND WASHINGTON AND LEE CAMPUS.
Analysis: 3/5 \#3, all \#2
$3 / 5 \times 500 \times .0972 \& 1300 \times .0972$ 154.1 Size of pipe 6 inch

```
PRESTON STREET, RANDOLPH TO LENIS.
Analysis: 4/9 #4,
4/9 x 610 x.0972 26.3
    Size of pipe
    6 inch
RANDOITPH2 PRESTON TO MASSEY.
Analysis: 1/2 #5, 3/9 #4,
1/5 x 1305 x .0972 63.4
3/9 x 610 x .0972 19.7
    Size of pipe
    83.1
    6 inch
MCDOWEII ST, MAIN STRJEET TO PRESTON STREET.
Analysis: 1/2 #5, 7/9 #4.
I/2x華305 x.09772 63.4
7/9 x 610 x.0972
Size of pipe
    4.6
68.0
    6 inch
MAIN STRPEPT2 FALT IORN TO MCDOWELI STREET.
Analysis; I/2 #l0, 1/2 #5.
1/2\times 1085 x .0972 52.1
1/2 x 1085 x .0972
    Size of pipe
115.5
    8 inch pipe
```



```
Analysis: 2/5 #3, 2/10 #lo, a.ll ##.
\begin{tabular}{rrrr}
\(2 / 5 \times\) & \(500 \times .0972\) & 19.4 \\
\(1 / 5 \times 1085 \times .0972\) & 21.09 \\
\(700 \times .0972\) & 68.04 \\
& & 108.5 \\
& & - inch
\end{tabular}
WASHINGTON STREET, RESERVOIR INTET TO JEFEERSON STPTEET
Analysis: 2/5 #2, all #1, 1/8 #6, 2/10 #lo.
```

$2 / 5 \mathrm{x} 5500 \mathrm{x} .0972$	19.4	
$7 / 5 \mathrm{x} 1085 \mathrm{x} .0972$	21.1	
$1 / 8 \mathrm{x} 690 \mathrm{x} .0972$	8.39	
	700 x .0972	68.4
		116.8
Size of pipe	8 inch	

MCIAUGHTON, NELSON STREET TO WHITE STREET.
Analysis: $3 / 8$ \#6.
$3 / 8 \times 690 \times .0972$ 24.5
Size of pipe 6 inch
WHITE STREET, WOODS CREEK TO MAIN STREET.
Analysis: 7/8 \#6, all \#5, 4/7 \#7, 8/10 \#10, 7/9 \#4.
$7 / 8 \times 690 \times .0972$ 58.7
$7 / 9 \times 610 \times .0972$ 46.1
6690 x.0972 84.4

 (67.0

 1305 x.0972 127.0

 150 x.0972 4.8

 400 x. . 0972

 1055 x . 0972

 107.9

 924.8
 Use 16 inch pipe
 WOODS CREFK, JORDAN STREET TO ROSS ROAD
Analywis: All \#9, all \#8, 3/7 \#7,

$3 / 7 \times 1055 \times .0972$	44.0	
$400 \times .0972$	38.9	
$50 \times .0972$	4.8	
		$--\ldots-. .9$

Use eight inch pipe.
ROSS ROAD 2 STONEWAL工 STRHET TO JACKSON AVE.
Analysis: All \#8, 3/7 \#7.

$3 / 7 \times 1055 \times .0972$	44.0
$400 \times .0972$	38.9
	$-\ldots . \overline{2}$

Use 6 inch pipe.

Analysis：All \＃8，2／7 \＃7．

$2 / 7 \times 1055 \times 00972$
$400 \times .0972$$\quad\left\{\begin{array}{l}68.2\end{array}\right.$
Use six inch pipe
MAIN STREET，SEIIERS TO WHITE．
Analyisis： $1 / 8$ \＃8，2／7 \＃7．

$1 / 8 \mathrm{x} 400 \mathrm{x} .0972$	1.8
$2 / 7 \mathrm{x} 1055 \mathrm{x} .0972$	29.3
Use six inch pipe．	34.1

ROSS ROAD 2 IANE TO STONEWAL工 STREET．
Anaまysis： $1 / 9$ \＃9．
$1 / 2$＊ $50 \times .0972 \quad 2.4$
Use six inch pipe．
ROSS ROAD TO LANE
SAME AS ABOVE－－－－－－－USE SIX INCH PIPE．
Part 8.
DESIGN OF RESERVOIR IINES.
IINE HROM RESHRVOIR TO FIRST BRANCH.
Total numper gallons perdday 1,077,300
Total gallons per minute 741
Lost head on flattest grade 72
Size of pipe $16^{\prime \prime}$
IITE FFOME FIRST BRANCH TO SECOND BRANCH.
Total number gallons per day 404,640
Total number gallons per minute 281
Lost head on flattest grade 2.6
Size of pipe $10^{\prime \prime}$
LTIE FROM RESERVDDR LINE TO FOOT OF JORDAN STREET.
Total number gallons per day 662,400
Total number gallons per minute 460
Lost head on flattest grade 72
Size of pipe 12"

INVESTAGATION FOR MAXIMUM PRESSURES IN THE MIDDIE OF EACH DISTRICT FOR MAXIUM ORDINARY CONSUMPTION

District \#3.

Distance on Washington St., from W.I.U. Road to Jefferson Street. 725 feet

Lost head in one thousand feet . 55 Lost head in 725 feet
Distance from Washington St. to Flativon on Jefferson Street 975 feet

Lost head per one thousand feet I.9
Lost head in 975 feet
Distance into district 200 feet
Lost head per one thousand feet $\quad 1.5$
Lost head in two hundred feet

Elevation of low water in reservoir	292.7
Total lost head	4.33

Elevation of hydraulic grade line at this point 288.4
Elevation of ground here $\quad 95.0$

Piezometric difference 193.4
Pressure at this point 84 \#s
District \#2.
Iost head from Reservoir to W. L. U. Road 1.76
Distance from Washington St and W.L.U. Road to College lane 1,950 feet
Lost head per one thousand feet 3.9
Lost head in I,950 feet 7.41
Lost head from College Lane into district 3.63Total lost head12.80
Elevation of low water in reservoir 292.7Total loss of head12.80
Elevation of hydraulic grade line 279.9Ground elevation at this point137.5
Piezometric elevation at this point 142. 4
Pressure at this point, 142.4 x . 434 62 paunds.
District \#1.
Total lost head from Reservoir to Flativon 4.03
Distance along Parry lane and Lewis Street 2,130'
Lost head per one thousand feet 45
Lost head for 2, 130 feet 96
Distance from Massey to Diamond on Lewis l050feet Lost head per one thousand feet 30
Lost head for l, 050 feet 31
Distance into Curruthers and Dorman lanes, 1500 feet Lost head per one thousand feet 2.5
Lost head for l, 500 feet 3.80
Total lost head 9.70
Elevation of low water at reservoir 292.7
Total lost headElevation of hydraulic grade line283.0134.0
Eleveation of surface------
Piezometric elevation here 149.0
Pressure at this point, $149.0 \times .434$ 64.5 pounds
District \#6.
Total lost head from Reservior to Washington Street and W. I. U Road 1. 76
Distance from Reservoir line to McDowell Street
Lost per per one thousend feetLost head for 1,950 feet585
Distance $\mathfrak{E r o m}$ McLaughin Street into to
Jackosn Ave and Preston Street, 1,000 feet
Lost head per one thousand 2.0
Total lost head 4.34
Elevation of low water at reservoir 292.7
Total lost head4.34Elevation of hydraulic grade line288. 4mlevation of surface herePiezometric elevation at this point167.0
221. 4
Pressure at this point, 121.4 x . 434
52.69 pounds
District \#lo.
Lost head from Reservior to W.I.U. Road and Washineton Street 1.76
Lost head ffom reservoir line to Washington and Jefferson Street 2.15
Lost head from Washington and/Jefferson
streets to Flatiorn 1.85
Distance from Flatiorn to Nelson Street, i,32
Lost head per one thousand feet 60Lost head for 1,320 feet78
Distance in district, 1,000 feet , 15
Lost head per one thousend feet----. 69
Total lost head
Elevation at reservoir at low water 292.7Total lost head6.69
Elevation of Hydraulic grade line 286.0
mlevation of surface here 169.1
Piezometric elevation at this point 116.9
Pressure at this point, 116.9 x .434 50.73 pounds
District \# 5 .Total lost head6.69
Elevaton of Reservoir at low water 292.7Todal lost head6.69Elevation of hydraulic grade line286.0
Elevation of surface 134.0
Piezometric elevation 152.0
District $\#^{8} 4$
District \#\#.
Distance from Reservoir line to foot of Jordan Street 705 feet
Lost head per one thousand feet 48
Lost head for 705 feet 33
Distance from Reserior to Reservior line, 3,500 ft.
Lost head per one thousand feet . 14
Lost head for 3,500 feet 49
Distance along woods Creek, 975 feet
Lost head per l, 000 feet 34
Lost head for 995 feet 33
Distance along Ross Road, from Jackson Aveto Stonewall Street, 525 feet
Lost head for one thousand feet 1.5
Lost head for 525 feet 75Distance from Ross road to Main and Sellers, l370feetLost head per one thousand feet I. 4Lost head for 1, 370 feet1.91
Dstance on Main from Sellers to Edmundson, 380 feet
Lost head for one thousand feet 3.5Lost head for 380 feet,1.33
Distance up Edmundson to West side Court, 855 feetLost head per one thousand feet 2.0Lost head for 855 feet1.7
Total lost head5.31
Elevation of low water at Reservoir
Toal lost head
Elevation of hydraulic grade lineEleation of surface at this pointPiezometric elevation at this point
Pressure at this point, 126.2 x . 434
District \#8.
Lost head to Corner Sellessand Hain
Distance from Sellers and Main totaylor and Wallace, 1, 770 feetLoss of head per one thousand feet .3Loss of head (Total)
Elevation of low water at reservoir,Total lost headElevation of hydraulic Grade line
Loss of head for 1,770 feetElevation of surface at this pointElevation of piezometric levelPressure at this point, $100 \times .434$
District 9 。
Loss head to Ross Road
Bistance along Ross Road, 1650 feetLost head per one thousand feetLost head for 1, 650 feetTotal lost headElevation of low water at low waterTotal lost head
Elevation of hydraulic grade lineSurface elevation at this point
Piezometric level at this point Pressure at this point 105.9 x .434
292.7
292.7 5.3
5.3 -------- 287.4

$$
161.2
$$

$$
126.2
$$2.283

54. 6 1bs.

$$
\cdot 3
$$1.15

2.53
2.81
297.2
2.8
294.4
194.0
100.0

- 8
1.3
2.45
292.7
2.5
----2
290.2
184.3
-105.9

Part 10.

VALVES.

Gate Valves.
Gate valves are necessary in case of breaks in the line, and so that sections of districts, or districts can be cut off from the remainder of the town in case of needed repairs within that section. There should be as few gate valves as possible, to cut the expense of the plan. In case of a break, not more than four lines must be exposed, or less than three. This condition is set down for districts fiverand ten, which are business districts. In the remaindew of the town, not more then five lines should be exposed, or less than three.

There are exceptions to this rule however, when less valves can be used where there remains more than five lines exposed. This exception is left to the judgement of the writers in cases where the lines are short, and the draught on them ire not excessive.

Waste Valves.
Three waste values are to be used in the town, and are to be connected with the nearest sewer. The purpose of these valves are to drain the area in which there is a break, so that repairs can be made. These valves are also used for blow off valves.

Blow Off Valves:
Whereever there is a depression in the topography
of the town, or where the velosity in the pipes might be low, deposits of mud are apt to collect. Blow off valves are placed throughout the town to care for this need. In this case, the blow off valves and the waste valves were used interchangabely. In this manner less valves are needed, and expense cut.

FIRE INVESTAGATION.

District \# \#
Assume fires in number 2 and three.
Fire in \#2, in middle of district.
Line around W.L.U.
Analysis: For fire, all \#2, $3 / 5$ \#3. For M.O.C.all \#2, $3 / 5$ \#3.

For fire consumntion.
$3 / 5 \times 1,000$
All \#2
For M.O.C.

Total draught on line at times of fire
$1,754 \mathrm{~g} \cdot \mathrm{p} . \mathrm{m}$
Lost head in feet per thousand, (8" pipe)
65 feet
Lost head to middle of this district
51 feet
Line to middle of V.M.I.
Analysis: For fire consumption
All \#2.
For M.O.C.
1, 000 g.p.m. 109.4 g.p.m.

Lost head in feet per thousand
26 feet
Lost head to middle of district 39 feet
Distance 1,500 feet
Lost head in ths distance (Total) $39 \perp 51$ feet
Piezometric elevation at V.M.I. Road
Total lost head
Piezometric difference
Pressure at this point 136.2 x. 434

Assume fires in $\begin{aligned} & \text { \# } \\ & \text { A }\end{aligned}$ and $\# 3$.
Fire in middle of District $\# 3$.
Line from Letcher Ave to middle of V.M.I. Road. Analysis: $1 / 2$ fire daraght, and $1 / 6$ M.O.C.

Total draught - $1 / 2 \times 109.41 / 2 \times 1,600 \quad 854.7$

Lost head in feet per thousand	60 feet
Distance l200 feet	
Lost head in this distance	70 feet
Piezometric elevation at center of W.L.U. Road	271.5 feet
Total lost head to this point	75.0 feet
Difference in elevation at this point	196.5
Pressure at this point	64 pounds.

District \#1。

Assume fires in Districts 1 and 4 .
Fire in District \#l, corner Maury and Diamond.
Line on WashingtonbStreet, \pm rom W. L.U. Road to Jefferson Street (8inch pipe)
Analysis:
For M.O.C. 2/5 \#2, all \#1, $1 \not 88$ \#6, 2/10 \# 10 Fire, for \#1 and \#4 3751500

Total draught
Loss per onethousand feet
loss along Washington to Jefferson
$116.8 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}$
875.0 g.p.m.
-991.8 g.p.m
25 feet
18.7 feet

Jefferson Street, Washington Street to Main Street Analysis:

Loss in Iine on Jefferson to Main Street Try 8 inch pipe
Loss head per one thousand feet 25 feet
Loss in this distance 22.5 feet
Line along Massey Street, Parry Lane to Lewis Street.
Total Distance l, 800 feet
Analysis: M.O.C. 1/2 \#I, 2/9 \#4. Fire, \#4 and \#i
47.1 g.p.m
$875.0 \mathrm{~g} \cdot \mathrm{P} \cdot \mathrm{m}$
Total draught
922.1 g.p.m
Lost head per one thousand feet 23 feet Lost head in this distance 41.4 feet
Line along Lewis and Diamond Streets Total distance， 1050 feet Analysis：M．O．C．1／2 F_{1} 34.0 g．p．m． Fire all \＃1
Total draught
Iost head per one thousand feet 22 feet
Lost head in this distance 22 feet
Line along Diamond Street，Lewis to Massey． Totsl distance 900 feet
Analysis：M．O．C．3／13 F1 113 feet
Total loss of head 104． 6 feet
Piezometric elevation 241.5
Total lost head to the point in question 103． 6
Loss in head136.9
Surface elevation at this pojntPressure at this point$\frac{120.0}{6.94 \text { feet }}$
District 荫4。
Assume fires in Districts \＃4 and \＃I。
Fire at intersection of Fuller and Washin ton Streets
Loss head to Massey and Lewis 72.6
Line along Lewis，to Washington Street 600 feet Anazlis：M．O．C．1／2 \＃1，2／9 \＃4． Fire， $57 \cdot 1 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}$Total draught
547.1 E．D．m．
Lost head pe one thousand feet 30 feet
Lost head for 600 feet 18 feet
Line along Washington Street，from Lewis to Fuller：Distance， 600 feet

$\begin{gathered} \text { Analysis: M.O.C. } 1 / 9 \text { \#4 } \\ \text { Fire, } \end{gathered}$	$\begin{array}{r} 24 \\ 500 \\ 50 \\ \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{p} \cdot \mathrm{~m}_{\bullet} \end{array}$
Total draught	524 g.p.m.
Lost head in this distance	18 feet
Total lost head to the point in question	108 feet
Piezometric elevation at WLU Road and Washington St. Total lost head	24]. 5 feet 108. 0 feet
Difference in Piezometric elevation	133.5 feet
Pressure at this point	9.2 pounde

\#\#\#\# Since there is only one line pulling from this Iinesure this pressure need only be enough for the pumper and is sufficient.

Assume fires in Districts \#5 and 10 .
Fire at Nelson Street, between Jefferson and Main Streets, in the middle of the block.

Piezometric elevation foot of Jordan Street 292.7
Line along White Street, from Woods Creek to Main Street, Analysis: M.O.C. 7/8 \#6, all \#5, 467 \#7, 8/10 \#10, 7/9 \#4.

Fire draught
$924.8 \mathrm{~g} \cdot \mathrm{p} . \mathrm{m}$.

Total draught 1, 000 g.p.m.
-otal draught
Assume a twelve inch pipe
Loss per one thousand feet 14 feet
Loss to main Street 22.4 feet
Line along Main Street, White to Nelosn Street
Assume an eight inch pipe.
Anaylsis: $\underset{\operatorname{Fire}}{\mathrm{M} \cdot \mathrm{O} \text { C. } 1 / 2 \# 8,1 / 2 \# 5 .}$
Total draught

115.5	$\mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}$
$1,000.0$	$\mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}$
$-1,115.5$	$\mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}$

Lost head in feet per thousand
32 feet
Distance
Lost head in this distance
1,600 feet
51 feetDine into center of district, four inch pipe
Lost head 10 feet
Total lost head to the point in question 83.5 feet
Piezometric elevation at foot of Jordan Street 292.7 feet Surface elevation 155.0 feet
137. 7 feet
83.5 feet
Piezometric Difference 54.2 feet
Pressure at this point 22 pounds.
\#\#\#Which is sufficient because fire peessure draws on only oneline.

Assume fires in District \#5 and \#10
Fire in \#5 on Nelson Street, between Randolph and Main.
Loss to Main and Nelson r73.5 feet
Loss to fire 10.0 feet
Total lost heas 83.5 feet
Piezometric elevation at foot of Jordan Steeet 292.7 feet Surface elevation at point in question 150.0 feet
Elevation of hydraulic grade line 142.7 feet
Lost head to this point 83.5 feet
Piezometric eifference59.2 feet
Pressure at this point26 pounds
District \#6.
Assume fired at Preston and Jackson
Lost head to Jacke日n and White Street per one thousand 14 feet Distance, 1350 feet Total lost head for this distance 19 feet
Jost head in $4 "$ pipe to Freston Street 23.3 feet
Total lost head 42.3 feet
Piezometric elevation at foot Jordan Street 292.7 Surface elevation 127.5
Pressure at this point 55 pounds
District \#8.
Assume fires in Districts \#7 and \#8.
Loss to Main and White 22.4 feet
Line from Main and White to Houston and Taylor StreetsAnalysis: M.O.C.Fire
$38.9 \mathrm{~g} . \mathrm{p} . \mathrm{m}$.$500.0 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{m}$.
Total draught
538.9 g.p.m.
Lost head per one thousand feet 32 feet
Lost head for 1000 feet 32 feet
Total lost head 54.4 feet
Piezometric elevation at foot of Jordan Street 292.7 Total lost head 54.4
238.3
Surface elevation 194.7
Difference in piezometric elevation 43.6
Pressure, 20 pounds.
District \#ry.
Assume fires in 7 \& 9.
Reservior line to Ross ${ }^{\text {Road }}$
Max. Ordinary Consumption $87.7 \mathrm{~g} . \mathrm{p} . \mathrm{m}$. Fire draught $1,000.0 \mathrm{~g} \cdot \mathrm{p} . \mathrm{m}$
Total fire draught 1,087.7
Assume eight inch line, 900 feet long
Lost head per one thousand feet 26.0
Lost head ta this distance 23.4

```Iine on Ross Road, Stonewall Street to Jackson Distance, }500\mathrm{ feet Draught: For M.O.C. For fire```	Ave． $\begin{aligned} & 82 \cdot 9 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{~m}_{\bullet} \\ & 500 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{~m} \bullet \end{aligned}$
Total Draught	$582.9 \mathrm{g.p.m}$
Lost head per one thousand feet	40.0 fett
Lost head for 500 fett	20 feet
Lost head in 4＂pipe，into district	26 feet
Total lost head	69．4 feet
Piezometric elevation at foot of Jordan Steeet	292.7 feet
Surface elevation	156．1 feet
Elevation of hydraulic grade line	136.6 feet
Total lost head	69.4 feet
Difference in piezomttric elevation	77.2 feet
Pressure ai this point	32 pounds．
District \＃ 9 。	
Assume fires in 7 and 9．	
Lost head to Ross road	23.4 feet
cost head to center of district	
Distance 1300 feet	
Draught：M．O．C．先め Fire	$\begin{array}{r} 4.8 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{~m} \cdot \\ 500.0 \mathrm{~g} \cdot \mathrm{p} \cdot \mathrm{~m} \end{array}$
Total draught	504.8 g．p．m．
Lost head into district	15.6 feet
Total lost head to point in question	39 feet
Piezometric elevation at foot of Jordan Street	292.7
Surface elevation	165.0
Elevation of hydraulic grade line	127．7
Total lost head	39.0
Difference in Piezometric elevation	88．7 feet
Pressure at this point	39 pounds．

