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Preface 

Hathematics is a constant source of valua ble 
insi ght into philosophi cal problems . Many puzzles 
in philo sophy possess analo a- 11 P.s in ma themat ics for 
which acc eptable soluti ons have bee n found . It is 
no surpri se that G~del ' s celebrated paper of 1931 
is such a parallel. In his work, G~del makes 
strong stat ements about a fo rmal lang uage from a 
formal proof expressed in that l angua~e . It is 
a situa tion comparable to that of the philosopher 
attempting to discuss l angu age. G'od el' s success 
i n avoiding paradox points to what may be an i mpor­
tant restriction on the c apacities of language to 
talk. 

When a specifi c e xample is used as a basi s for 
conclusion, the writer is i mmed/i.ately open to the 
c harse of hasty i nduction. This disucssion is not 
intended to demonstrate that the restriction developed 
is nec essa ry. Indeed, if it is n ecessar y , it may 
therefore be impossible t o say so . Ra ther the fo rce 
of the cont rast b etween Ri chard 's work and G~del ' s 
is int ended to provoke the realization that some 
r estriction of the kind offered is needed. 

The ideas developed in this paper have come from 
wide read ing s impossible to cred it adequately. 
The mos t i mportant of these sour ces appear in the 
Bibli ography . Conversations T·Jith members of the 
Washing ton and Lee Philosophy Department have been 
most helpful. Mr. Robert Steck has been especially 
helpful in this regard. Occasional conversations wi th 
Mr. Gordon Williams have helped to assure me that I 
have not totally misunderstood G'odel ' s work. No 
research task of any magnitude is comple ted here with­
out the assistance of either Mrs . Betty Munger or 
Miss Martha Cullipher . I thank them too. 

Lex ington, Virg inia 
April 27, 1970 

V 

Anthony MonCrief Coyne 



On Showing a nd Saying : 

An Analysis of Godel 1931 

1. 1 In 1931 Kurt G'oclel published a theorem dernonstra ting 

that many systems of formal log ic c apable of developing 

arlthmetic pos sess major deficiencies . He shovrs that 

such systems , if they are c ansistent , are powerl ess 

t o demonstrat e their own consistency and possess propositions 

which c an neither be proven nor disproven . In order 

fo r hi s results to obtain, Godel must use the l angu age 

of his system to t a lk of it self. To avoid difficulties 

s uch as those which develop in Richard 's paradox , G~del 

must t ake care to insure his formal language r e f ers only 

to numbers. The r eader must then see this discussion 

as one about the system itself. From the consideration 

of this k ind of language r e fer ence which keeps G~del 

fre e from paradox, a general cri terion for de tecting 

paradoxical r eferenc e in l anguag e will be offered. 

Traditional approaches to G~del's work concern them­

selves with its r e lationship to the program of Hilbert 

fo r mathematics. Thus J ean Ladriere1 in his study 

Li mitations Internes des Formalismes examines the 

c apaci ty of any formal system to embody mathemati cs in 

it s entirety. The concern is mathematical. The concern 
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of this paper is with lang ua ge used for re ference to 

ob jects (of some so r t) b eyond the lang uaGe i tse lf. 

Mathematica l c on s iderations , othe r than the proof it self, 

will b e kept a t a minimum. 

One . side is sue has appeared in examining Godel ' s 11 .h eorem 

d eserving more attenti on than it has h eretofo re rec e i ~ed; . 

I n his proo f G~del allows for expanding the scope of his 

s ystem by allowing the i nclusion of additional assumpt ions . 

In Chapter 3 the question of wh ether t hese postulates 

may be of emp i ri c al orig in will b e considered . 

L1. Chapter 2 of thi s paper i s an expo si t ion o f the 

work of Kurt G"odel in his 1931 paper. It p resent s al l 

of t he technica l devices u sed fo r the final result, 

omitting only proofs for some of the intermediate t heorems 

which are o f little interest in themselves . Chapter 3 

develops Richard's paradox of 1905 along his ori g i nal line s . 

It goes on to present the paradox as g iven by 

Nagel and Newman2 and to develop the error which permits 

the paradox . While the t wo versions of the pa radox are 

suff iciently dis s i milar to permit t wo r esolutions to the 

paradox, both ex planat ions center around references by 

languag e which are beyond its permi ssable scope. G'odel' s 

work is con strasted with Richard's to show that the 

difference bet ween the t wo lies in G~d el's ind irect reference. 

The structure of this indirect r e fe rence is considered as 

is the possibil i ty for permitting empirical judgments 
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a s formulae. Finally Chaper 4 will explore a generaliza­

ti on of the solution of Richard 's paradox for ordinary 

l an,:; uage . It will b e shoNn t hat many traditional 

a ntinomies c an be d~t~ct~d using this criterion . 

I 
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An Exposition of Godel I s '.rheorern 

~~1 This section is a presentati on of Godel's 1931 

paper "Uber fo rmal unentscheidbare S"atze der Principia 

Mathematica und verwandter Systeme r. 11 1 While this sect ion 

is n ot analytica l i n n a ture , the at tention o f the r eader 

is c alled to th e t echnique of G~del n umbering exhi bi ted 

b elow and to the po ssible inclusion of a n additional 

s et of presumpt ions in t he d emonstration of Proposition VI. 

'l'he se will b e the major subj ects of the analytical chapt er 

to foll ow . 

There are two propertie s of a formal system of 

part icular concern to the matatheory . These are consistency 

and completeness. A system is consistent if both a 

proposition and its negation cannot both be demonstrated . 

The system is called complete if every proposition can 

either be proven or disproven. 

G'odel exhibits a well-formed formula of 

PM (Princi pia M~themati ca) which says of itself that it 

is unprovable. This is shown . in add ition, to be true by 

showing the as sumpti on that either a proof or a disproof 

of the formula can be g iven leads to inconsistency. As 

a r esul t PM wi ll be shm·rn to b e incomplete. 

4 
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There exi st intelli g ibl e pro positions whi ch c annot be 

deci ded within the s y st em it self. An j_mmediate result of 

thj_s i s tha t if PM is consistent, it will be unable to 

demonstrate its own cons is tency. 

G'ode l prove s h i s theorem by mirroring the system 

within its arithme tic. There are t No l evels j_n his 

d emonstration , the l evel of t he symbolic calculus, and the 

arithmetic whic h will represent it . The bridge to 

t h e arithmet ic i s made by assigni n g a number t o each 

fo rmula (G~del numbering ) . To insure a precis e copy of 
I •. 

the symbo l:1.c system in its arithmetic , Godel develops 

the notion of recursive functions so that he c an talk 

about the numbers c orresponding to the fo rmulae in ways 

simi l ar t o the way he talks of t he formulae . The devel­

opment of the theorems follows fr om the axioms . The 

c orresponding numerical transformation wi ll be done wi th 

the recursive fun c tions. The r esults G~del obta ins are 

demon s tra ted i n the arithmetic about numbers. We then 

interpolate back to the theo r ems of the system to get 

hi s re sults. 

r-E..cur.s,ve. 
-f VY\ C. t; O ') ~ 

f l,eo-rerris 

(fi g u re 1) 
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~~ In c arrying out his demonstration t wo tec hniques 

are employed.. One is the use of Godel numb eri n g to 

provide indirect reference of the f ormulae t o themselves. 

The other i s the recursive fun ction, a t e chni cal device 

whic h will be c onsi d ered presently. 

~ l The recursive f unction is de f ined in brn steps. The 

fi rst step defines t he function for an i nitial value. 

The second step de fi nes the func ti on at e a ch point based 

on its value ~t the prec eeding po int . Consider the 

foll oHing recursive d efini tion : 

( 1 ) 
( a ) 

( b) 

-y(I) ::::S I 

-f { Y\-1- 1):::: f(n)-+3 

Thi s s et of formulae d efi n es fo r every natural n umb er 

a c orresponding functional value. But it does so on the 

basis of a "recursive relation" , (lb), whic h ex plains 

h ow f(n) is to be obtained from the value of f(n- 1). 

The recursion beg ins with the s e tting of an i nitial 

value, here done by (la ). Thus f(l)=5, f(2)=f(l)+J, or 8. 

It is evident we may c a lculate the value of the function 

for the natural number of our choic e , or check to see if 

f(1,2J4,68? )=45,J47,981 ,J45 , 98J . In practice considerable 

labor may be involved , but a schema for checking is available. 

The notion of recursive functio n is very similar to the 

notion of effective computability and to notions in the 

discussion of Turing machines. 'rhe function f above is 

said to be recursive l y defined by (1 ). 
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Godel gives a more involved , but essentially s i. rnilar , 

defin i tion of recursive functions.2 He states : 

A number theoretic f unct ion~ 9>(~, 1 '?l ... ,, .. ,;,::,,) 

i s said to be recursively defined by the numbe r 
theorectic tunc t ions4'h',, ;1 L, .. ,,,,-')., ) and µ("i..,, 1-1.,• ••~n ... ,), 
i f for all --x .,_,')'. , , ... ~.,, ){ the f ollowing h old: 

( 2 ) cp(o, --t.1.., .. ,-;;(n) :::.. '{1( 0,"l,1'"-,c '.) 

q> ( Kt IJ -,l 'l-, , .. 0l.., J -:::. /J ( \-<. J cP ( I<) 'X-z. , " ' 'X' n) l ry, 7.-..J ' " -?< n) 
A nwnber theoretit ftlnction i s called recursive , 
if there exis t a finite series of number 
theoretic functions cp ,,/'.P,, ... <P 11 which 
ends i n cp and has the property that eve ry 
fun cti on ¢K of the series i s e ithe r recursively 
d efined by t wo of the earl ier ones , or is 
d erived f rom any of t he earlier ones by 
s ubstitut ion , o r , f inally, is a constant 
o r the succes sor function x~l. 

If we look at G~rel's schema 2 we see it is our 

schema 1 expanded to a c commodat e s everal variables . 

If we suppres s 'X1.., . .. ')(I'\ , v:e get 

q>Co) = 50 Y>;E!... c.__O nb"fo..-.+ 

cb l 1<. + l) ::::. jJ ( K / cJ) l l<) J 

which is our s chema 1. In effec t what has b een done is 

to recursive ly define one of the variables in ~ 

The f unc tion cp i s then said to b e r ecursively 

defined iff a nd J.J a re recur i sve ly defined in terms of 

recursively de fined functions, finit e ly back to the t wo 

primitive funct i ons4 

~(.h).::.a... 
where a is a constant 

the successor functi on 

If~ andtJ admit of recursive definition , then, in theory 

at least, cp c ould be recursively def ined solely in 

t erms of t he constant function and the successor f unction. 
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Th e notat i on i s simpler if we allow these intermed iate 

funct i ons. It is possibl e to define addition ­

r ecursive l y . I nformally this means 1,re poss e ss t echniques 

f o r check i ng addit i on by recourse to t he notion of 

s equenc e . Furthe r, only f inite ly many references to 

t h e sequenc e wi ll b e n eeded to carry out each check . 

Similarly multiplication can b e d e f ined r ecursivel y 

a nd eventual l y ma ny other func tions. Eac h func ti on s o 

d efi n i ed c an have a ny part i cular of it s va lue s d e te rmined 

a f ter a fi n ite number of si mpl e operations . Al l qu esti ons 
I 

about t h e value of such functlons t hus has a s c h ema 

fo r deci sion . 

2. 4 The other t ool u s e d by Godel i s one for i nd irec t 

r eference t o t he s t atements o f the cal cul us . He t a l ks 

a b out numbers but a l loi-rs u s t o s ee thi s as tal k a b ou t 

t h e synta x o f t he s y stem by letting ea ch statement 

(and each serie s of such s tatemen t s ) b e r e present ed by 

a natural number . I n a way the entire set of s tat ement s 

is contai ned i n the natura l numb ers of t he s y stem beca us e 

of the c orre spondence b e t ween them wh i c h is esta blished 

by the n umberi ng scheme . Thoug h i t i s n ot this simpl e , 

the foll owi ng i ndi cates the spiri t of the attemp t . 

Supp ose every sta temen t is repr esen t ed by a natural 

n umber : 

(1) Al l swa ns a r e white . 
(2) All whi te ~hing s are pure . 
(3 ) Al l swans are pure . 



(1) and (2) together i mply (3 ). Here it is al so true 

that 1+2=3. In the arithmetic , a ddi tion represents 

th e operation of i~plication at the symbolic l evel 

in the arithmetic l evel . If all statements c oul d 

b e numbered i n such a way that if 5+135=140, then 

statement 5 and statement 135 i mply statement 140, then 

we could dismiss the operation of implication between 

statements and discover all such relat ions by 

9 

looking at add ition. Lo g ic would b e a ma tter of arithmetic . 

It is wi th this end in view that G·odel establishes 

/ his correspondence between numbers and statements. His 

schema is based on the f a ct that each non-pri me number 

c an be expres sed as a product of pr imes in exactly one 

way, dis regarding the order of the f actors .5 To the 

basi c signs of his system Godel assigns odd integer s 

accordins to the followi ng table: 

0 
f 

...,.. 
v 

,Y 

( 
) 

zero 
successor funct ion 
negat ion 
disj unction 
universal quantification 
left parenthesis 
ri ght parenthesis 

Number 

1 
3 
5 
7 
9 

11 
13 

n · For variables of type n the number is p wh ere p i s a 
prime over 1 3. Thus there are denumerably many variabl e s 
of each type. 

(fi gu re 2) 
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We now lilse these numbers of si gns as a basis on Nhich 

t o assi gn numbers t o statements. We do so in th e followi ng 

way: to th e sequ ence of numbers of si gns n, _ nl., .. . I") 1< 

we ass i gn t he number ·where the ? : are 

i nc reasing pri me s b e g inning wi th 2. For exampl e , t o th e 

s equence of signs 

we assign th e corresponding sequence o f n umbers 

I o I -:i ,S ; 1 I J / 7, 7J , _, 0 

Since a and bare assumed to be variabl es of the 
I 

f irst typ e , th ey may b e pa ired with 17 and 19, th e 

first powers of primes greater tha n 13. Now to the 

expressi on as a whol e we assign the n umber 
- 11 17 7 / ~ J~ 

2 !>)(3 xS x7 -..II xt3 

Numbers c an also b e worked ba ck to s equences of si gns. 

Many :numb e rs, h owever , do not represent such sequences. 
i. 2. 

For example , /oo==- z. XS" is not one since 2 and 5, the 

primes present as f acto r s , are :not suc ces sive 

primes and hence 100 could not have r esulted from 

numbering accord i ng to our system. But 

5 3'7 z. 'f-

represents ~~ , where x is the fi r st variable of 

the lowes t type . We c an thus g o from expresstons to 

numbers a nd where it is the c ase , from numbers to 

correspondi n g expressions . 6 

~.2. The system which C-odel uses fo r his proof is 

a modifi e d v e rsion of PM . Peano ' s axioms ? have b een added 



(though this only simplifi es mat teis , s ince Pea no~s 

axi oms can be deduced within PM ). Specifically the 

a xioms of 3~de l 1 s sy stem are : 

I. Peano ' s axiomsB 

11 

1. z e ro i s not the s uccessor of any na tural n umber 

2. t ,1rn numbers which have the same successor are 
equa l 

f( --x.. ,') = -f(j,)::> '7C..,=-~, 

3. the princip~of ma thematica l induct ion : if 
a property h old s for zero and, if it holds fo r 
any natural number it ho s f o r its succe s sor , 
then the prope r ty holds for a ll natura l numbe rs. 

'i< 2 co ) . -x , TT ( -?<'."' 1 --x ,) ::> -x z. c -F r --x ,) ) ) ::::> rt... 1 n' ( ?'.- -.... ( I?( , ) ) 

II. Th e fo ll owi ng axiom fo rms ( in which any formu l a may 
be substituted fo r p,q,or r to produce an a x iom): 

1. pvp-=:)p 

2. p=> pV'J,. 

J. pv'i,:)ci,_Vp 

4. ( p::),) ~ ( <'VP J r vi) 

III. The following schema , which concer n the quant ificational 
calculus9 : 

vrr ( c;__) ~ Sv 651' ( 0.. V) I.) \.-_e,-re.. C. ; ~ ~ pc...--+: c.vlc, .. r 
1. C. .J 

2 • v T'( ( b V c,..) :) b \/ v TY ( c... 't ; -f v d o e S -n ° + o c.,c., u r 
f.--e.e. in b 

IV. The axiom of reducibility is accepted in this form: 

( £ 0) ( v 11 ( u ( V) -= a) ) 

V. The following axiom (togeth e r with all of its type­
lifts) which state tha t a class is c ompletely determined 
by its elements: 
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Fortunat e l y these axioms will not be referred to a~ain. 

They are presented to sh m•i on what a smal l base 

a sy stem can be built and stil l be adequate to 

demonstrate G~del 's result. 

With one more definition we can approach the 

proof it self. A fo rmula c is called an immediate conse­

quenc e of a and b, i f a i s the formula ( ~ ( b)) V c 

c i s an i mmediate consequence of a i f c is th e fo rmula 

where v is a variable of a . rl'he provable 

fo rmulae are the smallest class ·which c ontains all o f 
I 

the a x ioms and t heir consequences . 

2.6 We are now ready t o look at the proof proper . It 

begins wi th an exposition o f recursive functions . 

The se funct i ons will turn out to b e models of the c oncepts 

s uch as proof , entailment, etc. They thus provide for ­

mulae for d ealing with the n umb ers which refer t o the 

sta t ements of the syst em. 

The line of deve lopment is this . First , there will 

b e five theorem s about combinations of recursive 

func tions . This will s erve to justify the exposition of 

45 r ecursive functions ending in 

X BY =. Bw (?<) o.nd [I(?:)] &I(')()= Y 

that is, x is the nwnber correspondin-3 to the proof of 

the formula whos e number is y. This function is shown 

to b e r ecursive. Then we are in position to prove 

Proposition VI whi ch a ssert s the incompletene ss of PM. 

Proposition XI on the inability of PM t o demonstrate it s 

c onsi st ency wi l l then f ol low i rrurted i ate ly. 
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The fi rst five propositions about recursive functions 

will b e s tated ~ithout proof. G~de l sketches these i n 

hi s paper . The first three will seem obvious, if the 

de f i nition of recursive function is kept i n mind . Th ese 

f ive theorems . tell us how we can combine recursive 

f unct ions to produce recursive functions . They fo rm 

a c a lculus f or these functions. 

2. 7_ I. Every f unct i on (o r relat ion) 10 de r ived from recursive 

functions (o r relations ) by the s ubstitution of recursive 

functi ons i n place of variable s i s recursive ; so a lso 
I 

is every function derived f rom recursive functidns b y 

by recursive definition ac co rding to schema (2 ) . 

II . If R and Sare recurs i ve re l ations , then so 

are rv R (or R ) I 
R.. vs (and therefore R • .S ) . 

II I. If the func tions c/J (;f ) 11 a nd 1t1 ()1..) are r e cursive , 

so also is the relation Q)( "')./ )=o/(Ji.) , 

I V . If the function cp("3{) and the relation R(')( 1Jl) 

are recursive, so also are the relations S,T 

St~,'n..l = ( E)(.)[--x ~ ¢("¥) c;;.nJ R l,'..)t.)] 

T( '¥J1-) := t -x~ L --x ~ <P ('j(. ) ::::, R ( x,,n.")] 

and likewise the func tion 

'fl o/J\.\::. E.rx. ( 7- ~ cp C"'/) o. nd R( l'-,11..)) 

where £. is a func t ion satisfied by the s mallest integer 

x fo r which th e following cond ition holds , and o 

if there is no such n umber . 



This theorem will b e needed in establishins the 

r ecursiveness of functions which express manipulations 

on particular terms in number sequences. 

13 
II 

One more theorem remains to be sho,,m about recursive 

f unctions . This one guarantees that a r ecursive 

function exists fo r each recursive rela tion. The c onclusion 

of the theorem is g iven in the form of Godel numb ers . 

For a proof , see Godel's paper . 

Proposition V: To every recursive relation R ( t,, '· · rx"' l . 

(a statement ) there corresponds an n -place relation sigh 
I 

r ( a number) (1 -r i th free variabl es v,J 'It, . ., v" ) , such t hat 

for every n-tuple of numbers ~ 'il,, '):,, ... 'X,..J the foll ovr i ng 

hold: 

The claim is tha t if a relation hold s among n-variabl es , 

the number which. corresponds to the relat i on when th e 

variables are replaced is among the class of 

provabl e formulae. Similarl y , the s econd proposition states 

the resul t 0 hen the relation does not hold a mong the 

numbers. 

2. 8 It can easily be shoNn that x+ y , /"f- · 'j 

, are r ecu rsive . In the orig inal 

paper 45 functions follow which are immediat e ly seen to 

be recursive on the basis of t he pre c edi n g theorems. 

·I' hey are functi ons on natura l numbers which can be taken 
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as referring t o the si ~ns of th e sy stem and to the 

sequence of such signs. The g oal of the se propositions 

is to e stablish that the noti on of b e ing a proof c an 

be recurs ive ly defined . The result (numb er 45) is 

( B c omes fro m the German Bewe is ): 

Interpreted , x is the G·odel number of a serie s of 

fo r mula e which c onstitute a proof schema , B"' lx) , 

and wh ose l ast t erm [ i l ?= )] G- Jtj is the Gode l numbe r of 

statement y. G~del n ext defines one more func tion 

which is n ot r ecursive, and whi6h as serts tha t the numbe r 

x correspond s to a p rovable fo r mul a . The func tion is 

number 46 a nd draws it s name from the German Beweisba r : 

Five more of these functions will be us ed in the fi nal 

demonstration. Thes e are Sb, Z , Gen, Neg , and Flg . 

Sb is number Jl of the series and corre sponds to 

the operation of substitution . It generates the 

Godel numb e r which corresponds to the substitut i on of 

a constant in a variable of the function. Sb operates 

o:n numbers, performing the corresponding operation to 

variable substitution. 

Sb(><~/ ) 
(' sb(-x; 

a. r ithrn{:.t- i L 
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Z ( from the German Zahlzei chen ) provides for 

each number its Godel number. Since numbers are not 

p r i mit ive in th e system, the y are defined in terms of 

th e successo r function f by expressions such as i(f( o)) 

Hence each number posses ses a c orresponding Go.del number . 

The function Gen (number 15) corresponds to the 

l ogical operation o f generali zati on . It, like Sb , 

opera tes on numb ers , and corresponds to the manipulati on 

of symbols in the syst em. 

Neg( x ) is the negation. Fl g (x ), from the German 

Folg erungsmenge , is defined as a set of numb ers- - th e 

s et which co rresponds to the set of provable formulae . 

£~2 To b e honest, t he demonstrat ion of Proposition VI 

wil l requi re a stron g er demand be placed on the system 

tha n simpl e consistency . S i mple consistency requires 

that p and rvp n ot be among the c onsequences 

of the a x i oms. ~ -consistency, which G~del will require12 

prohibit s t he following in the system : 

1. Propo s ition x holds for each natural number. 

2. It is not the cas e that proposition x holds 

for e v e ry natural numbe r, 

One is a claim about the numbers demonstrated individually . 



Two states tha t t h e n egati on of the ~en e ralizati on is 

demonstra bl e . 

Every w -cons i s tent sys t em is simply consistent. 

16 

However w - c onais~enc y cannot be demon s t r at e d from the 

assumpt ion of simpl e consis t ency. 13 Formally Godel g ive s 

this condit ion of w - c onsistency as a sta temen t about 

n umbers. A system i s C>1 - c on s is t ent i f there is no class 

s i gn number a inc such that 

I 
2.10 And now as Go d e l says , 11·we c ome to th e obj ect of 

our exercise s ": 

Proposition VI: 'I'o eve ry tu -consist ent recursive cla ss 

c of :formulae there c orre spond recu rsive class- signs r 

such that neither v &el\r nor NC! 5tv6-t,\f·) belon>?;s to Fl()Cc.). 

v is t he fr ee var iable of r. 

c is a set of formulae in addition to those g iven by 

the axioms. We will n eed w -consistency and recurs iveness 

for this cla ss, but nothing else. It may be null (as it 

would be in applying G'ode l I s work to PM ). The introduction 

of this additional s et of propositions at this point 

will be analyzed in t he discus sion to follow. 

For the new set Ne d e fine Bw.._ l t) similar to the 

function BI.A.I exhibited above . The difference b etween 

the t wo is in the ac c eptance of propositions from c as well 

a s f rom the syst em it s elf . 



l) w (_ ,y) --=- ( I'\) l 'f\ !::: ) l -x ) ~ A )C ( Y\ l°>--1 'X) V 

<- ("' C,..l-;,.JGC.. V ( t?,'J_) l oL P,<j_ Lri 

~" d !=I ( n 1rh: J pG-1-:x, 1-- G--l 't JS 
c."' J .tl-x)? oJ 
c.t . w ·,--t'"\ G--~,'cle l 1 ~ tu,,-.ct ioY) "'11 

Analog ous to L} 5 and 46 we define : 

')( i?) c y =- \2> W '- l ·"t-- J CL n J [ J l X ) J (,._ \ 'X- ~ 

B e ~._, <- ,y_ - l f" 1 J y 5 c... i 

The followin g propo s itions are now evident : 

( l) 

( 2 ) 

( 1 ) s tates tha t if x c an be proven on the basis 

of the expanded system, then i t is among the 

c onsequences o f the expanded system. (2) states 

that if a number x corresponds to a provabl e statement 

i n th~ basic system,it also corre sponds to one in the 

expanded system. 

We now define the following recursi ve rel ation : 

( 3) 

This relation will b e the c rucial function for our 

demonstrat ion . Let u s r evi ew its c ontents: 

are inter;ers . 

17 

Q 

integers . 

is a recursive relati on defined on pa irs of 

I.ISRARY 08 

WASHINGTON & LEE UNI~ 
,s.BXINcm>i:i, _Ut, 
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says that the series of statements corres ponding 

t o x are a proof for y. 

y i s a number corresponding to a s tatement of the 

c a lculus. It possibly contains free variable s , and if 

it does, they would have n umb ers 17 ,1 9,23 ,27 . . .. Thus we 

ma y subs titute in variable 19 a numbe r. We will 

substitute Z (y} , the Gode l number corresponding to 

t he nur.iber y. 

The bar sign i s negation . 

Th e relation expresses the conditi on that x do es not 

co rrespond to a proof for y, when y has one bf i ts 

varlables replaced by the Go0d.el number of i ts Go del number , 

Sinc e Q i s a recursive relation , there ex is ts a 

fun ction Q' which holds if and only if t he relation 

Q holds . By pr oposition V the following holds about the 

God el numbe r q corresponding to th e function Q 1 which 

determines the relation Q: 

( 3) 

( 4) 



I f the relation Q holds b et~ een x and y, the function 

which generates Q holds when x and y are substituted, 

and thu s the numb er q correspondins:-~ to the function _ 

afte r the substitution i s a provable number . Th e 

s econd relation holds if,...., <":;z l '1C_, :-;) • Note t he negation, 

Q holds i f x is not a p r oof. 

Now consider the number 

-p::::. /7 G-e..n ci,, 

We substitute t h is numb er f o r the vari able yin (J): 

( 5) 

In effect we have narroNed our c onsideration from all 

the fo rmulae y to the formul a r epresent ed by p. 

Expand i n-3; the lef t s i d e of ((5) we get : 

Sb ( ? ~;?1J 
S b ( I 7 &e"' 't I °i \ 

~ Cpl } 

I 7 &-e 11 ( S b t I q ) 
r. ( p J 

19 

Sub and Gen are commutative ;.-!hen they refer to different 
1~ 

variables. We call S b 1-- r. ( p"\ , r and thus the 

left side becomes : 



Shifting our attention to the ri ght side we c an c hang e 

since th e o r de r of t h e substitution i s i mmateria l , 

if the variables are diffe rent . U~i n g the r defined 

above , this b ecomes : 

17 \ 
Sb ( r z(x) ) 

Equa tions (3) a nd (4) can then b l writ t en as 

( 6) ry.._ B c_ ( 11 Gtl'\ <' J ~ B e_ wc_ [_ S l:J ( ' ;:7'1)] 
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Be_ vJ '- L rJ e 3 S b ( '~ :1'-J)] 
( 7 ) 

We i mmediately s ense s omething amiss about this pair. 

(6) indicates that if x does not represent a proof 

fo r r holding fo r all x , then r holds fo r this x . 

(7) indi cate s that if xis a proof for r holding fo r all 

x, then x itse l f does not satisfy r. 

We n ow inquire about the prova bility of 17 6-e" r. 

A. Suppos e /7 ~~nr _were provable. Then there would 

b e a number x whi c h represents its proof, that is 

r Be. ( 17 &e"' (') '\WUld hold and thus from ( 7) 

B £w c_[ N ~s S 6 ( 1"' ~~l(JJ 1'hus N <:.j S b ( r ~}~1) 
hold s since it c an b e proven. But / 7 &-~n r holds by 



as sumpti on , ·wh enc e -.Sb(r~~) holds . Thu s the sy stem 

is i ncons i stent and therefore w - incons i s tent . 'rhus 

17 Cr <:.."' f' c annot be proven. 

B. Suppo se that tJ -e 0 ( 17 6-~n r l were provable. 

Th en it mu st b e true 

( 8 ) 

for no x could r epre s ent a proof f o r / 7 &e. n • and th e 

21 

system r emain cons is tent. We generalize (6) as a statement 

I 
for all x and get 

Thus from (8) and (6 1 ) we g et 

( 9) 

Now consider Ne,5 (11 l,.t.>r<') tog ether 11ri th ( 9 ) . (9) ass e rts 

r holds fo r each x butNe_s11h~~ asserts tha t it c annot 

hold fo r a ll x. Thus the system is 

if rv e-5 C n &-~-n r J can be proven . 

The as sumption that ei ther 17 &<.."' -r 

w -inconsistent 

or 

is provable produces UJ -inconsistency. Thus if the 

syst em i s w - c onsisten t, J7 hn r must be undecidabl e . 
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. ' 2.11Godel's propositi on on the non-provability of 

c onsi stency fo llows immediately from the completeness re sult. 

Proposition XI : If c b e a given r ecursive , consist ent 

c lass of f ormula e, then the proposi tional fo rmula 

which s tat e s that c is consistent is not c -provable. 

Sinc e the unprovability of J7 ~c~~ depended only on t he 

consistency of the system (and not on th e strong er 

~ - c onsistency ) we have (where Wid is consistency ): 

W . I \ ~ F'...) -e. w ( / ' t {.,. Q. Y\. r) 
IC., ((. J - C 

si nce if the systernviere inconsistent ,17&-c.nr would 

b e provable. 
/ 

Thus: 

Sinc e t7[,. ~nr=- p and the function implied is the 

relation Q of Proposition VI , we may re,·.rrite this as 

( 10) 'v.J I cl (cl - '::) l r-) Q ( 'X, p / 

Now a ll our t echniques of proof have been arithmetic 

and can be expre ssed within the fo rmal system. In 

particular \.Jid(LJ is expre ssible and has G~de l number 

w. Q l)l.;~J is expressible in the system by q, and 

- .s b ( C 19 \ Q Lx,p\ has numbe r r, sinc e , - ;- ¼(,p)/. 

Thus ('i') Q (-x,. P J has t he number 17 &~r-.. r Thus 

u1 Imp (nl,.~"'lcorresponding to (1 0 ) is provable. Now 

w cannot b e the Godel numbe r of a theorem, or 17 lre."" -r­

the number of an undecidable proposition , would be 



the number of a prova ble f ormula . Therefore PM 

c annot establish i ts 0 1:•m c onsis t ency . 
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?_;_12 Proposition XI, together Ni th Proposition VI c onst itute 

t h e h eart of cfodel ' s 1931 pa per. Together t hey plac e 

limits on deductive systems. VI i ndicat es that ma ny 

sy stems will always b e incomplete. XI g o e s on t o show 

t hat t h ese same systems will be i nadequate to demon~ 

s trat e their own consistency. Thi s l ast result questions 

the possibility of a consistency proof at all , sinc e 

s uch a proof could never b e i maged wi thi n a fo rmal s ystem 
/ 

which contains ordinary mathematics . Presumably such a 

proof would b e ba sed on a l arger set of a x ioms and t hus 

make the cons istency of the system wh i c h d emonstrated 

the consi stency a pertinent que stion . 



On Richard and G0odel: The Difference 

l ~ In this chapter we sha ll ex plore by c ont r ast 

Go'del ' s 'Theo rem w j_ th Ri chard ' s Parad ox . We shall see the 

only dl fferenc e between the ti:rn tlo b e ~ichard ' s lnsl s­

t ence on speakin~ directly to the statements at is sue 

as opposed to -::;.·odel ' s technique of never maki ng such 

r e f erence. From this point , the relationship among 

observer, lang uage , and object of languag e n ecessary for 

the success of the t heorem will be exposed . In thi s 

c ontext the observer will b e seen to have a c r ucial 

rol e . Fina lly the theories of e mpi ri c a l science 

know by the observer along side the sys tem will b e considered. 

and it will be shown that this c an have no effect on 

the apprehension the observer has of the theorem . 
I h~ Richa rd's Paradox, first pre s e n ted in 1905 , 

concerns some d ifficulties in is enera l s et t heory. It 

wi ll b e clear that Richard 's technique is v ery close to 

Godel's. In Ri chard 's paradox a c ontradict i on devel ops 

from a direct conside ration by a system of it self . 

We may assi g n a number to any f initely long English 

24 
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statement in a one to one fa shion; · for example , this 

may b e done by fir st orde r ins the s entences by len~th 

and then in alphabetical order . We now delet e from our 

l ist every statement which does not denote a number . 

We now renumber the remainin:"3; sentences calling them 

C\,," .,_.,., , (\ 1<.. • We now cla i m that all numbers •,rhich c an 

b e defj_n e d by fin l tely many r!Tords have b een c ounted . 

It has b een established by Cantor that the rea l 

numbers are not numberable i n this f ashj_ on. He showed 

h oN to construct another number af te r the count ing i s 

c omplete. "Let p be the digit i :h the nth decima l place 

of the n t h number of the s et of ordered numbers. Let us 

f orm a n u.rnber having O for its i ntegral part and in its 

nth dec i mal place p+ l i f the digit pis not 8 or 9 , and 

1 otherwise . 11 ·rhe number 1,re have j ust constructed i s 

no t one o f t he set fo r i t differs f rom each of these a t 

t he nth place from the n th numbe r . It is a number we have 

n ot c ounted . But t he words in quot a ti on marks above a r e 

fi nitel y long and define this number . Ther e f ore it is 

i ncluded in our enumerat i on . Thus our numb e r i s both 

inc l uded a nd exc luded f rom the li s t , and a contradic t ion 

r e sults . 

lJ In hi s ori ginal paper Ri chard pointed out the error 

i n reasoni n ~ whi ch a llows the contradict ion to deve l op . 

He observ es that. we should never have admitted our 

def i n it ion of a n ew numbe r to be a d e fini t ion . Its 

r eferen ce to th e total se t of included numbers is 
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ill e g itima t e , Ri c hard says, b ecause the set does not 

exist until it has b een set out completely . Thus we 

s hould not say our definition should have b een included 

in the enumeration because the defini t i on uses a s et 

which has no meaning i n the context in whi c h i t occurs . 

It is i mproper within the enumerat ion to re f er to 

this s et . Thu s there i s no paradox . In effect the 

r eference of the new d e f inition is to a meaning 

atta ched to the nmnbering scheme which it c ann ot properl y 

posse ss . If we ad j oin out definit ion and it s number 

after the enumerat ion is complet6 , it c an be i nc luded 

without difficulty. Insert i t anywhere in the 

s equence and increase by one the numb e r of any 

statement above it. 

Nagel and Newman2 s ee the d ifficulty i nvolved i n 

a s omeNhat different li .;h t. The i r paradox is constructed 

in a different manner . They extract a contradiction using 

a prope rty 11 Richardian 11 • l 'his property refers 

to a statement whic h expresses a prope rty not satisfi ed 

by the number assi gned to the s tatement . Then 11 Richard i an 11 

is a property of natural numbers . ( Nagel and Newman 

use number properties, n ot names of numbers) and hence it 

has a number assigned to it. When we ask if a numb er n 

is Richard i a n 1-;re a sk if n do es not have the propert y 

e~pressed by t he statement assi gned ot i t . Now consider 

th e nu!Uber n 1,rhic h 11 Richardian 11 is assj_ gned t o. 
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If n is Bichardian, it d oes have the property required , 

and h enc e ·_it c annot b e Richardian . Si milarly, i f n 

do es n ot ha v e thi s property of b eins Ri chardi an , it 

is Richard i an . Thu s n i s Richardian i f and only if n 

i s n o t Ri chardian, and a c ontradiction ensues. 

Here the paradox is r eso l ved in terms of lingu ist ic 

r e fe renc e . Th e d e f init ion o f Richardian makes a reference 

no t to a ny ari thmetic pr operty of a n umber , b ut to a 

nota tiona l p r operty of t he way t he number properti e s 

were counted. cr h e c ount in6 ref erred to a r ithmet ic 

statement s , but t he n wnbers ass i f ned are not simpl y 

arit hmet ic, and thus Richardianism shoul d never ha v e 

b een admi tted i nt o the enumerati on . 3 

J.~ How then d o ~ichard a n d. Godel dif fe r ? H_j_chard 

and G~del bo t h d e p end on a numb eri ng of s tat ements. But 

the use tha t each ma kes of the numbering scheme is 

different . Godel 's proof is a disc u s sion about s e t 

membe rship of numbers . The recurs i ve fun ction theory has 

be en d eveloped so that deci s i on about set membership c an 

be made on the b a sis of satisfaction of certain 

number theorectic equations. The entire discussion 

can be carried out without any sta tement on how the set 

membership , in some sense, can be taken as a statement 

about the system itself. 

Richard is not s o careful. In dev e loping his 

additional number , reference is made to the numbering 

scheme , not conside r ed just a s :numb ers, but as :numbe rs 
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represent ing s tatements in the syst~m. Th e numbe rs are 

not obj ects in t hemselve s for investi gatioh, as they 

are fo r Go d e l , but in effect a re an inte e:, r a l part of the 

syst em in whi ch h e is operating . Thus Richard s ees 

it as illegiti mate to t rea t these numb ers as if the y 

could b e objects for the sy st em , since they are a 

pa r t o f the system. In effect the s e niJ,mbers carry 

a meaning o ther than th emse l ve s and ·Nh:i.ch the syst emic 

machi nery is not c apable of h a ndl ing . When this is 

obs erved , t he paradox c annot b e developed . 

/ 
G'odel , however , is able to use n umb e r s as an 

object of discourse conside r ed so l ely as numbers. The 

i mmed iat e ob j ect of the discussion i s not the 

intended object, but this situa t ion need not b e r ecognized. 

As a result Godel can b e fo rced into no difficulties , 

either with the sys tem , or with its i mage in the 

arithmetic. 

l .!...5- No c ontradic t i on similar to Richar d ' s can be extracted 

about t he system its elf . '1:he l angua g e of Pri_nciJ2i@: Mathematica , 

in Godel , n ever say anything ex plicitly about itself. 

I t t a l ks about relations amon~ numbers , which are taken 

as it s obj ect f or d i scussion . We are sho~n that the 

n umb ers ·model · the 9ystem , but this is never proven wi thin 

th e system . Any attempt to forc e a contradiction about 

t he system from th~ result uncovers the defense that 

the theorem is one about numbers a lone , just like the 



Fundamental Theorem of Ar i thmetic , or 2+2 =4 . That the 

sy stem has flaws is s een but never sai d . 

2..!.2. Neither c an any c ontradiction s i milar to 

Richard ' s be developed fr om the numbers . If it could 

be sh01.<rn tha t a g iven numbe~c- both is and is not an 

el ement of a g ive n s et , we woul d show only that 
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Pril).S-J.:..Pi §:. Ha themat ica is inc ons istent . Our result would 

sti ll b e demonst rable within the system (as of cours e any 

re s ult woul d b e ), but the re u l t would no t b e dettroyed . 

The numbers are obj ects of the system and do not refer 

back to it. Even our c ontradiction would ha v e to be 

r ecogniz ed as· s uch by t he sy s tem. And this incons j_ st ency 

c ould not be reco~nizecl by the syst em since it c a n make 

no stat ement s about iself . 

J..!..:Z. We have now seen that s 'ode l do es not explicitly 

r efer to wha t h e i ntends in exhibit i n g his theorem . 

By using this subterfuge o f indirect r e fe rence, he avoids 

t he difficulties of the . direct reference'. in Richard . 

What is the structure of this indi rect reference ? 

We are asked to accept the proposition that obj ects 

to which a language may not refer explicitly, on pain 

of c ontradiction , it may refer to i mpl icitly via an 

intermediate object. It just further b e claimed that the 

l anguag e c a1u1ot demonstrate t hat indirect reference occurs , 

but may only invi te us to se e it that way . If this further 

claim were not fuade , the langua~e could ftncover its own 



t rick and deve lo p the c ontradic tion any~ay . 

J h-\ ~ r- r o r (v o ·' 

Th e i sstie appears here in th e guise of self-reference . 

In the acceptabl e case t he self-reference i s i mpl i6it , 

i n the unac c eptable c ase i t i s expl i c it. The 

i mplici t se l f-refe rence i s no t of this k ind : 

(1): Sentence 2 is true . 

(2): Sent enc e 1 is fal se . 

I 
This c an be considered not to b e i mplicit r eference , 

b ut r ath er a direc t reference via a t rans formation 

whj_ch wo.ul d render one as: 

JO 

(3 ): It is t rue that this very s entenc e i s f a lse . 

'I' he transformat ion linkin~ references to ( 1) and ( 2 ) 

t o th e sentences themselves ~ust b e s evered in suc h a 

way that the t rans f orrna ti on to (3) c annot occur . 
,. 

If t his is done the pair b e come , after Godel: 

(1): Number 2 has property T . 

(2) Nwnber 1 has p r ope rty F . 

And we mi ght a dd : 

(J): T and? do not b oth apply to the same number . 

Here the r e is no con t radic t ion . We may see it as a 

contradiction (if we number th e sentences and interpre t 

T and F i n r e l a tion to t he meaning s of the sentences ), 

or we may not do so . It is our choice . 
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It i s as if there were an i ma~ e of the syst em 

whic h i s examined but Hhi ch is n ever seen to b e an i mase . 

So we have three parties to the encounter : 

Wha t the syst em may n ot s ay , the observer may visuali ze . 

The result of G~del ' s proof mus t alway remain sub jec tive 

sin ce an active observer i s needed f or th e r eal i zation 

of the c onclusion. What i s presented by G~ del is not 

fac t about the sy s tem , but an o pe,,rtu:ni ty for u s to s ee 

thi s fac t. 

}~~ Our observer can i ntu it other thi ngs besides 

the syst em and the numbers . He also sees t he world . 

We may see the axioms of the system as a set of transfor­

mational rule s of a g enera l type which apply t o all objects 

of cognition. We may see physi c a l data as n ew axioms 

fo r our syste m. Is there a ny ;,•ray thes e may u pse t G0odel' s 

re sult by the ir fusion in the observer with the system? 

We ha v e log ic and g rammar 1.·rhich we 1-rnul d consider 

as axioms . To this, with a status similar to Peano's 

natural number postulates , we would j oin the theories 

of empirical science . 



The que sti on no~ becomes ~ hether 3~ de l 1 s result s are 

applicabl e to this l arger system. In his proof on 

i nco mpl e teness of PM in Propo s ition VI , 3 ~del adjoins 

a c l ass c of formulae which h e r equires only to be 

w -consist ent and r ecurs ive . Later h e ,·.reakens 
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recursiveness fo r this class to d ec i dabili ty , o r satisfa cti on 

of his propo s ition V. 

We sha ll assume tha t the g r ammar of th e language 11J e 

have ad j o ined , i:,rhich i:rnuld. encompass moda l log ic at 

l east , i s oJ cons istent and further that i t c an b e s tated 

i n a recursive fa s hion. None of 1 this ha s b een demonstrated . 

Th e question i s wh ethe r the theor i es of empirical 

science, when a ccepted , form an w -consistent r ecurs ive 

c lass . The issue posed c a nnot be demonstrated in the 

affirmative . Rather i t '.,Jill be shom1 that the kind of 

structure s oug ht by the scientist i s such a class . 

w -consisten cy i s a rather Heak concli tion to i mpose 

on empirical jud gment. It i:.-rnulcl r equire t hat at no time 

do we examine every x and find it a P and at the same 

time conclude that not all x ' s are P . While we may 

neve r b e in position t o check all x ' s for P , we would. 

cert~inly expect g iven the c laim that not a ll x 1·s are 

P that if we did check each one we woul d either find not 

all x 1 s P or we would reject the first claim . So we 

· c an j udg e empirical r esults as uJ -consistent . If we f ound. 
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a n w - i nc onsis tency, we would ad just what we j udg ed to b e 

case in order to conform with this requirement . 

What about recursiveness for these propositions ? 

The sch ema we ha ve given i n the previous chapter is 

a bout r ecurs ive func t ions of numb ers , but i ts i ntent c an 

b e ext ended so as to include empirical propositions . 

We state two requirement s~ 

(1) Every r ecursive assertion c an b e che cked by 

fi nitely many specifia ble steps . 

( 2 ) Gi v en a ny recursive assert ion a nd a l l but one 

of it s va r i a bles, then t he remai~ing one can be predicted 

on the bas is of the o t hers by finit e ly ma ny specif i able 

s teps . 

(1) is the veri fi abi l ity c ond itio11. It would appl y 

with i n a the oret i cal structure i n answe~ing q u esti ons withi n 

that vi e,·rpoi n t . ( 2) re l ates n ot t o d.eterming f a ct , bu t 

to th e prediction on the bafui s of theor y . It mus t b e 

po ss ibl e t o cl early s pe c ify exac t l y what the predicti on 

of the t heory would b e . This cond i t ion 1•:ould surely b e 

satisfi ed if such laws as s c i ence uncove rs can be 

committed to computers for a pplication. If this is not 

possibl e , check ing of any applica ti on of a law would be 

i mpossibl e since t he r e a soning n eeded cou ld not be cl early 

g iven . It wou l d s eem a ny satisfactory l aw of science 

· would f ul f ill t hese c onditions . We woul d t hen want t o cl a i m 



w - c onsistent recursiveness for a ny satisfactory 

s et of scientific proposit i ons. 

Our enl arg ed sy stem would fall within the scope 
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o f G'odel I S argument . It 1-rnuld be n ecessar i.ly 

i ncompl ete and powerless to demonstrate its own consi s ­

t ency . 

We a re no~•J i n position to cons i de r l ang uage in general . 

We have ,before us in Ri card a f a ulty u se of l anguage and 

in G~de l a c orrect u se. Chaper 4 wil l examine paradoxe s 

i n ordinary lang uage to c onclude that the Godelian­

Richardian difference c an po int to usage errors 

which permit the development of th e paradoxes. 



IV 

An Extension to Ordinary Languag e 

4.1 ~ he concluding s ect ions c f Cha p e r J presented a 

st ructure fo r the reference of languag e n ecessa ry for 

G~del ' s result : 

I 
\ 
I 

\ 

W1.na t must b e requi red of the ling ui sti c sy stem fo r this 

relat ionship to hold? 

First, the language must refe r outside of i tself. 

It is not lo be considered as an obj ect for it s own study , 

but as a means of study. In the c ase of G~del 's work 

the obj ec ts are the n a tura l numbers . The referent 

could be part of the langua~e itself, but then only 

if it were consi de r ed as an obj ect a nd not as a lang uag e 

bearin,3 meaninis . 

The recognition of a n isomorphism b e t ween the 

lang ua'3: e and its object cannot be stated in the lang uage. 

35 



Otherwis e t he l angua~e would b e c apabl e of exprest ing , 

correctly , assertions about the l anguage i tself, 

and Ri chard's paradox c ould be d eveloped within it. 

For the l an3 uage in t a l king about its obj e c ts 

could express this as t alk about it self, and jus t 

as it mi ght number obj ects it c ould number isc l f 

J 6 

and Richard ' s paradox cou l d ensue if the fi nal referenc e 

were to the l anguag e . So the languag e may not g ive 

recos nition d i rectly to itself , but may only r ecog niz e 

obj ects othe r than itse lf. 

If the re l at ion b etween the ~b j ec t and the l angua~e 

may not b e s ai q in the l anguage , it must b e learned 

some other way and fo r t '·ns process 1'7 e have u sed the 

word s show or see. Wha t may not b e said may b e shown . 

!±d When we approa ch Go del I s work , ,·.:re d o posses s a 

l ang uage in which the exact r e lation of our syst em to 

i tself can be spec ified. 'rhe ordinary English , employed 

in Cha pter 2 , c an ex pre ss this relat ionship , and did so 

in the section on Godel numbering . But Ene lish is 

a "higher level" lang uag e than Pr i nc ipia Mathematica 

sinc e it c an express more than PM . Is a higher l evel 

lan~uag e ess ential to a G~~elian demonstrati on f or a 

lower level languag e ? 

As far as simply stating the proof, such a l anguag e 

·1s not needed, and the ability to carry out such a 

derivation v.ri thout the hi g her level l ang uage wa s n eeded 



fo r Proposition XI on consistency demonstrations . 

Bu t while such a lan guag e can symbolically represent 

the proof, we have s een the reference cannot b e to 

the l ani::; uage itsel f , and a higher l eve l l angu age is 

n ecessary t o express the conclusion , but not t o show ...__,, - . 
i t. Bu t in turn the hi g her~lev~l language mu st be 

powerless to express comparabl e cla i ms about i tself. 

I f we r e j ec t the G~delian syste~ of indi rect r eferenc e 

as adequate f or talk about l an:;uage , then we mu s t 

posses s ascending se r i e s of l anguages each pm,7erl ess 

t o discus s it self in order t o make such inquiri e s . 

The exist ence of such a series i s doubtful . 

It i s que st ionalbe that such a s eri es c an ex i st , 
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ad i nf ini tum , i:n so f ar as 1·re are capbl e of 1 earning the 

l ang uage . In so far as such a l anguage c ould be us ed , 

i t could b e l earne d . Some language (or n at ive c a pac i ty ) 

must b e c apabl e of describing the h~ g her leve l l ang uage . 

As such i t would se em our n ew language is nothing but 

a no rmal extension of the old to fi t n ew circumst anc es . 

'11 0 b e sure, the grammar of the new l ang u ag e may be more 

compl ex , but if i ts features can b e described in Eng lish 

a nd co:nvien ient expressions for them found , i t may be seen 

as just more English . In a t l east t h is way , many n e1,,;r 

lang ua5-e.s c an be considered as extens ions of En glish, 

· in much the same way a s we add new nouns , o r perhaps 

even a new v erb t ense . Any r eally different lang ua g e 

·would h a ve to b e one Eng;li sh is incapable of d escribing . 



Wha t fo rm t his might take i s a puzz l e . 

Ll Th ose who fav o r adm i tt i n g l eve l s t o l an3 ua g e s 

do s o t o avoid paradox . 

(1 ) Th~ tree i s green. 

(2) 11 I' h e tree is green " is a sent ence. 

( 2) woul d be said t o be on a h igher l evel t han (1). 

On our vi ew that there c an onl y b e on e l anguag e , ( 2 ) 

would b e t aken as r e f erring to a part icular ob j ec t , 

n amely (1 ) , just as (1) refers to a pa r ticular objec t , 

38 

t he g reen tre e . No paradox c a n d evelop if t he r e f erent 

of "th e t ree i s green " i s someth ln~ othe r t han it s 

meani n g f ul oc c u rance as (1) . It may re f e r t o i tself 

as an ob j ect , but i t may n ot ref er to " the tree is green" 

as meani ngful usage . 

We reject any leve l of language th e ory and 

instead bar any r e f erenc e in a language to its elf 

as lang uage bear ing me a n i n g . We ma y con tinue to spe a k 

of c orrect u sag e , ju s t as well fo r med fo rmulae may 

be picked out by standard procedur es , but we will admit 

as proper no s tatement which refers to other 

lan g ug e d i rectly as a nythin3 other than an event . 

We will not permit this refer enc e to ind icate the 

sentenc e tog ether with its meaning . 

This sentenc e is ty ped on 
white pa per . 

The referenc e i s acc~pta.b1 e ·sinc e it is an object , whic h 

c an be consider ed apart f rom its mea ning . 
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This sentence is false. 

'l'he c onstruction of this sentence is i nappro~~i ate since ,... 

f a ls eness must apply to its referent ' s meaning , 

n ot the s i mple occurence . 

Usin~ this criterion, the paradox which fo llow s 

f rom the sentence 1 

Every sentence is possibly either 
f alse or n e ither true nor false. 

c ould b e expected since the object of this sentence 

must b e a sentence tog e ther with1 it s meaning . 

Godel c a refully avoids making this kind. of reference 

and refers only to obj ects apart f rom the meaning th ey 

carry. Richa rd doe s not. He refers to numbers and then 

through to the rneaning- sEmtence attached to them . 

Certa in g rammatical adjustments will b e permitted , but 

in general l anguage may refer only outs ide itself . 

It may not use a s its obj ect any part of the l ans uag e itse lf, 

considered as l ang ua~e bearing meaning . 

~~ Is this criterion too strone; ? Do . we unnecesari ly 

exclude situat ions such as : 

(1) Men are on the earth . 
A 

(2) Sentence (1) i s true . 

Acc ording to o~r refe r ence limitation sentence (2) is 

illegitimate as more constructed. But the intent b ehind 

(2) c an b e c onstrued as s omethiru:; like (1) or possibly 

11 Don I t count this ans1,'er 1:i.:rone; ! 11 But ( 2) c an usually 

be r ead in another way . Now 6onsider : 



(1) The moon is made of green c heese. 

]B 

( 2 ) Sentence (1) is false. 

( 2 ) can b e read as sayin~ that it is not the case 

t hat the moon is made of green cheese , i.e., the 

mo on i s not made of ~reen cheese . This i s a d irect 

claim about the moon of the s ame type as (1). Cases 

4-0 

such as A and B c an b e dealt ·with by ad j usting the l ang uage 

involved so tha t it wi ll not be forbidden. 

Not all situations of such referen ce c an b e 

r esolve~ in this fashion. Cons i er 

(1) Sentence ( 2 ) is true . 

C 
( 2) Sentence (~ ) is false. 

What c an be done ':T i th this paj_r? (2), acc:J rdin,3: to 

our render i ng , r equi res that we re1,;ri te ( 1) as 

(1') Sentence (2) is not true . 

Or alterna tive l y , 

( 1 ') Sentence ( 2 ) i s false . 

If thi s i s to ha ve meaning sentence (2 ) must b e 

r e d one which requires a rec onsideration of (a ). Thi s 

pa i r is illegit i mate since we cannot find an equival ent 

pa i r wh i ch do not require a du ustment to be acceptable . 

Ll We have exami n ed :;.·~del ' s Theorem in relati on t o 

Richard ' s Paradox . We ha ve f ound in Ri c hard a doub l e 

.. • 

· d irect r e f erence , firs t to a number and then to a s entence 

as sociated with tha t number. We h a ve seen that this doubl e .. 
dir ect reference does not occur in Godel . We then 

looked at Eng l ish looking at this situation and saw 



that either a s e ries of language l~vels, or an 

acc eptance of ind irec t reference was n ecessary to 

account for the meanin~ in G~del. The suspicion wa s 

rais ed tha t levels of l angua,::i;e a re not possible . 

We examined ctodel to provoke a c ri t erion for 

illeg itimate reference which 1:rnuld not require a 

lan g ua~e level theory. It i s this c riterion which 

accounts for G~del ' s s u ccess and Richa rd' s failure . 

It is further suggested that the r e striction of 

r e f erence by l ang ua~e to non- linguistic event s would 

b e nec essary to prevent pa radox . / 

Anthony M. Coyne 

April 1970 
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Append1.x I : Richard ' s 1905 pa per 

I 

Th e t ranslation ~ s from van Hei j enoort 1 s From Fre~e t o Gode l . 
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In it;; i~s uc of 30 ?l breh 1\)03 the Rcrn£ d raws aUc:11tio11 to certain contradictions 
tlrnt arc encount ered in gr11cr,1 l set t heory. 

It is not ncc:css[try to go so for as the theory of ordirrnl numbers to fi nd such 
contradictions . H erc i~ one tl rnt p re:scnts it self the momrnt we study the continuum 
and t o which some others could proL::cbly be reduced. 

I am going to de fi ne a crrta in set of number;;, which I shall call the set E, th rough 
the followi ng considcn, t.ions. 

Let us write all p cnnu Lat.ions of the t wenty-six letter:; of the French al1>habct 
t aken t,1·0 at a ti me, pull ing these perm utations in alplrnl.Jctica l order ; t hen , 
after them, all permutations t aken three at a time, in n,lphabetical order ; then , after 
them, all perrnutat ions t aken fou r at a. time, and so forth. These permutations 
may con t ain the same letter repeated several tim es ; they arc permutations with 
r cpet,itions. 

For apy integer p, any permutat ion of the t wenty-six letters t akcll p at a t ime 
will be in the ta ble ; a.ncl, since eYcrything that c,111 be written ,1·ith finitely many 
words is a permutation of letters, everything that can be written will be in the t aLlc 
formed as we h ave just indi cated. 1 

The clcfiJti t ioJJ of a number being made up of \Yorcls, and these \l·orcls of letters, some 
of these permutations will be defin it ions of numbers. Let ti s cross ouL from ov r per­
mutations all those that are not definitions of nmn bcrs . 

Let il1 be the first number dcfiu cd by a permutation, u 2 the second, u 3 the t hird, 
and so 011. 

We thus have , wri tten in a definite order, all mimbers that arc defi ned by finitely many 
words. 

Therefore , the numbers that can be defi ned by fi nitely many words form a de­
nurncrably infmitc set. 

Now, here comes the contracliction . \ Ve can fo rm a number not belonging t o this 
set. "Let p be the digit in the nth decimal place of the nth number of the sot E; 
let us fo rm a number ha,ving O for its intcgrnl part and, in its nth decimal place, 
p + l if p is not 8 or 9, and 1 otherwise ." This number N docs not belong t o the set 
E. If it were the nth numhor of the set E, the digit in its nth decimal place would 
be the same as the one in the nth decimal place of that number, ·which is not the 
case. 

I denote by G the collection of letters between quotation marks . 
The number N is defined by the words of the collection G, that is, by finitely 

many words ; hence it should belong to the set E. But we have seen that it does 
not. 

Such is the contradiction. 
Let us show that this contradiction is only apparent. We come back to our pcnnu­

tations. The collection G of letters is one of these permutations ; it will appear in my 
-table. But, at the place it occupies, it has no meaning. It mentions the set E, which 
has not yet been defined. H ence I ha ve to cross it out. The collection G has meaning 
only if the set E is t otally defined, and this is not done except by infinitely many 
words. Therefore there is no contradiction. 
. \Ve ca n make a fur ther remark . The set conta ining [ the elem ents of] the set E 

nncl the number N represents a nc,1· se t. T his new set is denumernbly infi nite. The 
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number N can l,c inserted into the set E at a certain ra11k kif we increase by 1 the 
rank of each numoc·r of rank [r.q 11 al to or] grcntcr thnn !:. Let w, still denote by E 
the thus modified set. Then the coll ection of words G ,,-ill define a nurn ber N ' distinct 
f rom N, since the number N now occupies rank k ancl the digit in the kth decimal 
place of N' is not equal to the di6it in the kth clccima l place of the Hh number of 
the set E. 
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Append i x II: Godel ' s 1931 paper 

I 

The translation is fro m van Heijenoort ' s ,Ero_Il! f~£S.£ to ~;09:.e l. 
The notat ion used i n the paper differs from the 
exposition i n Chapter 2 in tha t G~del 1 s class K is 

· denoted as c. 
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restrict the means of p rnof in any ,my). H ence a consi stency proof for the system S 
can be carried out only by means of modes of inference th at are not form alized in the 
syst em S it self, and analogous resu 11. s bold for oth er formal systems as ,m l! , such ns 
the Zermelo-Fracnkcl axiom system of set theory.3 

III. Theorem I can be sharpened to the effect that, even if we add finitely many 
axioms to the system S (or infin itely many that rcsn lt from a finite number of thc1~ 

by "type elevation ") , we do not obtain a complete system, p rovided the cxtenck·d 
system is w-consist.ent. l fore a syst em is said to be w-consistent if, for no property 
F(x ) of natu ral numbers, 

F(l) , F(2), ... , F(n), . .. ad infu1itum 
as well as 

(Ex)F(x) 

are provable. (There arc extensions of the system S that, wh ile consist ent , arc not 
w-consistent.) 

IV. Theorem I sti ll holds for all w-consistent ext ensions of the system S tlrn,t arc 
obtained by the adclition of infi nitely many axioms, provided the added class of 
axioms is decidable [entscheiclungsclefin it] , that is, p l·oviclccl it is metam athematically 
clecicla.bl e [entscheicll>::1.r] for every formula whether it is an axiom or n ot (here again 
we suppose tlrnt the logic used in metama thcrnatics is that of Principia malhematica) . 

Theorems I, III, and IV can be extended also t o other forma l systems, for exampl e, 
to the Zcrmelo-Frrrenkel axiom system of set theory, p rovided the systems in question 
arc w-consistent . 

The proofs of these theorems ,1·ill .cppear in Jlfona tshefte f iir Jiathematik uncl P hysik . 

3 This result , in p ::i rticub.r, holds n lso for the axiom system of classical mathematics , as it ha:; 
b een constructed, fo r example, by von Neumann (1 927). 

ON FORl'.IALLY UNDECIDABLE PR OPOSITIONS OF PRINCIPIA 
1lJATHE1vfA'l 1ICA AND RELATED SYSTEMS I1 

(1931) 

I 

The development of rna t!tematics toward grc,,ter precision has led, as is well kno\\·n, 
to the form alization of large tracts of it, so that one can prove any theorem using 
nothing but a few mechan ica.1 rules . The most comprehensive fonnaJ systems that 
have been set up hitherto are the system of P rincipia mathemalica (P.ill) 2 on t.he one 
hand and the Zcrmelo-1-'racnkel axiom system of set theory (fu rther deYclopecl by 
J . von Neumann) 3 on the other. These two systems are so comprehensive that in 

1 See a summary of t he results of tho present pa per in Godel 1930/J. 
2 Wh itehead all(/ R usse ll 1925 . Among t he axioms of tho system I' ,\[ ,ve include a lso the axio m 

of infinity (in this vcr~ion: there arc exactly clcnumcrnbly many individuals), the r.xiom of 
reducibility, and tho axiom of cho ice (for a ll types). 

3 See Fra cnl:el 1927 and t·on Neumann 192-5 , 1:J2S, and 1929 . 1\'e note tha t in orde r to co111pld<1 

the for mali zat ion we must add the ax ioms and rules of in fere nce of tho calculus of logic t o th,· 
sot-theoretic axioms given in tlie li lera ln rc c ilcd. The considerat ions t hat follow apply also to th,· 
form a l sys t ems (so far as they ,ire· DN:i ibhlo at prcs0nt) constructed in recent yea rs by ·HillJC rt 
and his collaborat ors. See fli//;cr t 1922, 1922a , 192/ , B ern a!JS 19:!3, i·on Neumann 192 i, nnd 
Ackermann 1921. 

N o 1 'C... : b '( a. c. )< ~ t e cl-- p c;. ~ ~ Y\ u Y'! ~ '< ,.... ~ "' +- 'I. ~ 

fl'\ 0. -r .j ~ Yi {:, \ € f { <' + D O r i 0 i r1 c.. I_ P Cl S ; Y'I ea. } j O I'\ , 

i 
! 
j 
! 
l 
j 

l 
l 
j 
j 

t 
t , 
a 
e; 

n 
si 
a 

h 
p 
a, 

SJ 

0 

p 
it 

0 
1 

CJ 

q1 
fo 

(1 
ci 
S} 

a1 

fo 
ff 

oJ 

ol 
I n 

C0 
(a, 

ap 

Vti 

d e 

d n 

m 
in 

Ill' 

of 



I ll.' 

, l t \' 

,, . 
. \ , , ·, 

,, 

' . ,/. 

.. . . 
, .,, I 

, • :,:,.r 

ON FORl\JALLY UNDECIDABLE PTIOPOSJtIO:NS 597 

them all met.hocl" of proof t oday used in ma t hem rd ic.,; iHc forrnn lizcd, tlrnt is , reduced 
to a fo,1· uxioms and rul ec: o[ inference . One might, thneforc conjcct,urc that these 
axioms and rule., of inference ::trL' s11Jl\cic11L lo cl cciclc CTll!J mathemat ical question t hat 
can at all be fornrn ll_y cxprc:;sccl in t.l1 e::;c systelll:s. H, will be shown bclo\1· that thi s is 
not the case, that on the contrnry there arc in t he two sys tems mcn!ioJtccl relatively 
simpl e problems in th e theory of in tegcrs 4 that cannot. be decided on the basis of the 
axiom s. This situation is not in any ,rny clue to 1.h e :3pec ial 1rnlurc of the systems tlrnt 
h,we been set u1) but holds for a \l'id c clnss of formal sy~tems ; among these, in 
particular, arc all s_yslcms that result from the two just mentioned through the 
addi tion of a fi nite number of axiorn s,5 provided 110 false p ropositions of the ki nd 
specified in footnote 4 become provable owing to the acldccl rr:-..ioms. 

Before goillg into details, , rn shall first shtch the main iclcn of the proof, of course 
without any claim to complete lJrccision. The formuhs of r, for mal system (we restrict 
ourselves here t o the system P 1ll ) in onhrnrd appearance arc finiLc sequences of 
primitive signs (variables, logi cal constants, and parentheses or punctu8.tion clots), and 
it. is easy to. st_ate wit h com1)!ctc precision which sequences of primilivc signs are 
meaningful formulas aml which are not. 6 Similarly, proofs, from a forma l point of 
view, arc nothing but finite sequences offonnulas (with ccrlain specifiable properties.) 
Of course, for rnctama.thematic:il considerations it docs not matter what objects are 
chosen as primitive signs, and .,1·e shall assign nat.mal mimbcrs 1. o this usc .7 CoJJSe ­
quen t.ly, a fonnub ,1·ill be a finite sequence of natural numLers ,8 and a p ruof array a 
fi nite sequ ence of fini te sequences of natural numbers. The rnctnmathcnrntical notions 
(propositions) thus become notions (pro1)ositions) about natmal numbers or sequences 
of them ;9 therefore they can (at least in part) be expressed by the symbols of the 
system l'Jlf itself. I n particulnr, it can be shown that the notions "fonnufa ", " proof 
array", and "provci,ble formula" can be clefmccl in the system P Jll; that is, we can, 
for example, find a formula F(v) of P111 with one free variable v (of the type of a 
number scquence)10 such that F(v), interpreted according to the meaning of the terms 
of P]vl , says: vis a provable formula. \Ve now construct an undecidable proposition 
of the system P J.11, that is, a proposition A for which neither A nor not-A is provable, 
in the foll owing manner. 

• That is, m ore precisely , t here arc u ndecidable propos itions in which, bes id es the logical 
constants - (not) , V (or), (x) (for all) , and = (identical wit h), n o other n otions occ ur b ut + 
(add ition) and . (multipl icat ion) , b oth for natura l numbers, and in " ·hich the prefixc3 (x), too, 
apply to natural n uml,ers only. · 

5 In PAI only axioms that d o not result from one another by mere change of type are counted 
as dist inct. 

6 H erc and in what follo \\·s we a lways understand by " form ula of P 11I" a formu!..L written 
wi thout abbreviations (that is, w ithout the use of defin itions). It is well kno,rn that [in P 111] 
definition s serve only to abbreviate n otations and therefore are di~pensal,lo in principle . 

7 That is, we m ap the primitive signs one- t o-one onto some n atural numbers. (Seo how this is 
done on p age 601.) 

8 That is, a number.theoretic function defmld on au init ia l segm ent of the natural numbers. 
(~umbers, of course, cannot be arrnngcd in a spat ial order.) 

• In other words, the p roccJurc d escribed above yields an isomorphic image of the sys tem P,H 
in the. doma in of arithmet ic, a nd a ll metamathematical arguments can j ust as well be carried ou t 
in this· iso morphic image . This is what we do below when we sketch the p roof; tha t is, by " for­
mula", " proposition ", " va ri r,b lo ", o.nd so on, we must alu;ays undcr8tand the corresponcling obj ects 
of the i somorphic image. 

10 It would be very easy (alt hough somewhat cumbersome) to actually write down this formula. 
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A formula of PJJ with exa<.:tly onr free variable, that variable being of the type of 
the natmal numbers (rla ss of classes), will be called a class sign . We nssmne that the 
class signs h:we been nrranged in a sequence in some way, 11 we <lenote the 11th one 
by R(n), and we obsen-e that the notion " class sign", as well as the ordering relation 
R, can be defi ned in the system PM. Let ct be any class sign; by [u ; n] we denote the 
formula t.hat results from 1.he class sign u whP-n t.he free variable is replaced by the 
sign denoting the natural nu mber n . The ternary relation x = [y; z], too, is seen to 
be definable in P Jlf. \Ve now define a class ]{ ofn;i,tural numbers in the following way: 

n t: ]{ = B e;; [R(n); n ] ( l) 

(where B ew:;; means : x is a prontble formula). 11 a Since the notions that occm in the 
definien s can all be d rfincd in PJJ, so can the notion ]{ form ed from them; that is, 
there is a class sign S such that the formula [S; n], interpreted according to the 
meaning of the t erms of P111, sti:Lt es that the nat ural number n belongs to K. 12 Since 
Sis a cl ass sign , it is identical with some R(q); tha,t is, we have 

) 

S = R(q) 

for a certain natural number q. \Ve now show that the proposition [R(q); q] is un­
decidable in PJlf .13 :For let us suppo,je that the proposition [R(q ); q] were provable; 
then it would also be true. But in that case, according to the definitions givf'n above, 

q would belong to K , that is, by (1) , B ew [R(q); q] would hold, ,d1ich contradi cts the 
assumption. If, on the other hand, the negation of [R(q); q] were provable, then 

qt: K, 1 3 a that is, B ew [R(q); q], \1·ould hold. But then [R(q); q], as well as its negation, 
would be provable, which again is im1Jossible. 

The an::tlogy of this argument with the Riclrnrd antinomy leaps to the eye. It is 
closely rel ated to the "Li::tr" too ;14 for the undecidable proposition [R(q); q] states 
that q belongs to K, tha t is, by (1), that [R(q ); q] is not provable. We therefore hrwe 
before us a proposit ion that says about itself that it is not p rovable [in PMJ. 15 The 
method of proof j ust explained can clearly be applied to any form;i,] system that, 
first, when interpreted as representing a system of notions and propositions, has at 

1 1 For example, by in creasing sum of the finit e sequence of integers th a t is the "class sign", 
and lexicogrnphically fo r equa l sums. 

11 •. The b a r denot es n 0gation . 
12 Aga in, there is not the sl igh test difficulty in actually writing d own the formula S. 
13 Note thnt "[R(q); q]" (or, which m eans the same, "[S; q]") is merely a m etamath ematica l 

description of the undecidable prop osition. But, as soon as the formu la S h as been obtaincrl, we 
ca n, of course, a lso dekrm ine the number q and, thcrnwith , aetuctlly wr ite clown the undec ida ble 
proposition it self. [This m akes no diffi culty in p rinc iple. Howe ve r, in order not to run into formu­
las of entirely unrnctnagcablc lengths re nd to avo icl pract ical di ffi culties in the computation of the 
numbe r q, the constrncti on of the u nclccichblc proposit ion would lrnvo to be slight ly modified, 
un less the technique of abb rnv ia tinn by defini tion uscJ t h ro llghout in PJ[ is adopted.) 

13 • [ The Germa n text rc:ids n c 1(, wh ich is a misprint.] 
14 Any epist emologica l ctnt inomy eou lJ b0 used for a s imilar proof of the existence of un­

decidable proposi t ions . 
15 Contr,iry to appearances , snch a proposition involves no fau lty circularity, for initially it 

[only] asserts t.lrnt a certain well-rlcfin crl formula (na111c ly, the one obt a ined from t he qth formula 
in the lex icographic order by a certain su bs ti tution) is unprova ble. Only subsequently (rmd so to 
speak by chance ) d oes it tu rn out that, this formula is prt:c isely the one by which the propos ition 
it self wns oxpre~sed. 
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11 , di ~posal snflt cic11 t. m c;-in s of expression t o defin e the notions occurring in the 
.ir::nm r nt above (in 1rn rti cu lar, th e notion " p rovabl e formu la ") ;-in cl i n which , second, 
,·n •ry p rovable fornrnb is t rue in the int,crprct:ition ronsidcrccl . Th e purJ)OSC of 
.-.,rr.i·ing out the abo,·c p roof wit.h full p reci;; ion i11 what follo1rs is, among other 
thing~, t o replace the second of the assumpti ons just mentioned by a purely formal 
~nrl lll ll Ch we;-ikcr one. 

Frolll the remark t hat [R(q ) ; q] says about i( ;;clf t hat, it is no(, p rovalJlc it follows 
nt onrc tlwt [R(q); q] is trne, for [R (q ); q] is indeed unpro ·,thlc (being nndn ,icbblc). 
Thus, the proposit ion th at is undccicla.hlc in the sys/cm P 1lf sti ll 11as dcciclecl by meb­
mnihematicc1l considerati on::;. The p recise analysis of thi s cmious situation leads to 
suq)r ising results concerning consistency proofs for fon11 al sy» tcrns, resuHs that will 
l•r <li ;;C' u:osccl in m ore det ail in Section 4 (Theorem Xl). 

2 

\\'c now proceed to carry out with full p recision the p roof sketched above. First 
we give a precise descript ion of the formal system P for which we intend t o prove 
the existence of vndccidc1blc p ropos i l-ions. P is csse11tic1lly the syst em obtained 11·hen 
the logic of P1lI i,; superµ osecl upon the P cano ax.ioms1 6 (wi t!t;thc numbers as indi­
viduals and the successor r elation as p rimiti ve notio11). 

The p rimitive signs of the system P arc the following: 
I. Constants:" ~" (not)," V" (or), " II" (for all), " O" (zero ), "f " (the successor 

of), "("," ) " (parentheses); 
II . Variables of t ype 1 (for inclivicluals, that is, 1mtural numbers including 0): 

.. ,, " ' ' " " J.\ • Yi , Z1 , • · · ; 

Varic1bles of type 2 (for classes of incliYicluals): "x2", "y2", "z2", ••• ; 

Variables of t)"_l.)C 3 (for cbs;;cs of classes of individuals) : "x3", " y3", "z3", •.• ; 

And so on, for every naturnl num ber as a type.17 

Remark: Variables for functi.ons of t wo or more argument places (relations) need 
not be included among the p rimit ive signs since we can dcfme rela.tions to be classes 
of ordered pairs, m1cl ordered p .:i irs to be classes of classes ; f,)r example, the onlercd 
pair a, b can be defin ed to be ((a), (a , b)), where (x, y) denotes the class whose sole 
elements are x and y, and (x) the class whose sole clement is x. 18 

By a sign of type 1 we unclcrstnncl a combination of signs that has [any on e of] the 
forms 

a1 f a, ffa, Jff a, ... , and so on, 

where a is either O or a variable of type 1. In the fi rst case , we call such a sign a 
numeral . ]'or n > l we understand by a sign of type n the same thing as by a variable 
of type n . A combination of signs that has the form a(b), where b is a sign of type n 

1• The add ition o f the P eano axioms, as wdl a~ a ll other m odifica tions introduced in the system 
/'.1/, merely serves t o simplify the proof and is disp ensable in principle. 

17 It i:; assumed that we h a , ·e denumerably many signs at our disposal fo r each type of 
vu riablcs. 

18 Xonhornogeneous rela tions, t oo, ca n be defined in this m anner ; for example, a relat ion 
1': tween individua ls and classes can be defined to be a class of element s of the form ((x2 ), ((x1 ), x2 )). 

tvcry propos ition about rela tioM th a t is provable in PJI is prova ble a lso wlien treated in this 
manner, a .~ is readily seen. L 
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and a a sign of tn)e n + 11 will be ca lled an f lcmenlary f ormu la. \Ve define the class 
of f orm ulas lo be the smallc:-: t cb :-;s 1 9 cont a in ing all rl cmentary fo rmulas and co11• 

faining ~ (a) , (a) v (b) , '.l.:II(o ) (where '.l." may lie any nwiabl e)18" wh cncn ir it con tains 
a and b. We call (a ) v (b) the disj 11 nclio11 of a and b, ~ (a) the neoation a nd :i:11(a) a 
generali:::at ion of a. A for rn ub in which no free Yari a lJle occurs (free rnriablc being 
defi ned in th e ,1·ell.known mamwr) is called a sentential f ormula [ Satzform el=. A 
fo rmula with exactly n free incli,·iclua l Yaria bles (and no other free variable,; ) 1Yill uc 
called :i,n n -plnce relation sign ; for n = 1 it will ,il so be called a class sign . 

By Subst a(~) (where a st ands for a fo rm ul a , v for a Yariable, and b for n. sign of 
the same ty1ie n,s v ) \\·c understand th e formu b that result s from a if in a we replace 
v, wherever it is free , by b. 20 \Ve say that a fo rmu la. a is a type elewtion of another 
formula b if a results from b when the type of each vi,ria.ble occurring in bis in ereawd 
by the same number . 

The following formulas (I- V) arc called axioms (we write them using these a1JLrcv i. 
ations, defined in the wcll-kn01n1 nmnner: ., ::i , =, (Ex), = ,2 1 and observ ing the 
usual cmwcntions about omit ting p n.rcnthcscs) :22 

I. 1. ~ (Jx l = 0), 
2. f x 1 = f Y1 ::i X1 = Y1, 
3. x2 (0) .x1II(x2(xi) ::i x2(jx1)) ::i x1II(x 2(x 1)). 

/ 
II . .All formulas that result from the follo wing schema.ta by substitution of a1ty 

formuln.s \\·hat.soever for p, q, r: 

I. p V p ::i p, 
2. p ::i p V q, 

3. p V q ::i q V p, 
4. (p ::i q) ::i (r V p ::i r V q). 

III. Any formuhi that results from either one of the two schemata 

I. vII(a) ::i Subst a (~), 

2. vII(b V a) ::i b v vII(a ) 

when the follo,1·ing substitutions are made for a, v, b, and c (and the operation 
indica ted Ly "Subst" is perfor med in 1) : 

For a any formula,, for v any va riable, for b any for mula in ,1·hich u d ocs not occur 
free, and for c any sign of the same t ype as v, provided c does not contain any vatfab le 
that is bound in a at a place \\·here v is free .23 

19 Concerning t hi s d efinition (a nd sim iL:t r d e finiti o ns occurriug below ) S('e Lukasicu:icz nnd 
Tarski 1930: 

!Ba H ence ~:T/(a) is a formula eve n if x d ocs n ot occur in a or is not free in a . In t hi s case , of 
course, x IT(a) m eans the same thing as a. 

20 In case v d oes n o t occur in a 11.s a free vnxinblc we p u t Subs t a(g ) = a. Note th at "Subst" 
is a rnctanrnthem.1tical s ign. 

21 x 1 = y 1 is to be reg,irtkd a s d efined by x2 17(cr 2 (x,) ::i cr2 (y,)), as in P.1I (I , * 13) s irni hrly for 
h igher types ). 

22 In onlcr to obt a in the a xioms fr o111 the sche ma t a li st ed we mus t therefore 
(1) Eli min,1t c the abbrev ia tions a n(\ 
(2) Add t he omi t ted p a rentheses 

(in II, III, a ncl IV aftr r carrying out the subst itu tions allowed). 
Note that n il express ions thus obtained are " formulas " in the se nse sp ecified above. (Sec nbo 

tho exact d efiniti ons of th e m ct.a rn nth cmaticnl not ion s on pp. C03- r;0G.) 
23 Therefore c is a var ia ble o r O o r a s ign of th e form/ .. . ju , whe re u is e ithl'1· 0 or a vari iibk uf 

t ypo I . Concerning th t' not ion " free (bound ) nt a pl ac.:, in a ", see I A ;'i in w ,i 1\'eumnnn 192 i . 
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IY. Every formub that result ;, from the schema 

1. (E u)(vFJ( u(v ) = a)) 

when for v \ \' C substitu te any variable of tnic n, fo r 11 on e of type 'II-+ 1, ancl for a 
nny formula that docs not contain 7l free . T his ax iom pby::; the role of the axiom of 
rrclucibili ty (the cornprchcnsion ax iom of set theory). 

V. Every formula thaL results from 

1. X1fl(:1.:2 (x1) = Y~ (J;1)) ::i :r2 = Y2 

Ly type elevat ion (as well as thi s fonnufo, itself ). This axiom sta les that a class is 
completely determined Ly its clement s. 

A formula. c is call ed an immediate co11scqurnce of a and b if it is the formula 
( ~ (b)) v (c), and it is crrlled an i mmediate consequence, of a if it is the formula vFJ(a), 
where v denotes any vai·iaLle. 'J'hc cbss of prowble f ormulas is dc11ned t o be the 
sm allest class of formulas that contains the ax ioms and is closed under the relation 
"immediate consequence ". 24 

\Ve now assign natural numbers to the pr imit ive signs of the system P by the 
foll owing one-to-one concspondcnce : [, I 7 9 J 

I 
"O" 1 " 5 "11" 9 . . . 
"f" 3 " V " 7 " ( " 11 

" ) " 13; 

to the variables of type n ,•;c assign the numbers of the form p" (,\·here p is a prime 
number > 13). Thus we have a one-to-one correspondence Ly " ·hich a finite sequence 
of natural numbers is associated with every fi nite sequence of p rimitive signs (hence 
also ,1·ith every formula ). vVe now map the fi nite sequences of natural numbers on 
natural numbers (again by a one-to-one correspondence), associating the number 
~n, . 3"2 ..... Pr", where p1,; denotes the kth prime number (in order of increasing 
magnitude), ,1·ith the sequence n 1 , n 2 , ••• , n1,;, A natural number [out of a certain 
subset] is thu;; assigned one-to-one not only t o every primitive sign but also to ·every 
finite sequence of such signs. vVe denote by <t>(a) the number assigned to the primitive 
~ign (or to the sequence of primitive signs) a. Now let some relation (or class) R(a1 , 

a2 , ••• , an) beb rnen [or of] primitive signs or sequences of primitive signs be given. 
With it we associate the relation (or cl ass) R'(x1 , x2 , •. . , xn) between [or of] natural 
numbers that obtains between x 1 , x2 , • .• , x 11 if and only if there arc some a1, a2 , . .• , 

a.11 such that x, = <fJ (ai) (i = 1, 2, ... , n) and R(ai, a 2 , ••. , an) hold. The rel ations 
between (or classes of) uatural numbers tlrnt in this manner are associat ed with the 
metamathematical notions defined so fa r, for example, "variable", "formula" , "sen­
tential formul a", "axiom", "provable formula ", ancl so on, will be denoted by the 
same words in SMALL CAPITALS. The proposition that there are undecidable problems 
in the system P, for example, reads thus : There are SE,t,;TE::<rTIAL FORTIIUU.S a such 
that neither a nor the :::,CEGATION of a is a PROVABLE FORilIVLA. 

We now insert a parenthetic eonsicleratio11 that for the present has nothing to <lo 

24 The rule of substitution is rendered superfluous by the fact that a ll p oss ,ble substitu t ions 
have already been carried out in tho ax ,oms themselves. (Th is prnced ure was used also by von 
Neuma nn 1927 .) 
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with the form al system P. First ,1·c gi ve the following definiti on: A nnmber-thcoreti c 
fund ion25 ,p(x1 , x2 , •. • , :r11 ) is said to he recursirely defi ned in terms of the nu rn h<·r ­
theorcti c fun ctions f(x 1 , x2 , •. • , Xn_ 1 ) and / l (X1 , X 2 , •• . , x 11 +il if 

,p(O, x2 , ••• , xn ) = ,f;(x2 , • •• , x 11 ), 

<p(k + 1, x2 , . •• , x,,) = /L(k, cp(k , X 2 , . .• , x 11 ), x 2, •• • , xn ) 

hold for all x2 , • . . , x 11 , k.26 

A num her -theoret ic functi on cp is said t o be recursi-1:e. if there is a fo1ite sequence <if 
num her -theoretic functi ons <p1 , rp2 , •• • , 'Pn th a.t ends with rp and has th e property th ,it 
every fun ction C/'1-: of th e sequence is recursively defined in t erms of two of th.c p rt ­

cecling functions, or results from any of the preccdfog functions by substi t ution,n or, 
fi naJly, is a constant or the successor funct.ion x + I. The length of the shurk.- t 
sequence of cp; corresponding t o a recursive function cp is called it s dcgrde . A rela tion 
R(x1 , ••• , xn) between natura.l numbers is sa id to be recnrsive28 if there is a recur~i rc 
function ,:p(x1 , .•• , x 11 ) such that, for all X 1 , x2 , ••. , Xn, 

The foll o"\\·ing theorems hold: 
I. E very f unction (relation ) obtainecl'Jrom i-ecwsive f unctions (relations ) by subs/ii 11 /iu :1 

of recursive f nnctions f or th e varfrible8 is recurs ive ; so is every f unction obtained Jru111 
recursive f unctions by recursive definition accOi·ding lo schema (2); 

II. If R a11d Sare recnrsil:e relations, so are .R and R V S (hence also R & S) ; 
III. If the f unctions rp(t;) and if;(\) ) are recu.rsfre, so is the relation rp([) = if,(IJ) / 0 

IV. If the f unction q:,(1;) mid the relat ion R(x, IJ) are recursi'l:e , so are th e. rcl,l/io11 s S 
and 1' defined by 

S(i;, tJ) ,__, (Ex )[x 2 rp([) & R(x, tJ)] 
and 

T(f, tJ) ,__, (x)[x 2 cp (i) -+ R(x, tJ)], 

as icell as the f unction f defined by 

f(-,;, t)) = c:r[x 2 cp([) & R(x, tJ )], 

where ,xF(x ) means the least number x for which F (x) holds n,nd O in case there is nu 
such number. 

25 That is, its doma in of defrnit ion is the cbss of nonnega tive in tegers (or of 'II- t uples of 11 ,, ,. . 

negative integers ) and its values a re nonnegative integers. 
26 In what follows, lower -case ita l ic let ters ("·ilh or wi thou t subscripts) are a lways \' a r i,d .:,-, 

for nonnega tive integers (u nless the contrary is expressly noted) . 
27 More p recisely, by subst itution of some of the preceding fnnctions at the argumen t phcc., " ( 

one of the preceding funct ions, for exc1mple, cp<{x1 , x 2 ) = tpp[r.(x1, x 2 ) , cp,(x2 ) ) (J>, q, r < k ). ;\" , ,I 

a ll variables on the left s ido need occur on t,he right s ide (the same applies to the recurs ion sc!H•:: .~ 

(2)). 
28 \ Ve include classes among rela tions (as onc -pbce relnt ions). R ec ursive rela tion s R, of cn:ir-~·. 

have the property tha t for every given n -tuple of n umbers it ca n be dec ided whether R (r1, · 

xn) h olds or not. 
2 9 \ Yhcne, ·cr formul as nrc used to express a mean ing (in part-icular , in a ll fo rmulas e~pr,·~, .1.,; 

m et::l,lnrtthcnrnt ica l propositions or n ot ions), Hilbert' s symbolism is employed. Sec 11 i /1,cr t •' "• ! 
Ackermann 1928. 

30 \ Ve use Gerurnn letters,,, ~. as o.bbrcviat ions for arbitro.ry n -tup!cs of va r iab les, for c x,.:1.1' '.c 
X1, x2 , • • • , X 11 • 
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Theorem I foll ows at on ce from the definition of "rccursi\·e" . Theorems II ancl HT 
ore consequences of the fa ct that the nurn bcr-thcorct ic fu nctions 

a(x) , fJ( ~c, y), y(x, y), 

corrcsponcli ng to t he logical notions - , V, and = , nai11cly, 

for X =/ 0, a{O) = 1, a(x) = 0 

p(O, x) = p(x, 0) '"~ 0, p(x, y) - - 1 when x ::rn cl y arc both -} 0, 

y(x, y) = 1 when ,; =I y, y(x, y ) = 0 when x = y, 

arc rccul'dvc, as we can readily sec. The proof of Theorem IV is briefly as follows. 
By assumption there is a r ccur;;ivc p(x, t;) such th;i,t 

R(x, tJ) ,..._, [p(x, lJ) = 0]. 

We now dcfow a functioll x(x, lJ) by t he recun ion schcrn ;i, (:),) in the follo\\·ing , rny: 

x(O, t)) = 0, 

x(n + 1, t)) = (n + l). a + x(n, lJ).o:{a),31 

where a = a[o: (p(O, iJ))].o:[p(n + 1, IJ)].o:[x(n , t;)]. Therefore x(n + 1, lJ) is eqtrnl 
either t on + 1 (i f a. = 1) or to x(n, IJ) (if a= 0). 32 The first case clearly occurs if and 
only if all factors of a arc 1, that is, if I 

R(O, lJ) & R(n + 1, lJ) & [x (n, IJ) = OJ 

holds. From this it follows that the function x(n, t;) (considered as a func t ion of n ) 
remains O up to [but not. including] the least value of 11 for \1 ·hich R(n, tJ) holcls and, 
fro m there on, is equal to th;i,t value. (Hence, in case R(O, lJ) holds, x(n, tJ) is constant 
aud equal to 0 .) We have, therefore, 

i/;(r, \)) = x{cp(r), \)), 

S(r, tJ) ,..._, R[if;(r, tJ ), IJJ. 

The relation 1' ca.n, by negation, be reduced to a case analogous to that of S. The;rcm 
IV is thus proved. 

The functions x + y, x. y, and xY , as well as the relations x < y and x = y, arc 
recursive, as we cai1 readily see. Starting from these notions, we now define a number 
of functions (rebtions) 1-45, each of which is defined in t erms of preceding ones by 
the procedures given in Theorems I- IV. In most of these definitions several of the 
steps allowed by Theorems I- IY arc condensed into one. Each of the functions 
(relations) 1-45, among which occur, for example, the no tions " FORMULA" , "AXIOM" , 

and. "nu.rnDIA'rE CONSEQUENCE" , is therefore recursive. 
1. x/y = (Ez) [z ~ x & x = y. z],3 3 

xis divisible by y. 34 

31 \Ve a ssume familiarity with tho fact t hat the functions x + y (addition) and x . y (mul t i­
plication) are recursive. 

32 a cannot take values other than O and I, as can be seen from the definition of a. 
33 The sign z:e is used in the sense of" equ2.l ity by defini tion" ; h ence in definitions it stands for 

either = or ~ (o therwise, the symbolism is Hilbert's). 
H. \Vherever one of the signs (x), ( F.:.r), or ,x occ urs in the definitions below, i t is followed by a 

bound on x. This bound merely serve~ to en.sure th at the not ion defined is recur~ive (see Theorem 
IV). But in most cases the extension of the no tion d efined would n ot change if this bound were 
omitted. 

[ l '8 i] 
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2. Prim(x) = (llx)[z ~ x & z ,f l & z ,f x & :i:/z] & x > l, 
xis a prime number . 

3. 0 Pr x = 0, 
(n + l) P r x = ey[y 2 x & Prim(y) & x/y & y > n Pr x ], 

n Pr x is the 11th p rime number (in order of increasing magni tude) contained in x.31, 
4. O! = 1, 

(n + l)! = (n + l ).n!. 
5. P r (0 ) = 0, 

P r (n + 1) '= t:y[y ~ {Pr(n)} ! + 1 & Prim(y) & y > Pr(n )] , 

Pr(n ) is the nth prime nmnber (in order of increasing magnitude ). 

6. n Gl x = ey[y ~ x & x/(n P r x )Y & x/(n Pr x)Y + 1 ], 

n Gl x is the nth t erm of the number sequence assigned to t he number x (for n > O 
and n not greater than the length of thi s sequence). 

7. l( x ) = ey[y ~ x & y I'r x > 0 & (y + 1) P r x = 0], 
l(x) is the length of the number sequence assigned to x. 

8. X*Y = EZ{z ~ [Pr(l{x ) + l(y ))Jx+Y & (n)[n ~ l(x) ->- n Gl z = n Gl x] & 
(n )[0 < n 2 l (y ) ->- (n + Z(x)) Gl z = n Gl y]}, 

X*Y corre:3ponds to the operation of " concatenating" t \\'O fin itc 'numb er sequences. 
9. R(x) = 2x , I · 

R(x ) corresponds to the number sequence consisting of x alone (for x > 0). 

10. E (,c) = R(ll)*xd~( l 3), 
E(x) corresponds to the operation of" enclosing ,1·ithin parentheses " (11 and 13 are 
assigned to the primitive signs " ( " and " ) ", respectively) . 

11. n Var x = (Ez)[l3 < z 2 x & Prim(z) & x = zn] & n f= 0, 
X is a VARIABLE OF TYPl, n. 

12. Var(x) = (En)[n 2 x & n Var x], 
Xis a VARIABLE. 

13. Ncg(x) = R(5) ,~E(x ), 

Neg(x) is t he NEGATION of x. 

14. x Dis y '= E(x)*R(7 ),"E(y), 
x Dis y is the DISJ UNCTION of x and y . 

15. x Gen y = R(x)*R(<J)"E(y), 
x Gen y is the GR~ERALIZA'l'IO:S of y with respect to the VARIABLE x (provided xis n 

VARIAB LE ) . 

16. 0 N x = x, 
(n + 1) N x = R(:3),m N x , 

n N x corresponds to the ope ra tion of " putting the sign 'f' n times in front of x". 

17. Z(n) = n N [R (l)], 
Z(n ) is the NUMERAL denoting the number n. 

18. Typ~(x) = (Em, n){m, n ~ x & [m = 1 v 1 Var m] & x = n N [R(m)]},3 1u 
x is a SIG N OF 'l'YPE 1. 

3 4• F o l" 0 < n ~ z, where z is t he nu mber of d istin<.:t pL"ime factor, of x . K ote tha t n I'r .c = 0 
for n = z + 1. 

3 4 b m , n ~ x stanJ s form ~ x & n ~ x (similrtrly for n.1oro th an t wo va riahles). 
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19. Typn(x) = [n = 1 & Typ: (:r)] V [n > 1 & 
(Ev){v 2 x & n Var v & :2: = R( v)}], 

X is a STG:N OF 'l'YI'E 11 . 

20: Elf(x ) = (Ey , z, n)[y , z, n 2 x & Typ 11 (y) & 
Typn-t 1 (z) & :r =-~ Z* E(y) ] , 

Xis an }:LE:IIENTARY J<'OJ:)lULA. 

21. Op(:c, y, z) = x = Ncg(y) v x 0 -., y Dis z v (Ev)[v ~ x & Var(v) & 
x = v Gen y]. 

22. l'R(x ) = (n ){0 < n & l( x ) - >- Elf(n Cl x ) v (Ep, q)[0 < p, q < n & 
O,p(n Cl x, p Gl x, q m x)]} &. l (:;:) > 0, 

60:3 

X is a SEQUENCE OF }'OIDJULA S, each of whi ch either is an ELE11EN'l'AHY J'OlDIULA or 
results from the preceding F'OlDlULAS through ihc operations of NEGNl'ION, DIS ­

J UN CTIO N , or GJ::XEH,\LlZ.-\'l'lON . 

23 . F orm(i:) = (E n){n ~ (Pr[l(x) 2J}I·lt<xJJ2 & FH(n) & x = [l(n )] G'l n},35 

xis a FOJO\ULA (thcti is, the last t erm of a FOlBIULA SEQUENCJ, n). 
24. v Gcb n ; x = Var(v) & I1'orm (:r) & (Ea, b, c)[a, b, c 2 x & 

x = M( v Gen b)* c & ll'o rm (b) & l (a) + 1 2 n 2 l(a) + l (v Gen b)] , 
the YAnlABLJ:: vis J\Olfl\D in x at the nth pl ace . 

25. v Fr n, x == Var(v) & F orm(:r) & v = n Gl x & n ~ l(x ) & v Gcb n, :r, 
t he VARL\BLJ:: vis F mrn i n x at the nth pbcc. 

26. v Fr x = (JiJn )[n ~ l( x) & v Fr n , x], 
V occurs a s a }.REE VAP.IABLE in X. 

27. Sii x(;) = a{z 2 [Pr(l(x ) + l (y ))]x+Y & [(Eii , v) ii, v 2 x & 
x = u*R(n Cl x ),,,v & z = u,,,y~,v & n = l(11 ) + l]}, 

S u xG) results from x when we substitute y for the nth term of x (provided t hctt 
0 < n ~ l(x)). 

28. 0St v, x = en{n ~ l(x ) & v Fr n, x & (Ep)[n < p ~ l(x) & v Fr p, x]}, 

(k + 1) St v, x = en{n < k Sl v, x & v Fr n, x & (Ep) [n < p < k St v, x 
& v Fr p, x]}, 

k St v, x is the (k + l) th place in x (counted from the right end of the FOR oIUT.A x ) 

at which v is Fl}EE in x (,incl O i n case there is no such pbcc). 
29. A (v, x) = en{n ~ l(x ) & ri St v, x = 0}, 

A(v, x) is the number of pbces at which v is FREE in x . 

30. Sb0(xi) = x, 
Sbk + 1(x~) = Su [8bk(x~)](ksty"- x). 

31. Sb(x~) = SbA<v.x,(x~ ), 36 

Sb(x~ ) is the notion SUBST a(g) defined abO\'C. 37 

32. x I mp y = [Ncg(x) ] Dis y, 
x Con y = Neg{[Neg(x)] Dis [Neg(y)]}, 

3 5 Tha t n 2 (Pr([l(x)]2))I·C<e=n2 p rovides a. bound can be seen thus: The length of tho shortest 
sequence of formulas tha t corresponds to x ca n at m ost be equa l to the 11umbcr of subforrnulas 
of x . But there a re at most l( x) s ubformu las of length 1, at m o., t l(x) - 1 of length 2, and so on, 
hence altoge ther a t most l( x) (l (x) + l )/ 2;:::; [/(x))2 . Therefore a ll prime factors ofn can be assumed 
to be less th ,rn Pr([l( x)F ), the ir n umber 2[(l.t)F, and their expone:nts (which are subformubs of 
x) 2 x. 

3 6 In case V is no t 0. VAR!ADLE or X is n ot a FO!DllJLA, Sl,(:i:~) = x. 
37 I nst.cad of Sb[Sl,(:r~)n we wri te Sb(,:~~' ) (and simi la rly for m ore than t wo VARIABL E S ). 
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x Aeq y = (x I mp y) Con (y Imp x), 
v E x y = N cg{v Gen [Xcg(y)]}. 

33. n Th x = c.y{y ~ x<x") & (k)[k ~ l(x ) ->- (k Ol x 2 13 & k Gl y = le Gl J;) v 
(k (]l x > 13 & k Gl y = k Gl x .[l Pr (k Gl x)]")]}, 

n Th xis the nth TY PE ELEYATIOX of x (in case x nnd n Th x a,re FORMULAS) . 

Three specific numbers, which we denote by z1 , z2 , and z3 , correspond to the 
Axioms I, 1- 3, and we defi ne 

34. Z-Ax(x) = (:r = z1 V x = z2 V x = z3 }. 

35. A 1-Ax(x) = (Ey)[y 2 x & ]i'orrn(y) & x = (y Dis y) Imp y] , 
x is a FORMULA resulting from Axiom schema II , 1 by substi tution. Analogously, 
A 2 -A x, A 3-Ax, and A 4 -A x arc defin ed for Axioms [rather, Axiom Schemata] II, 2-4. 

36. A-A:r(x ) = A 1 -Ax(x) v ArAx(x) v A 3 -A x(x) V A 4 -Ax(x), 
x is a FORMULA resulting from a proposit ional axiom by substi tution. 

37 . Q(z, y, v) = (Bn, m, w)[n 2 l (y) & m 2 l(z} & w 2 z & 
w = m Gl z & w Geb n, y & v Fr n, y] 

z docs not co11ta.in any VARIABLE BOU:'.\'D in y at a pl ace a,t which v is FREE. 

38. L 1-A x(x ) = (Ev, y, z, n){v, y, z, n 2 x & n Var v & Typn(z) & Fon~1(y) & 
Q(z, y, v) & x = (v Gen y) Imp [Sb(y;)]}, 

x is a FORTIIU LA rcsult.ing from Axiom schema. III, 1 by substitution. 

39. L 2-Ax(.?: ) = (Ev, q, p){v, q, p 2 x & Va,r(v) & Forrn(p) & v Fr p & l i'onn(q) & 
x = [v Gen (p Dis q)] I mp [p Dis (v Gen q)]}, 

x is a FO R;>.IULA resulting from Axiom schema III, 2 by substitution. 

40. R-A:c(x ) = (Eit , v, y, n)[u , v , y, n 2 x & n Var v & (n + 1) Var il & il Fry & 
F orm(y) & x = u Ex {v Gen [[R(il),dE(R(v))] Aeq y]}], 

x is a lWlU!ULA. resu lting from Axiom schema IV, 1 by substitution . 
A specific number z4 corrnsponcls to Axiom V, 1, and we define: 
41. Jlf-A:c(x ) = (En)[n 2 x & x = n Th z4]. 

42. Ax(x) = Z-Ai:(x) v A -A:r(x ) V L 1-Ax(x) V L 2 -Ax(x ) v R-A:r(x) V M -A:r(x), 
X is an AXIOM. 

43. Fl(x, y, z) = y = z I mp x V (Ev) [v 2 x & Va,r(v) & x = v Gen y], 
X is an I Mi\IF,DL\TB CONSEQU E NCE of y and z. 

44. Bw(x ) = (n){0 < n 2 l(x ) - >- .Ax(n Gl :r) V (Ep, q)[0 < p, q < n & 
Fl(n Gl x , p Gl x, q Gl :c )]} & l(x ) > 0, 

xis a PROOF ARRAY (a, finit e sequence of :FOHMUL,\S , each of which is either an k\10 ~1 

or an Bli\IE DL\.TE CONSE QUENCE of two of the preceding FORMULAS. 

45. x By = Bu;(x) & [l( :c)] Gl x = y, 
X is a l'.ROOF of the FOR:'-WLA y . 

46. Bew(x) = (Ey)y B x, 
x is a PROVABLE FOmIULA. (l3cw(:c) is the only one of the notions 1-tG of which ,1·c 
cannot assert that it is recurs ive .) 

The fact that can be formulated yaguely by saying: every recursive relation i~ 
defi nable in the system P (if the usual mea,n ing is gi,·en to t he formulas of thi s 
system) , is expressed in precise language, without reference to any inte rpre tat ion of 
the formulas of P, by the following theorem: 

Theorem V. For ei-ery recursii-e relation R(x 1 , • •• , xn ) there exists an n-plaa 
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RELATION SIG::-.' r (u:ith the J,'REF. VA RL\m,r:s33 u1 , 11 2 , ... , 11,.) such th at f or all n- tuples 
of numbers (x1, . .. , xn ) 1cc lwvc 

(3) 

\Ye shall give only an ouLline of the p roof of this theol'em because the proof does 
not present any d ifficulty in p ri1ici1,lc: ancl is raLhcr long. 39 'iYc i.i rove the theorem 
for all relations R(x 1 , • •• , xn) of the form :r1 = cp(J:2 , ••• , xn)40 (where <p is a recursive 
fu nction) and we use induction on the degree of cp. F or funct ions of degree 1 (that is, 
constants ancl the fu nction :i: + 1) the t heorem is trivial. As,mme D O\\' th::it <p is of 
degree m. It r csult.s from fu nctions of ]O\\·cr degrees, cp 1 , .•. , <:p1;, t!t rongh t he opera­
tions of sulJstitution or recmsive definition . Since by the induct ion hy1)othcs is c\·cry­
thing has already been prond for r:p 1 , ... , ({';,:, there arc corresponding RELATION 

SIG NS , r1 , •• . , r1c , such that (3) and (4) hold. The p rocesses of definition by which <:p 

results from ·cp1 , ••• , 'P1c (rn bstitut ion and rccur;;ive definition) can both be formally 
reproduced in the system P. If this is done , a new RELA'l'IOl, SIOX r is obtained from 
r 1 , •• • , rk, 41 and, using the induction hypoLhcsis, we co,n p rove without difficulty that 
(3) and (4) h old for it . A R EL.-\'l'IOX SIGK r as:; ignccl to a recur£.rn rclation42 by thi s 
p rocedure will be sa,id t o be recursive. 

\Ve now come to the goal of our discussions. Let K be auy class of FORl\JU LAS . 'iVc 
denote by Flg(K) (the set of consequences of K) the smallest, set of J!ORi.\IlJLAS that 
contains all FOR::IIULAS of K ancl all AXIO::IIS and is closed under the relation "Ji'\BIEDI­

ATE COKSEQUENCE". K is said to be w-consistent ift.ltcre is no CLASS SIGK a such that 

where V is the Fl:EE V.\RlABLE of the CLASS SIGX a. 
Every w-consistent system , of course , is consistent. As will be shown later, 

however, the converse does not hold . 
The general result about the existence of undecidable propositions reads as follows : 
Theorem VI. For ei;ery w-consistent rec11rsivc class K of FOl~i.\lULAS th ere are recurs ive 

CLASS SIG KS r 1 such that nei'th er v Gen r nor Neg(v Gen r) belongs to Flg(K) (where v is 
the FREE VARIABLE of r). 

Proof . Let K be any recursive w-consistent class of J,' OI!i.\IULAS . \Ve define 

B w"'(x ) = (n)[n i l(x) -> Ax(n Gl x ) V (n Gl x) £ K V 

(Ep, q){O < p, q < n & Fl(n Gl x, p Gl x , q Gl x)}] & l(x) > 0 (5) 

38 T he VARIABLES u 1, .. . , u 0 ca n be chosen arbitrarily. :For example, there a lways is an -r with the 
FREE VARIABLES 17, 19, 23, .. . , and so on , for which (3) and (•i) hold. 

3 9 Theo rem V, of course, is a consequence of the fac t that in the case of a rec urs ive relat ion R 
it can, for every n-tuplc of nurnbcrn, be decided on. the basis of the ax-ioms of the system P whether 
the relation R obtuins or no t. 

40 from this it follows at once that the theorem holds for every rec urs ive relation, since any such 
relation is equivalent to O = <p (x1 , ••. , x 0 ), where 'I' is recurs ive. 

41 When th is p roof is carried out in deta il, r, of course, is not defi ned ind irectly with the h elp of 
its meaning but in t erms of its p ure ly formal structure. 

42 \ Yhich, therefore, in tl, c usual int erp retat ion expresses the fac t that this relat ion ho!cb. 
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(see the ana,lo6ous not ion °H), 

x B" y = Bw,:(:r) & [l (x)] G'l x = 
Bcw"(x) = (Ey)y B" x 

(see the analogous notions 45 and 46). 
·we obviowsly have 

(x)[Bew"(x) ,...__, x c Flg(K)] 
and 

(:r)[Bew(x) ->- Bew"(x)] . 

"\¥e now defi ne the rela tion 

(6) 
(6.1) 

(7) 

(8) 

(8.1) 

Since x B" y (by (6) a,nd (5)) a,nd Sb(y1fy) ) (by Definitions 17 a,nd 31) arc recur. 
sive, so is Q(x, y). Therefore, by Theorem V and (8) there is a R E LATIO:N" SIGN q (,1·ith 
the FREE VARIABLES 17 a,nd 1()) such t hat 

and 

We put 
p = 17 Gen q 

(pis a CLASS SIGN with the FREE VARIABLE HJ) itnd 

(r is a, recursirn CLASS SIGN 43 with the FREE VAP.L\B LE 17). 
Then we have 

Sb(p}f PJ = Sb([l 7 Gen qmr)) 

(by (11) and (1 2)) ;11 furthermore 

Sb(q1ix) }~p)) = Sb(r1ix)) 

(0) 

( 11) 

17 Gen r (13) 

( l -1) 

(by (12)) . If we now substitute p for y in (9) and (10) ;:i,nd take (13) mid (14) into 
account, we obtain 

x B" (17 Gen r ) -> Bew"[Sb(r17d], 

x BK (17 Gen r) ->- Bcw,c[Neg(Sb(r1ix)))]. 

This yields: 

(Li) 

(lG) 

1. 17 Gen r is not K· PROVXGLB .15 For, if it were, there wonld (by (6. 1)) be :rn n such 

43 Since r is obtainer! from the recurs ive REL .\TI OK SICK q th rough tho replace ment, of a YAJ>.f.\ !:U: 

by a definite number, p. [Prec isely s tat ed the final part of thi s footnote (which refers to a s i,lc re1n11r k 
unnccess.1ry for the proof) would read t.hus : "REPLACE,,1io::<T of a VARIAU LE by the :S- V.\tEJH L f., r 
p ."] 

44 The operat ions Gen and Sb, of cou rse, can always l:,c int erchanged in ca5e they refer to 
different YARIA DLES. . 

• 5 By "xis K•prowble" we rn C'an x , :Flg(K), which , by (7), means the same thing ns J3 cw,(r). 

I, 

C' 

0 

0 
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th:11 11 B, (17 Gen r). Ifrnce by (lG) we \\'lrn ld haYe Bcv;.[:\'cg(Sb(r17,,J) )] , whil e, on 
t hr other lwncl , from the K-I'R O\"A J~TUT~- of 17 Gen r that of Sb( r} /,.J ) follOl l'S . Hence, 
"would be inconsi,; tcnt (a nd a fort iori <u -i nconsistcnl) . 

:? . Xcg( l 7 Gen r) is not K-Pr- o , ·F,n,K P roo f: As has just been JJrOYccl, 17 Gen r 

i~ not K-r1:o,·A nLE; that is (by (G.l )), (n)n B, (17 Gen r) hold s. Ji'rnm this, 
(n)Hc,1·,:[Sb(r}/,.J )] foli o\\';; Ly (15), an d tha t., in con junction with Bcw.[Ncg(l 7 Gen r )] , 
i.-; incompatible with the w-consislcncy of K. · 

17 Gen r is therefore u ndecid able on the basis of K, which proves Theorem VI. 
We can readily sec that tl1c p roof just, g iven is const rnct i1·c ;45"' that is, the fol1 0,1·ing 

has been p rn.-ecl in an intuitioni;; t ically unobjectionable nrnnncr: Let an arbitrary 
rccursinly clc fi nccl class K of FOI,,IULAS Le giYcn. Th en, if a fo rmal dec ision (on the 
basis of K) oft he SExn :;:-;TJ..\ L FOJ,"lUL.-\ 17 Gen r (wl1i ch [for each K] can act ually be 
exhibited) is p rc,;cntcd to us, we can achrn lly give 

I. A PROOF of Kcg(l7 Gen r) ; 

2. For any gi,·en n , a PR OOF of Sb(rl/n, l• 
That i;; , ll. fon,rnl decision of 17 Gen r would h;1,vc the consequence that ,rn could 
nctually exhibit an w-i11<;011 sistcncy. 

\ Ve shall say that a relation bci,Yccn (or a cl ass of) nat ural numbers R(:r1 , ... , x,J 
is decidable [en lscheidungsdejinit] if there ex i:sts an n-placc R E LAi IOx SIG N r such that 
(3) and ('1) (sec Theorem V) holcl. In par Li culnr, therefore , by Theorem V every 
recursive relation is decidable. Similarly, a RE Lc\ T lO X srnx will be said to be decidable 
if it concsp oncls in t,his way to a clcciclablc relation . Now it suffi ces for the cxfatencc 
of undecidable proposit ions that the cl ass K be w-cons istcnt ancl decida bl e. Ji'or the 
decidability crtnics over from K t o x B" y (sec (5) and (G)) and to Q(x , y) (sec (8.1)), 
and only this was used in the proof given a bove. In thi:; case the undecidable prop­
osition has the form v Gen r, where r is a decidable CLASS SIGN . (Note that i t even 
suffices that K be decichble in the system enlnrgecl by K.) 

If, instead of assuming tha t K is w-consistent, \ \'C assume only that it is consistent, 
then, although the exist ence of an undecidable proposition does not follow [by 'the 
argument given above]. it docs foll o\\· that there exists a property (r ) for which it is 
possible neither to give a counterexample nor to prove that it h olds of all numbers . 
For in the proof that 17 Gen r is not K·PROYABLE only the consistency of K was used 

(sec p. 60S). l\Ioreover from Bew"( l 7 Gen r) it follows by (15) that, for every number 
x, Sb(r1lxil is K-PROVADLE and consequently that ~eg(Sb(rlix>)) is not K-PROVABLE for 
any n umber. 

If wc adjoin Keg(l7 Gen r) to K, we obtain a class of FOIDIULAS K ' that is con­
sistent but not w-consist ent. K' is ·consistent, siuce othernise 17 Gen r would be 

K·PRO VABLE. H owever, K' is not w-consistent, because, by Bcwx:(17 Gen r) and (1 5), 
(x)Bew"Sb(r}/x, ) and, a forti ori, (x)Bcw",Sb(rllx>) hold, ,d1ile on the other hand, of 
course, BewANeg(l7 Gen r)] holcls.46 

\Ve have a succial case of Theorc;n VI when the class K consists of a fmite number 
of F OR;:IIULAS (and, if we so desire, of those resulting from them by TYPE ELEVATION ) . 

• 5 • Since a ll existential statements occurring in the p roof are based upon Theorem V, which, .as 
is easily seen, is unobjectionable from the in tui t ionistic po int of view. 

46 Of course, the existence of cla,;:;cs K tha t are cons istent but not u, -consi:stent is thus proved 
only on the a ssumvtion that the re exist s some cons istent " (that is, tha t Pis consis tent). 
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Every fi nite class K is, of com sc, recursivc.46 a Let a be t he greatest number contained 
in K. Then we have for K 

x e K I'-' (Em, n )[m ~ x & n ~ a & n e K & x = m Th n ]. 

H ence K is recursive. This all ows u s to con clude, for example, t hat, even with the 
help of the axiom of choice (for all types) or t he generalized continuum hypothesis, 
not all proposit ions arc dccida blc, provided t hese hypot heses are w-consist ent . · 

In the proof of Theorem VI no properties of the system P were used besides the 
following : 

1. The class of axioms an d the rul es of inference (that is, the relation " immediate 
consequence ") arc recursively defi n:1 ble (as soon as wc repl ace the primitive signs in 
some ,1·ay by natural numbers); 

2. Every recursive relation is definable (in t he sense of Theorem V) in the system P. 
Therefore, in every forma l system that saJ isfies the assumptions 1 and 2 and i;; 

w-consistent t-hcre are undecidable proposit ions of th e form (x )F (x ), where P is a 

recursively defi ned property of natural numbers, and likewise in every extension of 
such a system Ly a recur,; i\-ely definable w-consist ent class of axioms. As can easily 
be verified , included among the systems satisfying the assumpt ions 1 and 2 are the 
Zermclo-Fraenkcl and the Yon N"cumann axiom syst ems of set theory, 47 as well as 
the axiom system of number theory cortfasting of the Pcano axioms, recursiYc def­
init ion (by schema (2)), and t he rules of Jogic.48 Assumpt ion 1 is satisfied by any system 
that has the usual rnlcs of inference and whose :ixioms (like those of P) resul t from a 

fini te number of schema.ta by substi t u tion.4 8a 

3 

vVc sh n,ll no,·.- deduce some consequences from Theorem VI, and to this end "·e giYc 
the following definit ion: 

A rebtion ( clo.ss) is s:iid to be arithmetic if it can be defined in t erms of the notions 
+ and . (addition and mult ipli ca tion for na t ural nnmbcrs)49 and the logical con ­
stants V, - , (x), and = , where (x) and = apply to natma.J numbers only. 50 The 
notion" arithmetic proposit ion" is defined accordi ngly. The relat ions "greater than" 
and "congruent modulo n ", for example, ?.re arithmetic bec;iuse we have 

x > y ,..._, (Ez)[y = x + z], 
x = y (mod n ) I'-' (Ez )[:c = y + z.n V y = x + z.n]. 

46• [On page 1 GO, lines 21 , 22, and 23, of t he Ger man t ext tho three occurrences of a arc mi,; ­
print s and should be repl aced by occurrences of K.] 

17 The proof of assum p t ion 1 t11,·ns ou t t o be OY 'cll sim pler here tha n for the syst em P, since tl ,vr,, 
is just one k ind of prim it ive vnr ia blos (or t wo in von N eumann's system ). 

4 8 See Proble m HI in Il i:tbcrt 192Sa . 
48 • As v: ill be shown in P n,rt II of th is pa per , the t r ue reason fo r t ho incompleteness inherent in 

a ll form al sy stems of m nthcnrn t ics is tha t t he fo rmat ion, of ever higher types enn bc co11t inu l'<l 
into tlie t rnnsfin it e (sec 1-hlbcrt .lfJ:Z5, p. l S·l [ above, p . 3S7]), while in any formal system ut 11 !0.;t 
dcnumcrably many of th em a rc a va ilable . F o r it CMl be sh o\'.r1 1 tha t tho unclccidablo propos itions 
constructed here become decida ble whenever a ppropria t e h igher types arc a dded (for cxnrn 1•l ,•, 
the type w to the system P ). An nnalogous situat ion p revai ls for t he axiom system of set th l'u ry. 

49 Here a nd in wha t fo llows , zero is a lw[lys ine lud ccl among t he n a tural numbers. 
so Tho dcfini cns of sue!, a notion, t-hcrcfo rn , m ust consis t exclusively of the signs listed, n1r i,d ,k< 

for natura l n umbers , x , y , . .. , und t he s ig ns O and I (ntriub lcs for fun ctions and sl't s ar,· n, ,t 
p erm itted to occur) . Instead of x any o l hcr number va ri ub le, of cu11rse, may oc cur in the prvfix,·,. 
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\ Ve now ha,·c 
Theorem Vll. J,;very recnrsire relation is arithmctir . 
\ Ve shall p rove the following VC'r:-; ion of thi s thC'orcrn : every rela t ion of the form 

x0 = cp(x 1 , • • • , xn), \\·hen· S" is rc cur::; iYc, is arithmetic, and ,1·c sliall use induction on 
t he degree of q:, . Let rp be of clcgr(' e s (s > J ). Then \ \"C h,wc either 

l. <p(X1, ... ' x,.) =·c p[x1 (X1, ... ' Xn), X2(X1, ... ' Xn), ... ' Xm(X1, ... ' X11)]51 
(where p and all Xi arc of degrees less than s) or 

2. cp(0, :,;2, ... ':l.'n) = i/1(X2, . . . 'xn), 

cp(k + 1, :i.:2, . .. , Xn) = µ[k, <p(k, X2, ... , X11 ), X2, ... , x,J 

(where if, and !' arc of degrees less thrm s). 
]n the fi rst case ,1·c have 

Xo = <p(:l'i, · · •, x") ,..__, (Ey1, · · ·, Ym)[R(xo, Yi, · · · , y,,.) & 

Si (Yi, Xi , ... , x 11 ) &. .. . & Sm(y,,,, x1 , . . . , x,.)], 

where R and S; are the arithmeti c rcbtions, existing by the induction hypothesis, 
t hat arc equivalent t o ·x0 = p(y1 , .•. , Ym) and y = X;(Xi, ... , x,,), rcspcct.ively. Hence 
in this case x0 = cp(xi, . . . , xn ) is arithmetic. / 

I n t he second case we use the followin g method. \ Ve can cxprcss the reb ,ti.011 
x0 = cp(xi, . . . , x,.) wil-h the hcl}J of th e notion "sequence of numbers " (!)52 i n the 
following way: 

If S(y, :J;2 , . • • , x,.) and T(z, Xi, ... , X 11 +i l are the arithmetic rehi,tions, existing by 
t he induction hypothesis, that are equivalent to y = ip();2 , ••• , xn ) and z = µ(x i, ... , 
xn + 1 ) , rcspccti vcly, th en 

\Ve n ow replace the notion "sequence of num bcrs " by "pair of numbers " , assigning 
to the number pair n, d the number scqucncc f' n.dl (ff_"· dl = [nJ 1 +<k+lld ), where [n]P 
denotes the leas t nonnegative remainder of n modulo p. 

We t hen have 
Lemma I. If f is any sequence of natural numbers and k any natural number, 

there exists a p air of natural numbers , n, d such that rn. d) and f agree in t he first k 
t erms . 

. Proof. Let l be the maximum of the numbers k, f 0 , f 1 , •• • ,Jk- l· Let us det ermine 
an n such that 

n = f; [mod(l + (i + l)l!)] for i = 0, 1, . .. , k - I, 

which is possible, since any two of the number::; I + (i + l )Z! (i = 0, 1, . .. , k - 1) 

51 Of course, not a ll x 1 , . •• , x 0 r.eed occur in the Xi (sec the exmnple in footuote 27). 
01 f here is a vur i,ible with the [infinite] seque nces of nutu rnl numbers us it s domain of values. 

Jk denotes the (k + l )th term of a seq uence f (!0 denot ing tho fi rst) . 

bl 
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a rc rcbt in·ly prim e. F or a prime number coi1t ai11cd in tll'o of these number,; woulu 
also be contained in the difTercucc (i 1 - i 2 )l! and therefore, since Jii - i 2 j < l, in I!; 
but t his is imposs ible. The numhcr p air n , l! then has the des ired property . 

Since the relation x = [n]P is clefi.ncd by 

x = n (mod p ) & x < p 

and is therefore arithmetic, the rchition P (x0 , Xi, . . . , xn ), defi ned as follows: 

is also arithmetic. Bnt by (1 7) and Lemma I it is equivalent to x 0 = cp(xi , ... , x,.) 

(the sequence f enters in (1 7) only through its first Xi + 1 t erms). Theorem \11[ is 
thu s p roved . 

By Theorem VII, for every problem of the form (x )F(x) (with recursive F) there is 
an equivalent arithmetic problem. J\IorcoYcr, since the entire J)roof of Theorem VH 
(for every particular F ) can be forma lized in the system P, this equivalence is 
provable in P . H ence we have 

Theorem VIII. I n any of the fo rmal systems mentfoncd in Th eorem Vl 53 th ere arc 
undecidable arithmetic propositions. 

By the remark on page 6] 0, the same holds for the axiom system of set t heo ry a11d 
its extensions by w-consistent recurs ive classes of axioms. 

Finally, we derive the following result : 
Theorem IX. I n any of the f ormal sy,<tems mentioned in 'J.'heorem V 153 there a re 

undecidable problems of the restricted f unctional calculus51 (tlrnt is , formulas of the 
restricted functi onal calculus for 11·hich neither Yn lidi ty n or the ex istence of n 
counterexample is prova,blc). 55 

This is a, consequence of 
Theorem X. Every problem of the f orm (x)F(x) (11:ith recur.sire F) can be reduced lo 

the question wheth er a certain f ormula of the restricted f 11nctio11a l -ca lculu., is satisjialh 
(that is, for every recursive F we can find a form nb of the restri cted ftmct.ional ca l­
culus that is satis!i,tble if and only if (x )F(x ) is true. 

By formulas of t he restric ted functional calculus (r. f. c.) we unders tand c:q >n' , . 
sions for med from the primitive signs -, V, (x), = , x, y, .. . (i ndjvidrwl variable~). 
F(x), G(:c, y), H (:i.:, y, z), . .. (predicate and relation variables), Y,hcre (x ) and = apply 
to individ uals only.56 To these Si!;ns we ;: dcl a third kind of variahles, (p'(x), ,ji(.r, y), 

53 The-so a rc the w-con sistont syst ems tkit resu lt from I' when rec u rsively defina ble classes or 
axioms are added. 

54 See IIilbert and Ackermann 1928 . 
In the syste m P we must und crst flnd hy formu l,ts of tho restr icted func tion:1.I cu.Jculus tho~L· th at 

result from Uw formnl as of tho rn~tr ictcd functional calculus of P .~I when relations n rc replitc,·,1 
by cl r,,sscs o f higher tyres as iml icntcd on page 599. 

55 In 1930a I shomxl that every formula of tho restricted fu nc-t ionnl calculus cit lH' r e11 n h· 
proved to be valid or h as :J. cou nt.!: rcxnrnplc. H owever, by Theorem IX the c xistenco or tlii• 
counterexampl e is not always provable (in the fonna l sy,tems we ha,·o been conside ring) . 

56 Hil bert and Ackermann (1 928) do not include t ho s ign = in tho rest ric ted funct iona l c11 lcult1< . 
But for every formula in wh ich tho s ig n = occurs them ex ists a fo rrnu b tlm t docs not cunttein t li ,, 
sign a nd is sat isfiable if a nd only if t he orig in,tl formu la is (soc Godel 1930a) . 
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K( x, y, z), anrl. so on, which stand for ohjcct.functio11 s~Gcgcnsbnclsfu11kti oncn] (that 
is, g,(x), ,/r(:r, y) , a nd so on denote si11glc-v,il11ccl fu11ctio11 :-; \\·hose argmn0nts and value:; 
a rc inclivid.u als). 57 A fo rmula tl1 at conlnins v,uiahlcs of the t.hirrl ki11d in aclcli!.ion to 
the sig 11 s of the r. f. c . fir :; t mc11tionccl ,rill be ca lkcl a formu la int he e;xtrndcd sc11sc 
(i .e. s. ). 5 8 The notions " satis fb.blc " and" valid" ca 1-ry o,·c r immediat ely to formu las 
i .e. s., and we have the theorem tha t, fo r :rny formula A i. c. s ., we can find a formula 
B of the r. f. c. p roper such th at A is sati:;llaLlc if a11d 0!1 ly if lJ is. W e oLta in B from 
A by replacing the va ri al.J lcs of the third ki nd, cp(x), 1/,(.-c , y), . .. , tha t occur in A wit.h 
expressions of the form (n )F(z, x), (1z)G'(z, x, y), . . . , by climi1wting the " dcscripti,·c " 
fu nctions by t he method used in PM (I, *J.1), and by log ica lly rnu!ti11lying59 the 
formul a thus olJtaincd by an expression slating a Lout each F, G, .. . pu t in place of 
some cp, ,fi, ... tlrn,t it, holds for a unique v alue of the fi rs t argument [for nny choice 

of values for the oth er arguments]. 
vVe now sho w that, for CYcry 1woblcm of the form (:i:)F(x) (with rccut·sivc F), there 

is an equi,·alcnt proLlcm concerning the S[Lt.is fi al.Jilit,y of a formula i. e . s ., so th a t, on 
account of the remark just made, Theorem X fol10 1•,s . 

Since }I' is rccur::;ivc, there is a rccursi \T fu I1ction cf>(x) such t hat F(x),......, [ cf>(x ) = OJ, 
and for cf, there is sequence of fun ctions, cJ! 1 , cJ!2 , • • • , <Jin, such that <J>n = <J>, <l\(x ) 
= x + 1, and for c,·ery (JJ" (1 < k ~ n) ,1·e have either / 

or 

or 

1. 

2. 

3. 

with p, q < k, 5 9 a 

( x1, • • •, xm)[<J\,(x1, · · •, xm) = <1),( cJ!i 1 (t:i), • • •, cJ!i,(tsl)], 6 0 

withr < k,iu < k(forv = 1,2, .. . ,s), 

vVe then form the propositions 

) 
(x)<1\(x) = 0 & (x, y)[<1\ (x) = cJ! 1 (y) - > x = y], 

(x)[<1>n(x) = OJ. 

(19) 

(20) 

(21) 

(22) 

In all of the formulas (18), (19) , (20) (fork= 2, 3, ... , n) and in (21) and (22) we 
now replace the fu nc tions cf\ by function variables <pi and the numl.Jer O by an 

57 Moreover, the d omain of d efinition is always supposed t o b o the ent ire d omain of individua ls . 
•• Vari o. bles of the third kind may occur at a ll a rgument places occupied by individual vo.ria blcs, 

for exa mple, y = tp(x) , F( x, <p (y)) , G(f(x , <p(y)), x), and the like. 
59 That is, by forming the conju nc tion . 
59 • [The last clo.use of footnote 27 was n ot t aken into account in the formulas ( 18). But an 

explicit form u lat ion of the ca;;cs with fewer va riables on the ;ight s id e is actually n ecessa ry here 
for the form o.l correc tness of the proof, unl ess the identi ty func tion, I( x ) = x, is udded to the 
initial funct ions. ] 

8 0 The i, (i = I, ... , s) s t and for fm ito seque nces of the v a riables x 1 , x 2 , . .. , xm ; for example, 
%1, x0 , x:il: . 
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indivi<lu ::i.l variaLlc x 0 not used so far, and we form the conjunction C of all the 
formula s thus obtained. 

The formub (E:r0 )C then has the required propnty, that is, 
1. If (x)[11(x) = OJ holds , (E:c0 )C is sati ,;fob le. For the functions <P1 , <P2 , ... , <Pn 

obviously yield a trne proposit ion when sub;;titutecl for r:p 1 , cp 2 , . •• , r:p,. in (Ex 0 )C); 
2. If (Ex0 )C is sa t isfi alJle, (x)[{J'l(x) = OJ holds. 
P roof. Let v,1 , ip2 , .•. , 'Pn be the functions (which exist by assumption) that yield a 

true proposition when su bstitutcd for rp1 , rp2 , .. . , Cf!n in (FJx0 )C. Let!;} be their domain 
of inclfriclu als. Since (Ex0 )C holds for the functions 'Pi, there is an individual a (in 
!;:J) such that all of the formulas (1S)-- (:22) go over into true propositions, (1 S' )-(22' ), 

\Vhen the q'> i arc rcplacccl by the 'Pi and O by a. 'Ne now form the smallest subclass 
of ~ t hat contains a and is closed under t he operation ip1 (x) . This subcb ss (~ ') h:is the 
property that every function 'Pi, when applied. t o clements of~', again yields clements 
of !;s' . For this holds of i/;1 by the definition of !;s', and by (1 S' ), (H)'), and (20' ) it 
carries over from 'Pi with smaller subscripts to 'Pi with hrgcr ones. The functions that 
result from the ip , when these are restricted to t he clomain :is' of individuals wi ll be 
denoted by 1/;;. .A.l l of the formul as (1 8)-(22) hold for these functions also (when we 
repln,cc O by a and <P i by if,;) . 

Because (2) ) holds for ,j/1 and a, we CP.n map the individuals of~, one-to -one onto 
the nn,tural numbers in such a m;,.nner hat a goes over into O a,nd the function if;~ 
into the successor funct.ion {J'l1 . But by this mapping the functions f; go over into the 
functions {J'li, and, since (2:2) holds for if,~ and a, (x) [<P11 (x) = OJ , that is, (x)[W(x ) = OJ , 
holds, ,rhich was t o be p rovcd. 61 

Since (for each particular F) the argument leading to Theorem X can be carried 
out in the system P, it follows tlrn,t any proposition of the form (x)F(x) (with recur­
sive F) can in P be proved equiv:, lent to the proposition that stat es about the corre­
sponding formula of t he r. f. c. that it is satisfiable . H ence the umlecidability of one 
implies that of the oth er, which proves Theorem I X .62 

4 

The results of Sect,ion 2 have a surpnsmg consequence concerning a consist.ency 
proof for the system P (and its extensions), which can be stated as follows : 

Theorem XI. L et K be any recursive consistent63 class of FOR.'lfULAS; then the s ·ENTEN ­

TIAL FORi\WLA stating that 1< is consistent i s not K-P ROVADLE; in pn,rticular, the consis­
t ency of Pis not provable in P,64 provided Pis consist ent (in the opposite case, of 
course, every proposition is proYablc [in PJ). 

The proof (briefly outlined) is as follows . Let K be some recursive cfass of FOmllJLAS 

chosen once and for aU for the following discussion (in the simples t case it is the 

61 Theorem X implies, for example , t.hat F erm,1t's problem and Goldbach's problem could be 
solved if the decision problem for tho r. f. c. were solved . 

62 Theorem IX, of course, n!so holds for the nxiom syst em of se t theory and for it s extensions 
by recurs i\'cly d c-finablc w-consistent cbsscs of axioms, since t h ere a rc uncleci,bblc pro1,os it ions 
of th e form (x)F( x ) (wi th recursive F) in these systems t oo. 

63 "K is consistent" (n.bbrcvia ted by " \\'id(K) " ) is defined thus : \Vicl(K) = (Ex)(Fol'ln(.r) & 

B ewK(x)). 
64 This fo l1011·s if we su\.,s titule the empt.y chss of FOJnlULAS for K. 
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ON FORIIIALLY UNDECIDAJ1LE PROl10Sl1'lONS 61 5 

empty class). As appcnrs from ] , page GOS, only the con~i:; tency of K was used in 
proving tha t 17 Gen r is not 1-:-rrw ,·A1:u; ;65 that is, we ha ve 

\Viel(") - > ]3cw,c(] 7 Gen r), (23) 

t ha t is, by (G. l ), 

\V i cl(K) ->- (x) x B" (17 Gen r). 

By (13), we h~ve 

hence 

that is, by (S.l), 

vVicl(,c) - >- (x)Q(x), p). (24) 

\Ve now o];scrire the follo,1°ing: all notions cldi.nccl (or statements pro,-cd) in Section 
2,6 6 and in Section 4 up to t hi:-i p oint, are also expressible (or provable) in P. For 
t hroughout we have used only t he rnct.hocls of definition at~d proof lrnt arc custonrnry 
in classical mathemat ics, as they arc formalized in the system I'. n parti cular, K (like 
every recursive class) is definable in P. Let w be the SE::i'l'E.\'1'1AL Fon:1ruL..\. by ,1·hich 
Wicl(K) is expressed in P . According to (S. l) , (9), and (10), the relation Q(x , y) is 
expressed by t he :r., r;uTJO"N SJG"N q, hence Q(x, p) by r (since, by (1 2), r = Sb(q1zpJ )), 
and the p roposit ion (x )Q(x p) by 17 Gen r. 

T herefore, by (24), w Imp (17 Gen r) is pron,Llo in P 67 (and a for tiori K-PHOVABLE ). 

If now w were K-l'ItOVABLE , then 17 Gen r ,rnuld a lso be K-PI:OVABLE, and from this 
it would follo w, by (23), that K is not consi stent. 

Let us observe that t his proof, too, is constructive ; that is, it allows us t o actually 
derive a contradiction from K, once a PHOOF of w from K is given. The entire proof of 
T heorem XI carries over word for word to the ax iom sy:;tcm of set theory, Jlf, and to 
thftt of classical m athcmatics,6 8 A, and here, too, it yields the result: There is no 
consistency proof for 111, or for A, that could be form alized in J11, or A, respectively, 
p rovided J11, or A, is consistent . I wish to note exp re,:;sly that Theorem XI (and the 
corresponding r esults for JlI and A) do not contradict Hilbert 's formalistic viewpoint . 
For this viewp oint p resupposes only the existence of a consistency proof in which 
nothing but finitary means of proof is used, and it is conceivable that t here exist 
fini tary proofs that cannot be expressed in the formalism of P (or of M or A). 

Since, for any consist ent class K, w is not K-PROV ABLE , there always are prop­
ositions (namely w ) th:,t a re undecidable (on the basis of K) as soon as Neg(w) is not 
K-PROVABLE; in other words, we can, in Theorem VI, rep lace the assumption of 
w-consistcncy by the following: The p roposition " K is inconsist ent" is not K-PROV­

ABLE . (Note tha t there are consist ent K for which this p roposition is 1-: -PROVABLE.) 

6 5 Of course, r (like p) dep ends on K. 

6 6 From the cle t:i nition of " rec urs ive" on p age 60~ to tho proo f of Theorem VI inclus ive . 
6 7 T hat tho truth of w I mp (17 Con r) cun be inferred from (2 3) is simply clue to the facl that 

t ho u nclcc iclublo proposit ion 17 Gell r asserts i ts O\\' a unprovabi li ty, as was n oteJ at tho very 
beginning. 

6 8 See von .X eumam1 1927. 
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In the present paper we have on the \\'hole restri cted onrse1Yes to the sy,l c·nt }'. 

and we h ave only indi cated the applications to other systems. The result s \\' ill '"-' 
stated and proved in full genera lity in a sequel to be 1rn blished soon .68a In that. par-<·r. 
also, the proof of Theorem XI, only sketched here, will be given in detail. 

Note added 28 A ugust 1963. In consequence of later advances, in particul:-ir of thi· 

fact tlwt due to A. j\[. Turing's work69 a. p recise and unquestionably ndc·qu.1:, ­

definition of the gencrn,l not ion of formn l system70 cn,n now be given, n, co1ni ,kk1_1 
gcncml version of Theorems VI and XI is now possibl e. That is, it can be pn,nd 
rigorously that in ercry consist ent formn,l system thn,t contains a certain amount of 
fini tary number theory there exist undccidn,b]e arithmetic propositions and t h.1 t , 

moreover, the consistency of any such sys tem cannot be proved in the system. 

6 8• [This explains the "I" in tlie title of t.hc paper. Tho author's intention was to publish th " 
sequ el in the next volume of the 11Jonatshcjle. The prompt acceptance of his r esults was onc r;f t !:I.' 

reasons tl ,at mo.de him change his pbn.]. 
69 Sec T urin'] 1937, p. 2-19. 
70 In 1ny opinion the t ern1 "for1nrd systcrn" or" forrnaiism" should never be used for nny: hin_,.: 

but this notion . In a lecture at Princeton (rr,cntioncd in Princeton Vnfrersi ty 191G, p. I I ·~·•· 
Da,;is JDC-5, pp. S-1- 88]) I suggested certain .t ransfin it e gcncr::tlizat ions of formali sms, hut t~ , .• -
are something radically different from fo n li ,,l systems in the proper sense of the ten11, ,_.; ., , •. 
oharn,eteri stic propert:,· j3 t lrn t reasoning in them, in p rinc iple, can be co~nplet cly rqJlar;pd !,., 
m cch,1,nica l devices. 

ON COnlPLETENESS AND CO~SISTENCY 

(1931a) 

Let Z be the formal syst em that we obtain by supplementing the Peano a:don1' 
with the schenrn of definition by recursion (on one v2-riable) and the logica l rule, t,f 
the restricted functionn,l calculus . H ence Z is to contain no vn,riables ot h(•r t h,1 n 
variables for indiYiclunls (tlmt is, natuud numbers), and the principle of maihcma t ic.d 

indu ction must therefore be formubtecl as <' rnle of inferepce. Then t he follt-rn i11,: 
hold: 

1. Given any form al system S in which there are finitely many axioms :tn( t i11 

which the sole principles of inference are the rule of substitution and the rnk 11 f 
implication, if S contains1 Z, Sis incomplete , that is, there are in S propositi on~ (in 

1 The,t o. formal system S co11tains another formal system T m ea ns that e,·ery propo., it i" " 
express ib le (provable) in T is expressible (prova ble) also in S. 

[ Remark by the author, 1 S ;\Iay 1 !lGG :] 
[This definition is n ot precise, and, i f made precise in the strnight.forwarcl manne r, it doc, nu: 

y ield a suflieicnt condition for the nonclornonstrability in S of the consis tency of S . A sutlleic,,i 
condition is obt:1inecl if one uses the following dcfinit.ion: "S contains T if and only if <·, ·,·r:, 
m eaningful formula (or axiom or rule (of inference , of definition, or of construction of flxi ,;u c•)l 
of 'J' is a meaningful fo rmula (or rrx iom. and so forih) of S, tli at is , if Sis an extens ion of '1"'. 

Under the weaker hypotlw., is that Z is recursively one -to-one trnnsla ta.hlc into S, with d, •11 :, ,n 
st.ro.bility presc n·ed in this direction, the consistency, even of very strong systcn1s S, ""' '.I 1..­
provo.ble in Sand even in pri, nitive recu rsi,·c number theory. H ov.-cver, what can be sho,•.-Jl to!~ 
unprovo.ble in S is the fact tk,t the rules oft he equational calculus applied to equations, l>l'l ·., ' , ·ei 

primitive rec ursive terms, d mnonstrablo in S yield only correct numcric,il equations (1•n, , ,,f. -l 
th ltt S possesses tho property thn.t is assert ed to bo unprovable ). Xotc that it is n,·,•,• .,,M, , .. 
prove this "out.er" con:;istcncy of S (which for the usual systems is tri,·ially cqu ind,• nt ··• '' !. 
consistency) in order to " just ify", in the ~enso of Hilbert's program, the transfinite a:-; ioc:» .,(-' 



Not es 

Chaper 1 : I ntroduction 

1. Ladriere , Limitations l nternes des formal ismes , 
whi ch is out o f print. It i ncludes a s ummary 
of mathemati cal result s which point to limitations 
in deductive systems , and a c hapter concerned 
with the problem of 11 c apturinrr, 11 ma thematical 
intui tion in a formal system, 

2, Na '3;e l an1 Ne,,rman , Godel ' s Pr oof. This work i nc l udes 
some i ntroductory materia l on the mathemat ica l 
p r oblems to which Godel addressed himself. 

Chapter 2: An exposit i on of Godel ' s 'Theorem 

1. Thi s i s Godel ' s or i g i nal paper . Two Engli sh 
t rans l at i ons are availabl e . One i s by Meltze r and 
is publi shed a l one i n a vo l um e . Another i s 
inc l uded i n van He ij enoort ' s anthology , 
From Fr~e t o Godel. 

2. Th e definition appears i n t he orig i nal on pa~es 
179 and 1 80. What Godel cal ls a recurs i ve 
function i s c a l led a primitive recurs i ve 
fun c t i on t oday. 

3. A n umb er t heoretic fun c t i on is one f rom t he 
natural n umbers to the n a tural numb ers . 

4 • Hatc he r , in 
projecti on 
thes e t ~,ro. 
function I 

Foundations of Mathematics, r equires a 
functi on as p r i mi tive , in addit i on tb 

Whe ther G'ocle l impl icitly requi re s this 
do not kn ow. 

5. Thi s is the Fundam en t a l Theorem of Arithmetic . 
Proofs are availa ble in many places . For one , 
see ~er~teih , I. N., To:Qi~s i n Al s_e~ r a , Bl a isdell 
Publ1sh1ng Co., Waltham, .t,1a ss ., 196 ~. p , 19. 

6, Nagel and Newman use a differen t numbering technique 
bas ed on a slig h t ly different system . 

?. Se e van He ij eno ort for a repr int of Peano 's paper . 

8. Implica tion , equivalence, etc. , are defined in the 
usua l manne r based on the primitive notions . 

9. Sv 'b.s,(c~ ~I mean s sub stituting c for the v a ria ble v i n a . 



10. A relation is recursive if th~re exists a recursive 
function satisfied by the members of the relation. 

11. Gothic letters represent n-tuples of variables. 

12. Other development s of G~del's Theorem do n o t 
r equire w -consistency. See Rosser , 1939 . . 

13. Tar ski has exhibited a system which has b een 
sho1,m to be simply consistent , but not w -consistent. 
See Rosser , 1939. 

Chapter 3 : On Richard and G6del 

1. The paper i s reprinted i n van Hei jenoort . 

2. p. 63. 

3. The version of Richard 's Paradox g iven by Nage l and 
Newman is, of course , not the one originally given. 
R ' s work concerns set membership, whereas N&N 
i nvolve predication of properties to indi vidue,l 
numbers. The two are possibl y reconci l able. 

Chapter 4: An Extension to Ordinary Language 

1. Th e paradox is developed in an unpublished pape r of 
John Post, at Vanderbilt. The contradiction c omes 
1hen acceptance of the original proposition entails 
a s entence ,,Jhi ch is necessarily true , and the ref ore 
not either possibly fal se , o r neither true nor 
f alse. 

68 
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