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Preface

Mathematics i1s a constant source of valuable
insight into philosophical problems. Many puzzles
in philosophy possess analocues in mathematics for
which acceptable solutions have been found., It is
no surprise that Godel's celebrated paper of 1931
is such a parallel. In his work, Godel makes
strong statements about a formal language from a
formal proof expressed in that language. It is
a situation comparable to that of the philosopher
attempting to discuss language. Godel's success
in avoiding paradox points to what may be an impor-
tant restriction on the capacities of language to
talk,

When a specific example is used as a basis for
conclusion, the writer is immediately open to the
charge of hasty induction. This disucssion is not
intended to demonstrate that the restriction developed
is necessary. Indeed, if it is necessary, it may
therefore be impossible to say so. Rather the force
of the contrast between Richard's work and Godel's
is intended to provoke the realization that some
restriction of the kind offered is needed,

The ideas developed in this paper have come from
wide readings impossible to credit adequately.

The most important of these sources appear in the
Bibliography. Conversations with members of the
Washington and Lee Philosophy Department have been
most helpful. HMr. Robert Steck has been especially
helpful in this regard. Occasional conversations with
Mr. Gordon Williams have helped to assure me that I
have not totally misunderstood Godel's work., No
research task of any magnitude is completed here with-
out the assistance of either Mrs., Betty Munger or

Miss Martha Cullipher, I thank them too.

Anthony MonCrief Coyne

Lexington, Virginia
April 27, 1970
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On Showing and Saying:
2 s ]

An Analysis of Godel 1931

1.1 In 1931 Kurt Godel published a theorem demonstrating

that many systems of formal logic capable of developing

arithmetic possess major deficiencies, He shows that

such systems, 1if they are consistent, are powerless

to demonstrate their own consistency and possess propositions

which can nheither be proven nor disproven. In order

for his results to obtain, Godel must use the language

of his system to talk of itself. To avoid difficulties

such as those which develop in Richard's paradox, Godel

must take care to insure his formal language refers only

to numbers. The reader must then see this discussion

as one about the system itself. From the consideration

of this kind of language reference which keeps Godel

free from paradox, a general criterion for detecting

paradoxical reference in language will be offered.
Traditional approaches to Godel's work concern them-

selves with i1ts relationship to the program of Hilbert

for mathematics. Thus Jean Ladrierel in his study

Limitations Internes des Formalismes examines the

capacity of any formal system to embody mathematics in

its entirety. The concern is mathematical, The concern



of this paper is with language used for reference to
objects (of some sort) beyond the languase itself,
Mathematical considerations, other than the proof itself,
will be kept at a minimun,.

One side issue has appeared in examining Godel's Theoren
deserving more attention than it has heretofore received. .
In his proof Godel allows for expanding the scope of his
system by allowing the inclusion of additional assumptions,
In Chapter 3 the question of whether these postulates
may be of empirical origin will be considered.

1.2 Chapter 2 of this paper is an exposition of the

work of Kurt Godel in his 1931 paper. It presents all

of the technical devices used for the final result,

omitting only proofs for some of the intermediate theorems
which are of little interest in themselves. Chapter 3
develops Richard's paradox of 1905 along his original lines,
It goes on to present the paradox as given by

Nagel and Newman2 and to develop the error which permits
the paradox. While the two versions of the paradox are
sufficiently dissimilar to permit two resolutions to the
paradox, both explanations center around references by
language which are beyond its permissable scope., Godel's
work is constrasted with Richard's to show that the
difference between the two lies in Godel's indirect reference.
The structure of this indirect reference is considered as

is the possibility for permitting empirical judgments



as formulae, Finally Chaper 4 will explore a generaliza-
tion of the solution of Richard's paradox for ordinary
lanzuage, It will be shown that many traditional

antinomies can be detected using this criterion.



II

An Exposition o6f Godel's Theoren

2,1 This section is a presentation of Godel's 1931

paper "Uber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme I."1 wWhile this section
is not analytical in nature, the attention of the reader

is called to the technique of Godel numbering exhibited
below and to the possible inclusion of an additional

set of presumptions in the demonstration of Proposition VI,
These will be the major subjects of the analytical chapter
to follow,

There are two properties of a formal system of
particular concern to the matatheory. These are consistency
and completeness. A system is consistent if both a
proposition and its negation cannot both be demonstrated.
The system is called complete if every proposition can
either be proven or disproven,

Godel exhibits a well-formed formula of

PM (Principia Mathematica) which says of itself that it

is unprovable. This is shown, in additionh, to be true by
showing the assumption that either a proof or a disproof
of the formula can be given leads to inconsistency. As

a result PM will be shown to be incomplete.

L



There exist intelligible propositions which cannot be
decided within the system itself, An immediate result of
this is that if PM i1s consistent, it will be unable to
demonstrate its own consistency.

Godel proves his theorem by mirroring the system
within its arithmetic. There are two levels in his
demonstration, the level of the symbolic calculus, and the
arithmetic which will represent it. The bridge to
the arithmetic is made by assigning a number to each
formula (Gddel numbering). To insure a precise copy of
the symbolic system in its arithmetic, Godel develops
the notion of recursive functions so that he can talk
about the numbers corresponding to the formulae in ways
similar to the way he talks of the formulae, The devel-
opment of the theorems follows from the axioms. The
corresponding numerical transformation will be done with
the recursive functions. The results Godel obtains are
demonstrated in the arithmetic about numbers, We then
interpolate back to the theorems of the system to get

his results,.
g\-'-'i'hme‘f{c_

recursive
functions i
Gode ] numbees
axioms
—

theorems

(figure 1)



2.2 In carrying out his demonstration two techniques

are employed. One is the use of Gvodel numbering to
provide indirect reference of the formulae to themselves.
The other is the recursive function, a technical device
which will be considered presently.

2.3 The recursive function is defined in two steps. The
first step defines the function for an initial value.

The second step defines the function at each point based
on its value at the preceeding point. Consider the
following recursive definition:

() ¢ =5 !

b (b) $(nr1)=F(mM 3

This set of formulse defines for every natural number

a corresponding functional value, But it does so on the
basis of a "recursive relation", (1b), which explains

how f(n) is to be obtained from the value of f(n-1),

The recursion begins with the setting of an initial

value, here done by (la). Thus f(1l)=5, f(2)=f(1)+3, or 8.
It is evident we may calculate the value of the function
for the natural number of our choice, or check to see if
£(1,234,687)=45,347,981,345,983., In practice considerable
labor may be involved, but a schema for checking is available,
The notion of recursive function is very similar to the
notion of effective computability and to notions in the
discussion of Turing machines. The function f above is

said to be recursively defined by (1).



Godel gives a more involved, but essentially similar,
definition of recursive functions,? He states:

A number theoretic funotiorﬁ5’¢(ﬂh,¢nln‘¢n)
is said to be recursively defined by the number
theorectic functions ¥Y!*%u,.%n) gnd plx, Fu, o Kns)),
if for all «. %, .-%n, R the following hold:

(2) cb(o)"XLl.-.xn) :“\V(/\ﬂ-'bj.n\xn)
¢(K+,J’y‘7ﬂ1"

th3:v,(K,@(K,Xu'wﬂGJ,dLJH-““)
A number theoretic function is called recursive,
if there exist a finite series of number
theoretic functions ¢, @.,...Pa which
ends in ¢ and has the property that every
function ¢K of the series is either recursively
defined by two of the earlier ones, or is
derived from any of the earlier ones by
substitution, or, finally, is a constant
or the successor function th.

If we look at Godel's schema 2 we see it is our
schema 1 expanded to accommodate several variables.,

If we suppress Xa,...%n , we getv

d (o) = some comnetant

&) = pMI K, P LK)
which is our schema 1. In effect what has been done is
to recursively define one of the variables in C? .
The function ¢ 1is then said to be recursively
defined ifY¥ and p are recurisvely defined in terms of
recursively defined functions, finitely back to the two

!
primitive f‘unotionsP

gemy = where a is a constant
fin)=ntl the successor function
IfY and o admit of recursive definition, then, in theory

at least, ¢ could be recursively defined solely in

terms of the constant function and the successor function.



The notation is simpler if we allow these intermediate
functions, It 1s possible to define addition-
recursively, Informally this means we possess techniques
for checking addition by recourse to the notion of
sequence, Further, only finitely many references to
the sequence will be needed to carry out each check,

Similarly multiplication can be defined recursively
and eventually many other functions. Each function so
definied can have any particular of its values determined
after a finite number of simple operations. All questions
about the value of such functions thus has a schema
for decision.
2.4 The other tool used by Godel is one for indirect
reference to the statements of the calculus., He talks
about numbers but allows us to see this as talk about
the syntax of the system by letting each statement
(and each series of such stétements) be represented by
a natural number., In a way the entire set of statements
is contained in the natural numbers of the system because
of the correspondence between them which is established
by the numbering scheme. Though it is not this simple,
the following indicates the spirit of the attempt.
Suppose every statement is represented by a natural
number:

(1) All swans are white,

(2) All white things are pure,.
(3) All swans are pure,



(1) and (2) together imply (3). Here it is also true

that 1+2=3. 1In the arithmetic, addition represents

the operation of implication at the symbolic level

in the arithmetic level, If all statements could

be numbered in such a way that if 5+135=140, then

statement 5 and statement 135 imply statement 140, then

we could dismiss the operation of implication between

statements and discover all such relations by

looking at addition, Logic would be a matter of arithmetic,
It is with this end in view that Godel establishes

his correspondence between numbers and statements, His

schema is based on the fact that each non-prime number

can be expressed as a product of primes in exactly one

way, disregarding the order of the faotors.5 To the

basic signs of his system Godel assigns odd integers

according to the following table:

Sign Meaning Number
0 Zero 1

f successor function 3
~ negation 5
\ disjunction 7
™ universal quantification 9

( left parenthesis 11

) right parenthesis 13

For variables of type n the number is pn where p is a
prime over 13. Thus there are denumerably many variables
of each type.

(figure 2)
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We now uise these numbers of sizns as a basis on which
to assign numbers to statements. We do so in the following
way: to the seguence of numbers of sighs n,_ng, .0k
n, Nz N i .
we assign the number 2%¥3 %% %P yhere the P. are
increasing primes beginning with 2, For example, to the
sequence of signs
~ (a v b)
we assign the corresponding sequence of numbers
S,10,17,7,19,13
Since a and b are assumed Lo be variables of the
first type, they may be paired with 17 and 19, the
first powers of primes greater than 13. Now to the
expression as a whole we assign the number
fos”xg'x77illmxi35
Numbers can also be worked back to sequences of signs.
Many numbers, however, 4o not represent such sequences.
For example,loo::zixszis not one since 2 and 5, the
primes present as factors, are not successive
primes and hence 100 could not have resulted from
numbering according to our system. But
ZSX‘3l7

represents ~ X , Where x is the first variable of

the lowest type. We can thus go from expressions to
numbers and where it is the case, from numbers to
corresponding expressions.6
2.5 The system which Godel uses for his proof is

a modified version of PM, Peano's axioms7 have been added
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(thouzh this only simplifies matters, since Peano's
axioms can be deduced within PM). Specifically the
axioms of qodGT's system are:
I. Peano's axioms8
1. zero is not the succesgsor of any natural number
~ (€ x) =0)

2. two numbers which have the same successor are
equal

fla)=F(y) =2 %=
3. the principle of mathematical induction: if
a property holds for zero and, if it holds for

any natural number it holds for its successor,
then the property holds for all natural numbers,

Kpto) &, T (22l %) D K (£ (=) D & 77 { %alx))

II. The following axiom forms (in which any formula may
be substituted for p,q,or r to produce an axionm):

1. pvpOp

2. p2PVi

3. pVE® VP

I (pDi)D(rvPZDFVﬂ

III. The followingz schema, which concern the quantificational
calculus?:

1. \/T\]’(G\_) D S\Jbﬁ_‘. (aV) U\'\Q‘”& il ;5 e R P«r“‘;;(‘,u,ar

2. Jir(bvea) D bV Vir(a), ﬁk)dwlﬂd+oawf
er‘ee, N

IV, The axiom of reducibility is accepted in this form:
(Ev)(vT (Vtv)=a))
V. The following axiom (together with all of its type-

lifts) which state that a class is completely determined
by its elements:

AT (AL ) = ga ¥ ] 2 e = ge
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Fortunately these axioms will not be referred to again.
They are presented to show on what a small base

a system can be built and still be adequate to
demonstrate Godel's result.

With one more definition we can approach the
proof itself, A formula c is called an immediate conse-
quence of a and b, if a is the formula (~(b))vcC ;

c is an immediate consequence of a if ¢ is the formula
v”ﬁ)(@) where v is a variable of a. The provable

formulae are the smallest class which contains all of

the axioms and their consequenccé.

2.6 We are now ready to look at the proof proper. It

begins with an exposition of recursive functions.

These functions will turn out to be models of the concepts

such as proof, entailment, etc. They thus provide for-

mulae for dealing with the numbers which refer to the

statements of the system.

The line of development is this. First, there will
be five theorems about combinations of recursive
functions. This will serve to justify the exposition of
L5 recursive functions endingz in

xBy = Buix)and Li)]GHx) =y
" that is, x is the number.corresponding to the proof of
the formula whose number is y. This function is shown
to be recursive, Then we are in position to prove
Proposition VI which asserts the incompleteness of PI.
Proposition XI on the inability of PM to demonstrate its

consistency will then follow imnediately.
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The first five propositions about recursive functions
will be stated without proof. Godel sketches these in
his paper. The first three will seem obvious, if the
definition of recursive function is kept in mind. These
five theorems tell us how‘we can combine recursive
functions to produce recursive functions, They form
a calculus for these functions.
2.7 1. Every function (or relation)lo derived from recursive
functions (or relations) by the substitution of recursive
functions in place of varlables is recursive; so0 also
is every function derived from feoursive functions by
by recursive definition accordinz to schema (2).

II. If R and S are recursive relations, then so
are ~R (or R ),RVS (and therefore R -5 ).

)11 ona V) are recursive,

III. If the functions @¥
so also is the relation @ (¥) = Yn),
IV. If the function¢(%¥) and the relation R{%,n)

are recursive, so also are the relations S,T

ST = (EX)Lx 29 (F) and R IxT)]
T(¥,n) = (x) Lx2¢o(F)D R (x,n)]
and likewise the function
‘P(‘?‘,TL\:“( (% & (F) and D\()‘/ﬂ))
where € is a function satisfied by the smallest integer
X for which the following condition holds, and ©O

if there is no such number.
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This theorem will be needed in establishing the
recursiveness of functions which express manipulations
on particular terms in number sequences,

One more theorem remains to be shown about recursive
functions. This one guarantees that a recursive
function exists for each recursive relation. The conclusion
of the theoren is given in the form of Godel numbers,
For a proof, see Godel's paper,
Proposition V: To every recursive relation_f{(xl:"'y“)
(a statement) there corresponds an n-place relation sigh
r (a2 number) (with free variables Vi,Ve,.. Va ), such that

for every n-tuple of numbers \™,, ¥, %a) the following

hold: ' Y
v. DR ] n
p\\f)( v ) — BQ\»JLSB((.ZW,) -~--z(mn\i}
b Vi e Vi
R, x> Bew Liieg U0 000 )

The claim is that if a relation holds among n-variables,

the number which corresponds to the relation when the
variables are replaced is among the class of

provable formulae., Similarly, the second proposition states

the result tthen the relation does not hold among the

numbers.,
2.8 It can easily be shown that x*y , X'y i
~9 y XY, K=Y ., are recursive, In the original

paper 45 functions follow which are immediately seen to
be recursive on the basis of the preceding theorenms.

They are functions on natural numbers which can be taken



as referring to the signs of the system and to the
sequence of such signs. The goal of these propositions
is to establish that the notion of being a proof can
be recursively defined, The result (number 45) is
(B comes from the German Beweis):
xBy = Buw ) end [L0]6GIx =y
Interpreted, x is the Gddel number of a series of
formulae which constitute a proof schena, ES”LX) .
and whose last term LIUEIM is the Godel number of
statement y. Godel next defines one more function
which is not recursive, and whith asserts that the number
X corresponds to a provable formula, The function is
number 46 and draws its name from the German Beweisbar:
Bew tx) :(EY)YBX
Five more of these functions will be used in the final
demonstration, These are Sb, Z, Gen, Neg, and Flg.
Sb is number 31 of the series and corresponds to
the operation of substitution. It generates the
Godel number which corresponds to the substitution of
a constant in a variable of the function. Sb operates
on numbers, performing the corresponding operation to

variable substitution.

Sb(X;)

*v

sb(*;)

7 /)(7~ apa}hme¥ig

G5 del

nquoerS

i) Subs‘lti')"v‘}’ioﬂ ~___->’K/?) 5+Q+theh+5
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Z (from the German Zahlzeichen) provides for
each number its Godel number. 3Since numbers are not
primitive in the system, they are defined in terms of
the successor function f by expressions such as f(f(0))
Hence each number possesses a corresponding Godel number,
The function Gen (number 15) corresponds to the
logical operation of generalization. It, like Sb,
operates on numbers, and corresponds to the manipulation
of symbols in the system.

[
n —~—~;z;gen : 7 No

(,.-'o‘c]e,l number‘s

s )

O eneralization

4 (x)

Neg(x) is the negation., Flg(x), from the German
Folgerungsmenge, is defined as a set of numbers-- the
set which corresponds to the set of provable formulae,
2.9 To be honest, the gemonstration of Proposition VI
will require a stronger demand be placed on the system
than simple consistency. Simple consistency requires
that p and ~p not be among the consequences
of the axioms, w -consistency, which Godel will require12
prohibits the following in the system:

1. Proposition ¥ holds for each natural number,

2, It is not the case that proposition x holds

for every natural number,

One is a claim about the numbers demonstrated individually.
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Two states that the negation of the generalization 1is
demonstrable.

Every w ~consistent system 1s simply consistent.
However w0 -~conalstency cannot be demonstrated from the
assumption of simple consistency.13 Formally Godel gives
this condition of w —consistency as a statement about

numbers, A system is w-consistent if there is no class

sign number a in ¢ such that

. g (vbena)] e Flg ¢9)
ey [sb (el & Flg0] and [Veg (v oe )] 2

2.10 And now as Godel says, '"we come to the object of

our exercises!":

Proposition VI: To every w -consistent recursive class
¢ of formulae there correspond recursive class-signs r
such that neither v Gene nor Neglvbene) belongs to Flg(d)
v is the free variable of r,

¢ is a set of formulae in addition to those given by
the axioms., We will need w -consistency and recursiveness
for this class, but nothing else. It may be null (as it
would be in applying Godel's work to PM), The introduction
of this additional set of propositions at this point
will be analyzed ip the discussion to follow,

Por the new set we define Bw.{x)  gimilar to the
function Rw exhibited above. The difference between
the two is in the acceptance of propositions from ¢ as well

as from the system iteself,
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chtv):(n) E n&tdix)—7> /’\tz(nfwl'x) v

(nGla)ec V (Ep.9) foL P.g4n
ond Fl(nule, peix, g Glx)3
and d1x) 70]

ef. witn Goclels finetion 494
Analogous to 45 and 46 we define:

¥ Bey = Buc ) and [hia]tlx=y
Bew x = “':7) Y Be X

The following propositions are now evident:

(1) (v) LBew, (x) = xeFlgta]

(2) () L Bewx) — Beu“}%3]

(1) states that if x can be proven on the basis

of the exvanded system, then it is among the
consequences of the expanded system., (2) states

that i1f a number x corresponds to a provable statement
in the basic system,it also corresponds to one in the

expanded system.

We now define the following recursive relation:

/9
(3) Q ("X‘,é\ = ~ Bc_ (Sb YZ(y))

This relation will be the crucial function for our

demonstration. Let us review its contents:

Y are integers.

K is a recursive relation defined on pairs of
LyiE s LIBRARY OB _ -
ntegers. WASHINGTON & LEE UNIVERSITY.

JABXINGION, VA,
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A BL'Y says that the series of statements corresponding

to x are a proof for y.

¥ 1s a number corresponding to a statement of the
calculus, It possibly contains free variables, and if
it does, they would have numbers 17,19,23,27.... Thus we
may substitute in variable 19 a number. We will
substitute Z(y), the Godel number corresponding to
the number y.

The bar sign is negation,
k I —

« B, Lsvly %'?v\ﬂ

The relation expresses the oondition that x does not

correspond to a proof for y, when y has one df its

variables replaced by the Godel number of its Godel number,
Since Q is a recursive relation, there exists a

function Q' which holds if and only if the relation

Q holds, By proposition V the following holds about the

Godel number q corresponding to the function Q' which

determines the relation Q:

(3) x Be L3b LYy, Q] — Bew, [—Sb(izm 2(7)\)1

1719 ]
(b) % Be [bb )’2(\/)} — Bew, [Nej Sb(izcx] z(;)\
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If the relation Q holds between x and y, the function
which generates @ holds when x and y are substituted,
and thus the number g corresponding to the function
after the substitution is a provable number, The
second relation holds if'”‘Q(#;y). Note the negation,
Q@ holds if x 1s not a proof.

Now congider the number

p =17 Gengq

We substitute this number for the variable y in (3):

. ¢~ y 17 rg
(5) Be [Sb( F‘;(P)\)} 7 Bﬁwc_[ Sb ( T 2 (x) 2Lpb\J

In effect we have narrowed our consideration from all
the formulae y to the formula represented by bp.
Expending the left side of (5) we get:

Sb (#)]

Z2(p)

Sk ( 17 Geng a 3

z (p]
19
17 Gen (Sbﬁ/ 3
z (p)
Sub and Gen are commutative when they refer to different
9

/
variables., We call 5*3ﬁ_2(91 , and thus the

left side becomes:

. B 17 ben ¢
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Shifting our attention to the right side we can change

the form of the argument of Bew _  thus:

17 19
Sb <% 2(K) zw’))
14 17
Sh ( CL 2p) {_(*O\

since the order of the substitution is immaterial,
if the variables are different. Using the r defined

above, this becomes:
17
-
S5 (700

Equations (3) and (4) can then b€ written as

— 17\~
(6) ’KBL(I')GQ\—\r)’_; BQLOC_ESb("'Z(mBJ

= Be LNQS Sb Z(frﬂ\]

(7)) % B (1T 6enc)

We immediately sense something amiss about this pair,
(6) indicates that if x does not represent a proof
for r holding for all x, then r holds for this x.
(7) indicates that if x is a proof for r holding for all
X, then x itself does not satisfy r.
We now inguire about the provability of 17Gen r,
A, Suppose !/706enc were provable., Then there would
be a2 number x which represents its proof, that is
% B (1Tbene) would hold and thus from (7)
Bew [ Neg Sb (r -zu( )] . Thus Nﬁj SbH ( .zuq

holds since it can be proven. But [7ben e holds by
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assumption, whence 5Eir;&)holds. Thus the systenm
is inconsistent and therefore w -inconsistent. Thus
176ent  cannot be proven,
B, Suppose that Neg (116ene)  yere provable,

Then it must be true

(8) (x) x B (17 Gen )

for no x could represent a proof for /76en ™  and the
system remain consistent. We generalize (6) as a statement
for all x and get

17
(61)  (X) 13?1 (17benr) —2 (X) BEWLES\“( rit&h]

Thus from (8) and (6') we get

17

(9) (1) Bew, Lsblr)TY]
Now considerPk507“n5)together with (9). (9) asserts
r holds for each x butWNegllt«nv asserts that it cannot
hold for all x. Thus the system is W  ~inconsistent
if‘cvgj(rz&thr) can be proven,

The assumption that either /7benr or Veg (11 ben v )
is provable produces W -=inconsistency. Thus if the

system is w -consistent, J76® © must be undecidable.
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2,11Godel's proposition on the non-provability of
consistency follows immediately from the completeness result.
Proposition XI: If ¢ be a given recursive, consistent
class of formulae, then the propositional formula
which states that ¢ is consistent is not c-provable.
Since the unprovability of 17 benr depended only on the
consistency of the system (and not on the stronger
w -consistency) we have (where Wid is consistency):

Wid () —» Bew, (17benr)
since if the sysbem were inconsistent, /7¢e¢nv would
be provable. f
Thus: —— :
Wid (&) = (x) % Bg,(‘7bt“‘")
Since (70w =P  gnd the function implied is the
relation @ of Proposition VI, we may rewrite this asg
(10) Wid () —= ) Q txp)
Now 211 our techniques of proof have been arithmetic
and can be expressed within the formal system. In
particular Widc) is expressible and has Godel number
W. Q(iﬁﬁ) is expressible in the system by q, and
Qx,p) has number r, since r‘~5b‘<cl_:)@).
Thus (O Q 0Lp)  has the number /7 0enr | Thus
“’I}“P('70“'\corresponding to (10) is provable., Now

w cannot be the Godel rumber of a theorem, or [7lenr |

the number of an undecidable proposition, would be
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the number of a provable formula., Therefore PHM

cannot establish 1ts own consistency,

2.12 Proposition XI, together with Proposition VI constitute
the heart of Godel's 1931 paper. Together they place
limits on deductive systems. VI indicates that many
systems will always be incomplete., XI goes on to show
that these same systems will be inadequate to demon-
strate their own consistency. This last result questions
the possibility of a consistency proof at all, since

such a proof could never be imaged within a formal system
which contains ordinary mathemati%s. Presumably such a
proof would be based on a larger set of axioms and thus
make the consistency of the system which demonstrated

the consistency a pertinent question,



On Richard and Godel: The Difference

3.1 In this chapter we shall explore by contrast
G0del's Theorem with Richard's Paradox. We shall see the
only difference between the two % be Richard's insis-
tence on speaking directly to the statements at issue
as opposed to 3odel's technique of never making such
reference. Ffom this point, the relationship among
observer, language, and object of lanzuage necessary for
the success of the theorem will be exposed. In this
context the observer will be seen to have a crucial
role, [Finally the theories of empirical science
know by the observer alongside the system will be considered
and it will be shown that this can have no effect on
the apprehension the observer has of the theoren.
3.2 Richard's Paradox) first presented in 1905,
_concerns some difficulties in general set theory. It
will be clear that Richard's technique is very close to
Godel's. In Richard's paradox a contradiction develops
from a direct consideration by a system of itself.

We may assign a number to any finitely long English

24
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statement in a one to one fashion; for example, this
may be done by first ordering the sentences by lensth
and then in alphabetical orier. Yie now delete from our
list every statement which does not denote a number.

We now renumber the remaining sentences calling them
N,82, o0 0 o We now claim that all numbers which can

be defined by finitely many words have been counted,.

It has been established by Cantor that the real

numbers are not numberable in this fashion. He showed
how to construct another number after the counting is
complete. "Let p be the digit in the nth decimal place
of the nth number of the set of ordered numbers. Let us
form a number having 0 for its integral part and in its
nth decimal place p+1l if the digit p is not 8 or 9, and
1 otherwise." The number we have just constructed is
not one of the set for it differs from each of these at
the nth place from the nth number. It is a number we have
not counted., But the words in quotation marks above are
finitely long and define this number, Therefore it is
included in our enumeration, Thus our number is both
included and excluded from the list, and a contradiction
results. |

3.3 In his original paper Richard pointed out the error
in reasoninz which allows the contradiction to develop.
He observes that we should never have admitted our
definition of a new number to be a definition. Its

reference to the total set of included numbers is
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illegitimate, Richard says, because the set does not
exist until it has been set out completely, Thus we
should not say our definition should have been included
in the enumeration because the definition uses a set
which hgs no meaning in the context in which it occurs.
It is improper within the enumeration to refer to
this set, Thus there is no paradox. In effect the
reference of the new definition is to a meaning
attached to the numbering scheme which it cannot properly
possess. If we adjoin out definition and its number
after the enumeration is completé, it can be included
without difficulty. Insert it anywhere in the
sequence and increase by one the number of any
statement above it.
Nagel and Newman2 see the difficulty involved in

a somewhat different light. Their paradox is constructed
in a different manner, They extract a contradiction using
a property "Richardian'. TThis proverty refers
to a statement which expresses~a property not satisfied
by the number assigned to the statement. Then "Richardian"
is a property of natural numbers. (Nagel and Newman
use number properties, not names of numbers) and hence it
has a number assigned to it., When we ask if a number n

is Richardian we ask if n does not have the property
expressed by the statement assigned ot it. Now consider

the number n which "Richardian' is assigned to.
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If n is Richardian, it does have the property required,
and hence it cannot be Richardian. Similarly, if n
does not have this property of beinz Richardian, it
is Richardian., Thus n is Richardian if and only if.n
is not Richardian, and a contradiction ensues.
Here the paradox is resolved in terms of linguistic
reference, The definition of Richardian makes a reference
not to any arithmetic property of a number, but to a
notational property of the way the number properties
were counted. The counting referred to arithmetic
statements, but the numbers assiéned are not simply
arithmetic, and thus Richardianism should never have
been admitted into the enumeration.3
3.4 How then do Richard and Godel differ? Richard
and Godel both depend on a numbering of statements. But
the use that each makes of the numbering scheme is
different. Godel's proof is a discussion about set
membership of numbers, The recursive function theory has
been developed so that decision about set membership can
be made on the basis of satisfaction of certain
number theorectic equations. The entire discussion
can be carried out without any statement on how the set
membership, in some sense, can be taken as a statement
about the system itself,

Richard is not so careful, In developing his
additional number, reference is made to the numbering

scheme, not considered just as numbers, but as numbers
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representineg statements in the system. The numbers are
not objects in themselves for investigatioh, as they
are for Godel, but in effect are an integral part of the
system in which he is operating., Thus Richard sees
it as illegitimate to treat these numbers as if they
could be objects for the system, since they are a
part of the system, In effect these numbers carry
a meaning other than themselves and which the systemic
machinery is not capable of handling. When this is
observed, the paradox cannot be developed.

Gﬁdel, however, 1s able to ﬁse numnbers as an
object of discourse considered solely as numbers. The
immediate object of the discussion is not the
intended object, but this situation need not be recognized.
As a result Godel can be forced into no difficulties,
either with the system, or with its image in the
arithmetic.
3.5 No contradiction similar to Richard's can be extracted

about the system itself., The language of Principia Mathematica,

in Gdodel, never say anything explicitly about itself,

It talks about relations amonz numbers, which are taken
as its object for discussion. We are shown that the
numbers model the system, but this is never proven within
the system. Any attémpt to force a contradiction about
the system from the result uncovers the defense that

the theorem is one about numbers alone, just like the
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Fundamental Theorem of Arithmetic, or 2+42=4., That the
system has flaws is seen but never said,

3.6 Neither can any contradiction similar to
Richard's be developed from the numbers. If it could
be shown that a given number both is and is not an
element of a given set, we would show only that

Principia lathematica is inconsistent., Our result would

still be demonstrable within the system (as of course any
result would be), but the result would not be destroyed.
The numbers are objects of the systenm and do not refer
back to it. Even our contradiction would have to be
recognized as such by the system. And this inconsistency
could not be recognized by the system since it can make
no statements about iself,
3.7 Ve have now seen that Godel does not explicitly
refer to what he intends in exhibiting his theoremn.
By using this subterfuze of indirect reference, he avoids
the difficulties of the direct reference'in Richard,
What is the structure of this indirect reference?

We are asked to accept the proposition that objects
to which a languase may not refer explicitly, on pain
of contradiction, it may refer to implicitly via an
intermediate object. It just further be claimed that the
language cannot demonstrate that indirect reference occurs,
" but may only invite us to see it that way. If this further

claim were not made, the lanzuace could uncover its ovnm
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trick and develop the contradiction anyway.

L“‘-"\’SOQSC-< ] mirror No.l

The issue appears here in the guise of self-reference,
In the acceptable case the self-reference is implicit,
in the unacceptable case it is explicit, The
implicit self-reference is not of this kind:
(1): Sentence 2 is true. ‘
(2): Sentence 1 is false,
This can be considered not to be/implicit reference,
but rather a direct reference via a transformation
which would render one as:
(3):1 It is true that this very sentence is false,
The transformation linkinz references to (1) and (2)
to the sentences themselves must be severed in such a
way that the transformation to (3) cannot occur.
If this is done the pair become, after Godel
(1): DNumber 2 has property T.

hn |

(2) Number 1 has property P,
And we might add:

(3): T and F do not both apply to the same number,
Here there is no contradiction, We may see it as a
contradiction (if we number the sentences and interpret

"T and F in relation to the meanings of the sentences),

or we may not do so, It is our choice,
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It is as if there were an image of the system
which is examined but which is never seen to be an image.

So we have three parties to the encounter:

_ L.a.r\aur.‘:,&‘_.

- R ——

\G (o] \QQQL'*

What the system may not say, the observer may visualize,

o bsecve “é =R

The result of Godel's proof must alway remain subjective

since an active observer is needed for the realization

of the conclusion. What is presented by GBdel is not

fact about the system, but an opsgrtunity for us to see

‘this fact.

3.8 Our observer can intuit other things besides

the system and the numbers. He also sees the world.

We may see the axioms of the system as a set of transfor-

mational rules of a general type which apply to all objects

of cognition, We may see physical data as new axioms

for our system. Is there any way these may upset Godel's

result by their fusion in the observer with the system?
We have logic and grammar which we would consider

as axioms, To this, with a status similar to Peano's

natural number postulates, we would join the theories

~of empirical science.
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The question now becomes whether Gddel's results are
applicable to this larger system., In his proof on
incompleteness of PIM in Proposition VI, codel ad joins
a class ¢ of formulae which he reguires only to be

o -consistent and recursive, ILater he weakens
recursiveness for this class to decidability, or satisfaction
of his proposition V.,

We shall assume that the grammer of the language we
have adjoined, which wouldvenoompass modal logic at
least, is W’ -consistent and further that it can be stated
in a recursive fashion. None of‘this has been demonstrated.

The question is whether the theories of empirical
science, whnen accepted, form an W -consistent recursive
class, The issue posed cannot be demonstrated in the
affirmative, Rather it will be shown that the kind of
structure sought by the scientist is such a class.

W .consistency is a rather weak condition to impose
‘on emnpirical judgment, It would require that at no time
do we examine every x and find it a P and at the sane
time conclude that not all x's are P. While we may
never be in position to check all x's for P, we would
certainly expect given the claim that not all x's are
P that if we did check each one we would either find not
all x's P or we would reject the first claim, So we

-can judge empirical results as @ -consistent., If we found
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anw -inconsistency, we would adjust what we judged to be
case in order te conform with this requirement,

What about recursiveness for these propositions?

The schema we have given in the previous chapter is
about recursive functions of numbers, but its intent can
be extended so as to include empirical provositions,

We state two requirementst

(1) Every recursive assertion can be checked by
finlitely many specifiable steps,

(2) Given any recursive assertion and 211 but one
of its variables, then the remairing one can be predicted
on the basis of the others by finitely many specifiable
steps.

(1) is the verifiability condition. It would apply
within a theoretical structure in énsweringquestions within
that viewpoint., (2) relates not to determing fact, but
to the prediction on the bakis of theory. It must be
possible to clearly specify exactly what the prediction
of the theory would be., This condition would surely be
satisfied if such laws as science uncove rs can be
committed to computers for application. If this is not
possible, checking of any application of a law would be
impossible since the reasoning needed could nof be clearly
given, It would seem any satisfactory law of science

“would fulfill these conditions. Ve would then want to claim
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w ~consistent recursiveness for any satisfactory
set of scientific propositions,

Our enlarged system would fall within the scope
of Gﬁdel's arcument., It would be necessarily
incomplete and powerless to demonstraﬁe its own consis-~
tency.

We are now in position to consider language in general,
We have .before us in Ricard a faulty use of language and
in Godel a correct use, Chaper 4 will examine paradoxes
in ordinary lanzuage to conclude that the Godelian-
Richardian difference can point to usage errors

which permit the development of the paradoxes.
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An Extension to Ordinary Language

4.1 The concluding sections cf Chaper 3 presented a

structure for the reference of language necessary for

Godel's result:

e

/, »
,/
observer‘<$£\ - :
5 ohyect

Wihat must be required of the linguistic system for this

-"-'-

relationship to hold?

First, the language must refer outside of itself,.
It is notdo be considered as an object for its own study,
but as a means of study. In the case of Gddel's work
the objects are the natural numbers., The referent
could be part of the languase itself, but then only
if it were considered as an object and not as a language
bearing meaning.

The recognition of an isomorphism between the

languaze and its object cannot be stated in the languacge,

35
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Otherwise the language would be caﬁable of expresting,
correctly, assertions about the 1anguége itself,
and Richard's paradox could be developed within it.
For the lanzuage in talking about its objects
could express this as talk about itself, and just
as it might number objects it could number iselfl
and Richard's paradox could ensue if the final reference
were to the language. So the language may not give
recognition directly to itself, but may only recognize
objects other than itself,

If the relation between the ‘object and the languasze
may not be saidin the lanzguage, it must be learned
some other way and for this process we have used the
words show or see, What may not be said may be shown.
4.2 When we approach Godel's work, we do possess a
language in which the exact relation of our system to
itself can be specified. The ordinary Enzlish, employed
in Chapter 2, can express this relationship, and did so
in the section on Godel numbering. But English is
a "higher level’ language than Principia Mathematica
since it can express more than P, Is a higher level
lancuage essential to a G0delian demonstration for a
“lower level language?

As far as simply stating the proof, such a language
"is not needed, and the ability to carry out such a

derivation without the higher level languazge was needed
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for Proposition XI on consistency demonstrations,
But while such a language can symbolically represent
the proof, we have seen the reference cannot be to
the language itself, and a higher level language is
nece_ssary to express the conclusion, but not t9 show
it. But in turn the hizher.leveél language nust be
powerless to express comparable claims about itself,
If we reject the Gddelian system of indirect reference
as adequate for talk about language, then we must
possess ascending series of languages each povwerless
to discuss itself in order to make such inquiries,
The existence of such a series is doubtful,

It is gquestionalbe that such a series can exist,
ad infinitum, in so far as we are capble of learning the
languvage, In so far as such a language could be used,
it could be learned. Some language (or native capacity)
must be capable of describing the higher level language.
As such it would seem our new language is nothing but
a normal extension qf the 0ld to fit new circumstances.
To be sure, the grammar of the new languazse may be more
complex, but if its features can be described in English
and convienient expressions for them found, it may be seen
as just more Bnglish, 1In at least this way, many new
languages can be considered as extensions of English,
“in much the same way as we add new nouns, or perhaps
even a new verb tense. Any really different language

would have to be one English is incapable of describing.
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What form this mizht take is a puzzle.
4,3 Those who favor admitting levels to langzuages
do so to avoid paradox.

(1) The tree is green.

(2) YThe tree is green" is a sentence,
(2) would be said to be on a higher level than (1).
On our view that there can only be one language, (2)
would be taken as referring to a particular object,
namely (1), just as (1) refers to a particular object,
the green tree, No paradox can develop if the referent
of "the tree is green" is something other than its
meaningful occurance as (1). It may refer to itself
as an object, but it may not refer to "the tree is green”
as meaningful usage.

We reject any level of language theory and
instead bar any reference in a language to itself
as language bearing meaning. We may continue to speak
of correct usage, just as well formed formulae may
be picked out by standard procedures, but we will admit
as proper no statement which refers to other
languge directly as anything other than an event.
We will not permit this reference to indicate the
sentence together with its meaning.

This sentence is typed on
white paper,.

The reference is acceptable since it is an object, which

can be considered apart from its meanings.
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This sentence is false.

The construction of this sentence 1is inappré}iate since
falseness must apply to its referent'!s meaning,
not the simple occurence,
Using this criterion, the paradox which follows
1

from the sentence

Every sentence is possibly either
false or neither true nor false,

could be expected since the object of this sentence
must be a sentence together with,its meaning.
Godel carefully avoids meking this kind of reference
and refers only to objects apart from the meaning they
carry. Richard does not. He refers to numbers and then
through to the meaning-sentence attached to thém.
Certain grammatical adjustments will be permitted, but
in general language may refer only outside itself,
It may not use as its object any part of the lansuvage itself,
considered as languase bearing meaning.
é;ﬁ Is this criterion too strong? Do.we unnecesérily
exclude situations such as:
(1) Men are on the éarth.
A .
(2) Sentence (1) is true,
According to our reference limitation sentence (2) is
-1llegitimate as more constructed, But the intent behind
(2) can be construed as something like (1) or possibly

"Don't count this answer wrong!" But (2) can usually

be read in another way. Now consider:
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(1) The moon is made of green cheese.

B v
(2) Sentence (1) is false.

(2) can be read as saying that it is not the case
that the moon is mgde of green cheese, 1i.,e., the
moon is not made of zgreen cheese, This is a direct
claim about the moon of the same type as (1). Cases
such as A and B can be dealt with by adjusting the language
involved so that it will not be forbidden.
Not all situations of such reference can be
resolved in this fashion. Consider

(1) Sentence (2) is true.

(2) Sentence (1) is false,

What can be done with this pair? (2), according to
our rendering, requires that we rewrite (1) as

(1') Sentence (2) is not true.
Or alternatively,

(1') Sentence (2) is false.
If this is to have meaning sentence (2) must be
redone which requires a reconsideration of (1). This
pair is illegitimate since we cannot find an equivalent
pair which do not require adjustment to be acceptable,
k.5 Ve have examined Sodel's Theorem in relation to
Richard's Paradox. We have found in Richard a double
‘direct reference, first to a number and then to a sehtence
assocliated with that'number. We have seen that this double
direct reference does not occur in Godel., We then

looked at Enzlish looking at this situation and saw
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that either a series of lansuace levels, or an
acceptance of indirect reference was necessary to
account for the meaninz in Godel. The suspicion was
raised that levels of language are not possible,

We examined Gvdel to provoke a criterion for
illegitimate reference which would not require a
languase level theory. 1t is this criterion which
accounts for Godel's success and Richard's failure,
It is further suzgested that the restriction of
reference by languaze to non-linguistic events would

be necessary to prevent paradox. /

Anthony M. Coyne

April 1970



Appendix I: Richard's 1905 paper

The translation is from van Heijenoort's From Frege to Godel,
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PRINCIPLES OF MATHEMATICS AND THE PROBLEM OI' SETS 143

In its issue of 30 March 1905 the Revue draws attention to certain contradictions
that are encountered in general set theory.

It is not nccessary to go so far as the theory of ordinal numbers to find such
contradictions. Here i one that presents itself the moment we study the continuum
and to which some others could probably be reduced. '

I am going to define a certain set of numbers, which I shall call the set E, through
the following considerations.

Let us write all permutations of the twenty-six letters of the Irench alphabet
taken two at a time, pulling these permutations in alphabetical order; then,
after them, all permutations taken three at a time, in alphahbetical order; then, after
them, alllpermutmions taken fowr at a time, and so forth. These permutations
may contain the same letter repeated several times; they are permutations with
repetitions.

For any integer p, any permutation of the twenty-six letters taken p at a time
will be in the table; and, since everything that can be written with finitely many
words is a permutation of letters, everything that can be written will be in the table
formed as we have just indicated.

The definition of a number being made up of words, and these words of letters, some
of these permutations will be definitions of numbers. Let us cross out from our per-
mutations all those that are not definitions of numbers. :

Let u; be the first number defined by a permutation, u, the second, ug the third,
and so on.

We thus have, written in a definite order, all nuwinbers that are defined by finitely many
words.

Therefore, the numbers that can be defined by finitely many words form a de-
numerably infinite set.

Now, here comes the contradiction. We can form a number not belonging to this
set. “Let p be the digit in the nth decimal place of the nth number of the set E;
let us form a number having 0 for its integral part and, in its nth decimal place,
P + 1if pisnot Sor9, and 1 otherwise.” This number N does not belong to the set
E. If it were the nth number of the set E, the digit in its nth decimal place would
be the same as the one in the nth decimal place of that number, which is not the
case.

I denote by G the collection of letters between quotation marks.

The number N is defined by the words of the collection G, that is, by finitely

many words; hence it should belong to the set E. But we have seen that it does
not.

Such is the contradiction.
Let us show that this contradiction is only apparent. We come back to our permu-
tations. The collection G of letters is one of these permutations; it will appear in my

table. But, at the place it occupies, it has no meaning. It mentions the set E, which

has not yet been defined. Hence I have to cross it out. The collection G has meaning
only if the set E is totally defined, and this is not done except by infinitely many
words. Therefore there is no contradiction.

- We can make a further remark. The set containing [the elements of] the set E
and the number N represents a new set. This new sct is denumerably infinite. The
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number N can be inserted into the st E at a certain rank £ if we increase by 1 the
rank of each number of rank [equal to or] greater than k. Let us still denote by E
the thus modified set. Then the collection of words G will define a number N’ distinet
Sfrom N, since the number N now occupies rank % and the digit in the kth decimal
place of N’ is not equal to the digit in the Ath decimal place of the kth number of

the set E.
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Appendiv. II: Godel's 1931 paper

The translation is from van Heljenoort's From Frege to Godel.
The notation used in the paper differs from the

exposition in Chapter 2 in that Godel's class K is

denoted as c.
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596 GODYL

restrict the mecans of proof in any way). Hence a consistency proof for the system S
can be carried out only by means of modes of inference that are not formalized in the
system S itself, and analogous results hold for other formal systems as well, such as
the Zermelo-Fracnkel axiom system of set theory.®

ITI. Theorem I can be sharpened to the effect that, even if we add finitely many
axioms to the system S (or infinitely many that result from a finite number of them
by “type elevation”), we do not obtain a complete system, provided the extended
system is w-consistent. Here a system is said to be w-consistent if, for no property
F(z) of natural numbers,

F(1), F(2),..., F(n),... ad infinitum
as well as
(Bz)F(z)
are provable. (There are extensions of the system S that, while consistent, are not
w-consistent.)

IV. Theorem I still holds for all w-consistent extensions of the system S that are
obtained by the addition of infinitely many axioms, provided the added class of
axioms is decidable [entscheidungsdefinit], that is, provided it is metamathematically
decidable [entscheidbar] for every formula whether it is an axiom or not (here again
we suppose that the logic used in metamathematics is that of Principia mathematica).

Theorems I, I1I, and TV can be extended also to other formal systems, for example,
to the Zermelo-Fraenkel axiom system of set theory, provided the systems in question
are w-consistent. '

The proofs of these theorems will appear in Monatshefte fiir Mathematik und Physik.

3 This result, in particular, holds also for the axiom system of classical mathematics, as it has
been constructed, for example, by von Neumann (1927).

ON FORMALLY UNDECIDABLE PROPOSITIONS OF PRINCIPIA
MATHEMATICA AND RELATED SYSTEMS It
(1931)
1

The develop.mcnt of mathematics toward greater precision has led, as is well known,
to the formalization of large tracts of it, so that one can prove any theorem using
nothing but a few mechanical rules. The most comprehensive formal systems that
have been set up hitherto are the system of Principia mathematica (PJ)? on the one
hand and the Zermelo-Yracnkel axiom system of set theory (further developed by
J. von Neumann)? on the other. These two systems are so comprehensive that in

1 See a sumnary of the results of the present paper in Godel 1930b.

2 Whitehead and Russell 1925. Among the axioms of the system PPM we include also the axiom
of infinity (in this version: there are exactly denumerably many individuals), the axiom of
reducibility, and the axiom of choice (for all types).

3 Sce Fraenkel 1927 and von Newmann 1925, 1928, and 1929. We note that in order to complete
the formalization we must add the axioms and rules of inference of the calculus of logic to the
set-theorctic axioms given in the literature cited. The considerations that follow apply also to the
formal systemns (so far as they are available at present) constructed in recent years by Hilbert
and his collaborators. Sce Hilbert 1922, 1922a, 1927, Bernays 1923, von Neumann 1927, and
Ackermann 1924,
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ON FORMALLY UNDLCIDABLE PROPOSITIONS 597

them all methods of proof today used in mathematics are formalized, that is, reduced !
to a few axioms and rules of inference. One might therefore conjecture that these :
axioms and rules of inference arve suflicient to decide any mathematical question that
can at all be formally expressed in these systems. It will be shown below that this is
not the case, that on the contrary there are in the two systems mentioned relatively
simple problems in the theory of integers?* that cannot be decided on the basis of the [ 177 4]
axioms. This situation is not in any way due to the special nature of the systems that ;
have been set up but holds for a wide class of formal systems; among these, in
particular, are all systems that result from the two just mentioned through the
addition of a finite numbcer of axioms,® provided no false propositions of the kind
specified in footnote 4 become provable owing to the added axioms.
Before going into details, we shall first sketeh the main idea of the proof, of cowrse
without any claim to complete precision. The formulas of a forinal system (we restrict
ourselves here to the systemm PJ/) in outward appearance are finite sequences of
primitive signs (variables, logical constants, and parentheses or punctuation dots), and
it is easy to state with complete precision which sequences of primitive signs are
meaningful formulas and which are not.® Similarly, proofs, from a formal point of

view, are nothing but finite sequences of formulas (with certain specifiable properties.)
Of course, for mctamathematical considerations it docs not matter what objects are
chosen as primitive signs, and we shall assign natural numbers to this use.” Conse-
quently, a formula will be a finite sequence of natural numbers,® and a proof array a
finite sequence of finite sequences of natural numbers. The metamathematical notions
(propositions) thus become notions (propositions) about natural numbers or sequences
of them;® therefore they can (at least in part) be expressed by the symbols of the
system P’/ itself. In particular, it can be shown that the notions “formula”, “proof
array”’, and “provable formula” can be defined in the systemy PA/7; that is, we can, ,
for example, find a formula F(v) of PA with one free variable v (of the type of a :
number scquence)'® such that F(v), interpreted according to the meaning of the terms
of P, says: vis a provable formula. We now construct an undecidable proposition
of the system PJ, that is, a pr oposxtlon A for which neither 4 nor nol-4 is provable,
in the following manner.

* That is, more precisely, there are undecidable propositions in which, besides the logical

1o FrInAD Jde S s arin

constants ~ (not), Vv (or), (x) (for all), and = (identical with), no other notions occur but -+ :
(addition) and . (multiplication), both for natural numbers, and in which the prefixes (z), too,
apply to natural numbers only. ) :

5 In P only axioms that do not result from one another by mere change of type are counted {
as distinct. ;

¢ Here and in what follows we always understand by ““formula of P} a formula written 3
without abbreviations (that is, without the use of definitions). It is well known that [in PJ] ?
definitions serve only to abbreviate notations and therefore are dispensable in principle.

" That is, we map the primitive signs one-to-one onto some natural numberb (Sec how this is ?:
done on page 601.) i

® That is, a number-theoretic function defined on an initial segment of the natural numbers. {
(Numbers, of course, cannot be arranged in a spatial order.) )

® In other words, the procedure described above yields an isomorphic image of the system PJM i
in the domain of arithmetic, and all metamathematical arguments cau just as well be carried out :
in this isomorphic i ke ge. This is what we do below whcn we sketch the proof; that is, by ““for- t
mula”, “proposition”, *“variable”, and so on, we must always understand the corresponding objects f {
of the isomorphic ima_!/e. =

19 It would be very easy (although somewhat cumbersome) to actually write down this formula.
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A formula of P/ with exactly one free variable, that variable being of the type of
the natural numbers (class of classes), will be called a class sign. We asswne that the
class signs have been arranged in a sequence in some way,!! we denote the nth one
by R(n), and we observe that the notion “class sign”, as well as the ordering relation
R, can be defined in the system PJAI. Let « be any class sign ; by [«; ] we denote the
formula that results from the class sign « when the free variable is replaced by the
sign denoting the natural number n. The ternary relation 2 = [y; 2], too, is scen to
be definable in PM. We now define a class K of natural numbers in the following way :

neK = Bew[R(n);n) (1)

(where Bew x means: «x is a provable formula).** Since the notions that occur in the
definiens can all be defined in PA7, so can the notion K formed from them; that is,
there is a class sign S such that the formula [S; n], interpreted according to the
meaning of the terms of P/, states that the natural number n belongs to K.12 Since
S is a class sign, it is identical with some R(q); that is, we have

S=Rg

for a certain natural number ¢. We now show that the proposition [2(g); ¢] is un-
decidable in PA7.13 For let us suppose that the proposition [R(g); q] were provable;
then it would also be true. But in that case, according to the definitions given above,

g would belong to K, that is, by (1), Bew [R(g); ¢] would hold, which contradicts the
assumption. If, on the other hand, the negation of [R(q); q] were provable, then
q & K13 that is, Bew [R(¢); q], would hold. But then [R(q); q], as well as its negation,
would be provable, which again is impossible. :

The analogy of this argument with the Richard antinomy leaps to the eye. It is
closely related to the “Liar” too;!* for the undecidable proposition [R(g); ¢] states
that ¢ belongs to K, that is, by (1), that [Z(g); ¢] is not provable. We thercfore have
before us a proposition that says about itsclf that it is not provable [in PA[].° The
method of proof just explained can clearly be applied to any formal system that,
first, when interpreted as representing a system of notions and propositions, has at

11 For example, by increasing sum of the finite sequence of integers that is the “‘class sign”,
and lexicographically for equal sums.

112, The bar denotes negation. .

12 Again, there is not the slightest difficulty in actually writing down the formula S.

13 Note that “[R(q); ¢]”’ (or, which means the same, “[S; ¢]”") is merely a metamathematical
description of the undecidable proposition. But, as soon as the formula S has been obtained, we
can, of course, also determine the number ¢ and, therewith, actually write down the undecidable
proposition itsclf. [This makes no difficulty in principle. However, in order not to run into formu-
las of entirely unmanageable lengths and to avoid practical difficultics in the computation of the
number ¢, the construction of the undecidable proposition would have to be slightly modified,
unless the technique of abbreviation by definition used throughout in P is adopted.]

133 [The German text reads n e K, which is a misprint.]]

1% Any epistemological antinomy could be used for a similar proof of the existence of un-
decidable propositions.

15 Contrary to appearances, such a proposition involves no faulty circularity, for initially it
[only] asserts that a certain well-defined formula (namely, the one obtained from the gth formula
in the lexicographic order by a certain substitution) is unprovable. Only subsequently (and so to
speak by chance) does it turn out that this formnula is precisely the one by which the proposition
itsclf was expressed.
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i< disposal sufficient means of expression to define the notions occurring in the
areument above (in particular, the notion “provable formula”) and in which, second,
every provable formula is true in the interpretation considered. The purpose of
carrying out the above proof with full precision in what follows is, among other
things, to replace the second of the assumptions just mentioned by a purely formal
and much weaker onc.

From the remark that [R(q); ¢] says about itself that it is not provable it follows
at once that [R(g); q] is true, for [R(g); ¢] ?s indeed unprovable (being undecidable).
Thus, the proposition that is undecidable in the system PM still was decided by meta-
mathematical considerations. The precise analysis of this curious situation leads to
surprising results concerning consistency proofs for formal systems, results that will
he discussed in more detail in Section 4 (Theorem XIT).

2

We now proceed to carry out with full precision the proof sketched above. First
we give a l)l'éc:isc description of the formal system P for which we intend to prove
the existence of undecidable propositions. P is essentially the system obtained when
the logic of P/ is superposed upon the Peano axioms?!® (with the numbers as indi-
viduals and the successor relation as primitive notion).

The primitive signs of the system P are the following :

I. Constants: “~ " (not), “ v (or), “II” (for all), 0" (zero), “f” (the successor
of), “(7, ) (parentheses);

II. Variables of type 1 (for individuals, that is, natural numbers including 0):
27 Cy,

Variables of type 2 (for classes of individuals): “a,”, “y,”, “2,7, .. .;

Variables of type 3 (for classes of classes of individuals): “a3”, “y3”, “25"7,...;
And so on, for every natural number as a type.t”

Remark: Variables for functions of two or more argument places (relations) need
not be included among the primitive signs since we can define relations to be classes
of ordered pairs, and ordered pairs to be classes of classes; for example, the ordered
pair @, b can be defined to be ((a), (@, b)), where (z, y) denotes the class whose sole
elements are z and y, and (2) the class whose sole element is 2.8

By a sign of type 1 we understand a combination of signs that has [any one of] the
forms

a, fa, ffa, fffa, .. ., and so on,

where a is either 0 or a variable of type 1. In the first case, we call such a sign a
numeral. For n > 1 we understand by a sign of type n the same thing as by a variable
of type n. A combination of signs that has the form a(b), where b is a sign of type n

'® The addition of the Peano axioms, as well as all other modifications introduced in the system
M, merely serves to simplify the proof and is dispensable in principle.

"It is essumed that we have denumerably many signs at our disposal for each type of
Variables,

el .\'bnhomogeneous relations, too, can be defined in this manner; for example, a relation
b}‘l‘v’-'een individuals and classes can be defined to be a class of elements of the form ((x5), ((x,), 22))-
Every proposition about relations that is provable in PM is provable alse when treated in this
Mmanner, a3 is readily seen.
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and @ a sign of type n + 1, will be called an elementury formula. We define the class
of formulas to be the smallest class!® containing all elementary formulas and con-
taining ~ (a), (¢) v (b), 2lI(a) (where 2 may be any variable)'®® whenever it contains
a and . We call (¢) v (D) the disjunction of @ and b, ~ (a) the negation and xI1(a) a
generalization of a. A formula in which no free variable occurs (free variable being

defined in the well-known manner) is called a sentential formula [Satzformell. A

~ formula with exactly n frce individual variables (and no other free variables) will be

called an n-place relation sign; for n = 1 it will also be called a class sign.

By Subst a(}) (where a stands for a formula, » for a variable, and b for a sign of
the same type as v) we understand the formula that results from @ if in @ we replace
v, wherever it is free, by 5.2 We say that a formula a is a type elevation of another
formula b if @ results from b when the type of cach variable occurring in b is increased
by the same number.

The following formulas (I-V) arc called axioms (we write them using these abbrevi-
ations, defined in the well-known manner: ., o, =, (Fx), =,2! and observing the
usual conventions about omitting parentheses):22

I 1. ~(fr, = 0),

2. fx, = fy1 02y = Y,
3. 25(0). 2, I1(x5(;) D @o(f1)) Dy TI(75(2,)).

II. All formulas that result from the following schemata by substitution of any
formulas whatsoever for p, g, r:

L.pvpop, 3.pVgoqVp,
2. p2p Vg, 4. (poq@)>(r Vv pO1r VvV Q).

IIT. Any formula that results from either one of the two schemata

1. vIl(a) > Subst a(¥),
2. vII(b v a)2b v vIl(a)

when the following substitutions are made for @, v, b, and ¢ (and the operation
indicated by “Subst” is performed in 1):

For a any formula, for v any variable, for b any formula in which » does not occur
free, and for ¢ any sign of the same type as v, provided ¢ does not contain any variable
that is bound in @ at a place where v is free.?®

19 Concerning this definition (and similar definitions occurring below) sce Lukasicwicz and
Tarski 1930. .

18a Jlence xI1(a) is a formula even if x does not occur in @ or is not free in a. In this case, of
course, xfI{a) means the same thing as a.

20 In case v does not occur in a as a free variable we put Subst a(}) = a. Note that *Subst”
is & metamathematical sign. i

21 z, = y, is to be regarded as defined by zoI1(x5(2;) D a5(yy)), as in P3M (I, %13) similarly for
higher types).

22 In order to obtain the axioms from the schemata listed we must thercfore

(1) Eliminate the abbreviations and

(2) Add the omitted parentheses
(in I, ITI, and IV after carrying out the substitutions allowed).

Note that all expressions thus obtained are “formulas’ in the sense specified above. (Sce also
the exact dcfinitions of the metamathematical notions on pp. 603-606.)

23 Therefore ¢ is a variable or 0 or a sign of the form f. . . fu, where w is cither 0 or a variable of
type 1. Concerning the notion “free (bound) at a place in a”, sce T A 5 in von Neumann 1927.
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1V. Every formula that results from the schema
1. (Bu)(wll(u(v) = a))

when for v we substitute any variable of type #, for « one of type » -+ 1, and for @
any formula that does not contain  free. This axiom plays the role of the axiom of
reducibility (the comprehension axiom of sct theory).

V. Every formula that results from

1. 2 M (xy(2)) = yo(2,)) Dy = y,

by type elevation (as well as this formula itself). This axiom states that a class is
completely determined by its elements.

A formula ¢ is called an immediate conscquence of ¢ and b if it is the formula
(~(®) V (c), and it is called an dmmediate consequence of @ if it is the formula v1/(a),
where v denotes any variable. The class of provable formulus is defined to be the
smallest class of formulas that contains the axioms and is closed under the relation
“immediate consequence”.?*

We now assign natural numbers to the primitive signs of the system P by the
following one-to-one correspondence :

“«r o1 “u? B “I ... 9
wpn .8 VAT “r .11
“y L 18,

to the variables of type n we assign the numbers of the form p™ (where p is a prime
number >13). Thus we have a onc-to-one correspondence by which a finite scquence
of natural numbers is associated with every finite sequence of primitive signs (hence
also with every formula). We now map the finite sequences of natural numbers on
natural numbers (again by a onec-to-one correspondence), associating the number
20 .32, ... .pee, where p, denotes the Ath prime number (in order of increasing
magnitude), with the sequence ny, ny, ..., 7. A natural number [Jout of a certain
subset]] is thus assigned one-to-one not only to every primitive sign but also to every
finite sequence of such signs. We denote by @(a) the number assigned to the primitive
sign (or to the sequence of primitive signs) a. Now let some relation (or class) R(a;,
ay, ..., a,;) between [or of] primitive signs or sequences of primitive signs be given.
With it we associate the relation (or class) R'(zy, o, . . ., ,) between [or of] natural
numbers that obtains between 2y, z,, . . ., z, if and only if there are some a4, ay, .. .,
a, such that z; = d(e;) (0 = 1,2,...,n) and R(a,,a,,...,a,) hold. The relations
between (or classes of) natural numbers that in this manner are associated with the
metamathematical notions defined so far, for example, “variable”, “formula”, “sen-
tential formula”, “axiom”, “provable formula™, and so on, will be denoted by the
same words in sMALL caPITaLs. The proposition that there are undecidable problems
in the system P, for example, reads thus: There are SENTENTIAL FORMULAS @ such
that neither @ nor the NEcaTION of @ is & PROVABLE FORMULA.

We now insert a parenthetic consideration that for the present has nothing to do

24 The rule of substitution is rendered superfluous by the fact that all possible substitutions
have already been carried out in the axioms themselves. (This procedure was used also by von
Neumann 1927.)
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with the formal system P. First we give the following definition: A number-theoretie
function® @(zy, z,, ..., 2;) is said to be recursively defined in terms of the nummber.
theoretic functions (ay, z,, ..., @, ;) and p(zy, 2o, ..., 2, ,,) if

(0, g, . . ., ;) = P(Zg, ..., T),
‘P(k + 1; Loy envy T’r:) = /‘(l“': (f’(k: Lgyevvy xn)’ Loy v v ey xn)

hold for all ,, ..., z,, k.2°

A number-theoretic function ¢ is said to be recursive if there is a finite sequence of
number-theoretic functions ¢y, ¢s, . . ., @, that ends with ¢ and has the property that
every function ¢, of the sequence is recursively defined in terms of two of the pre.
ceding functions, or results from any of the preceding functions by substitution,?” or,
finally, is a constant or the successor function o ++ 1. The length of the shortest
sequence of g; corresponding to a recursive function ¢ is called its degree. A relation
R(zq, ..., z,) between natural numbers is said to be recursive®® if there is a recursive
function ¢(zy, . . ., z,) such that, for all 23, 2,, ..., z,,

R(zy, ..., z) ~[plzy, ..., ;) = 0]2°

The following theorems hold :

1. Every function (relotion) obtained from recursive functions (relations) by substitution
of recursive functions for the variables is recursive; so 1s every fumnction oblained from
recursive funcltions by recursive definition according to schema (2);

I1. If R and S are recursive relalions, so are R and R v S (hence also B & S);

II1. If the functions ¢(g) and () are recursive, so is the relation () = ¥(y);*°

IV. If the function ¢(x) and the relation R(x,Y) are recursive, so are the relulions 8
and 1 defined by

Sz, y) ~ (Fe)z = o) & Rz, v)]
and
T(g, ) ~ @)z = ¢(x) > B2, 1)),

as well as the function iy defined by
(e, ) = ealr = o(x) & Bz, 9)],
where ex F(z) means the least number @ for which F(z) holds and 0 in case there is o

such number.

25 That is, its domain of definition is the class of nonnegative integers (or of n-tuples of non-
negative integers) and its values are nonnegative integers.

26 In what follows, lower-case italic letters (with or without subscripts) are always varialles
for nonnegative integers (unless the contrary is expressly noted).

27 More precisely, by substitution of some of the preceding functions at the argument places of
one of the preceding functions, for example, gu(xy, 75) = @ (eq(T1, o), ¢,(22)] (P, @, 1 < k). Net
all variables on the left side need occur on the right side (the same applics to the recursion schets
(2))-
28 We include classes among relations (as onc-place relations). Recursive relations R, of cougra.
have the property that for every given n-tuple of numbers it can be decided whether Ry .
z,) holds or not.

29 Whenever formulas arc used to express a meaning (in particular, in all formulas express:t.d
metamathematical propositions or notions), Hilbert’s symbolism is employed. See Hilhert or?
Ackermann 1928. . )

30 We use Germnan letters, g, b, as abbreviations for arbitrary n-tuples of variables, for exwing:s
Ty Tas s+ 59 Lo .
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Theorem I follows at once from the definition of “recursive”. Theorems IT and TIT
are consequences of the fact that the number-theorcetic functions

o@), By, i)
corresponding to the logical notions ™, v, and =, namely,
«(0) = 1, «(x) = 0 foraz # 0,
B(0, 2) = B(z,0) = 0, PBlx,y) =1 when z aud y are both 30,
y(z,y) =0 when o = y, y(z,y) =1 when 2 £ y,

are recursive, as we can readily see. The proof of Theorem 1V is briefly as follows.
By assumption there is a recursive p(x, y) such that
E(x, ) ~ [p(z, y) = 0].

We now define a function x(z, §)) by the recursion schema (2) in the following way :

x(0,9) =0,

x( -+ 1,9) = (n+ 1).a + x(n,9).e(e)**
where a = a[akp(O, N alp(n + 1,9)].e[x(n, v)]. Therefore y(n -+ 1,4) is equal
either ton + 1 (if @ = 1) or to x(n, §) (if @ = 0).32 The first case clearly occurs if and
only if all factors of @ are 1, that is, if '
: R(0,9) & R(n + 1,1) & [x(n, ) == 0]

holds. From this it follows that the function y(n, §) (considered as a function of z)
remains 0 up to [but not including]) the least value of » for which R(n, §) holds and,
from there on, is equal to that value. (Hence, in case R(0, 1) holds, y(n, §) is constant
and equal to 0.) We have, therefore,

P, 9) = x(e(x), ),
S(E’ U) s R[l/l(g;, t)): 7')]'

The relation 7' can, by negation, be reduced to a case analogous to that of S. Theorem
IV is thus proved.

The functions = + y, 2.y, and a¥, as well as the relations 2 < y and 2 = y, are

. s . . .

recursive, as we can readily sce. Starting from these notions, we now define a number
of functions (relations) 1-45, each of which is defined in terms of preceding ones by
the procedures given in Theorems I-IV. In most of these definitions several of the
steps allowed by Theorems I-IV arc condensed into one. Each of the functions
(relations) 1-45, among which occur, for example, the notions “rormuLa”, “aAxIoM”,
and “IMMEDIATE CONSEQUENCE”, is therefore recursive.

l.2jy = (F2)z S 2 &z = y.2],°
z is divisible by y.%¢

31 We assume familiarity with the fact that the functions  + y (addition) and z . y (multi-
plication) are recursive.

32 g cannot take values other than 0 and 1, as can be seen from the definition of a.

33 The sign = is used in the sense of “equality by definition’’; hence in definitions it stands for
either = or ~ (otherwise, the symbolism is Hilbert's).

31 Wherever one of the signs (z), (Ex), or ex occurs in the definitions below, it is followed by a
bound on z. This bound merely scrves to ensure that the notion defined is recursive (sce Theorem

IV). But in most cases the extension of the notion defined would not change if this bound were
omitted.
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2. Prim(x) = (Kx)[z
z is a prime number.
3.0Prz=0,
(m+ 1) Pre=cyfly < x&Prim(y) &2fy &y > n Pra),
n Pra is the nth prime number (in order of increasing magnitude) contained in z.%%»
4. 0! =1,
(n+ 1) = (n+ 1).nl.
5. Pr(0) = 0,
Prin + 1) = eyly < {Pr(n)}! + 1 & Prim(y) &y > Pr(n)),
Pr(n) is the nth prime number (in order of increasing magnitude).
6. nGlz = eyly < = & z/(n Pra) &xf(n Pra)+1],
n Gl z is the nth term of the number sequence assigned to the number « (for n > 0
and » not greater than the length of this sequence).
T W) =eyly Sac&kylrz>0& @y + 1) Pra=0],
I(x) is the length of the number sequence assigned to z.
8. wxy = ez{z < [Pr(l(z) + 1y)]**Y & (n)n S () >nGlz =nGla] &

)0 < n 2 l(y)— (n + l(z)) Glz = n Gly]},

r&z#l&z#2x&a]&xr > 1,

axy corresponds to the operation of “concatenating” two finite number sequences.
9. R(z) = 2%, -
R(x) corresponds to the number sequence consisting of 2 alone (for z > 0).
10. H(z) = R(11)xxx1(13),
E(x) coiresponds to the operation of “enclosing within parentheses” (11 and 13 are
assigned to the primitive signs “(” and )", respectively).
11. n Vara = (F2)[13 < 2z £ 2 & Prim(z) &z =2"] & n # 0,
x i & VARIABLE OF TYPE 7.
12. Var(z) = (Fn)[n £ x & n Var 2],
2 iS a VARIABLE.
13. Neg(z) = R(5)+H(z),
Neg(z) is the NzaaTioN of .
14. z Dis y = E(x)=R(7):5(y),
z Dis y is the p1ssuxcriox of 2 and v.
15. 2 Geny = R(x)=R(9)=L(y),
z Gen y is the GuNERALIZATION of y with respect to the VArRIABLE z (provided  is a
VARIABLE).
16. O N z = z,
(n 4+ 1)Nz= R3):n N a,
n N z corresponds to the operation of “putting the sign ‘f’ n times in front of .
17. Z(n) = n N [R(1)],
Z(n) is the NuMERAL denoting the number n.
18. Typi(x) = (Em,n)m,n £z &[m =1 v 1 Varm] & x = n N [R(m)]},***
2 is a SIGN OF TYPE 1.

3 For 0 < n =< z, where z is the number of distinct prime factors of z. Note that n Prz = 0
forn =z + 1.
3%, n < x stands for m £ z & n £ z (similarly for more than two variables).
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19. Typ,(2) =[n =1 & Typi(@)] v[n>1&
(Fo){v £ 2 &nVarev &> = R(v)}],
Z is a SIGN OF TYPE n.
20. Elf(x) TJ )y, z,n S 2 & Typ,(y) &
Typm(%) & o = 2xL(y)],
2 IS an ELEMENTARY FORMULA.
21. Op(x,y,2) = = = Neg(y) V « == yDisz v (Lv)[v £ 2 & Var(v) &
z = v Gen y].
22. FR(z) = 0){0 < n £ (o) > Elf(n Glx) v (Ep,q)[0 <p,g <n&
Op(n Gla, p Gla,q Gla)]} & l(x) > 0 :
z is a SEQUENCE OF FORMULAS, each of which either is an ELEMENTARY FORMULA or
results from the preceding romdturnss through the operations of NECATION, DIs-
JUNCTION, O GENERALIZATION.

23. Yorm(z) = (En){n £ (Pril(2)2])= U7 & FR(n) & 2 = [I(n)] Gl n},%°
2 is a ForMULA (that is, the last term of a FORMULA SEQUENCE 7).

24. v Gebn, » = Var(v) & Form(a) & (Fa, b, ¢)[a, b,c S 2 &

2 = as(v Gen b)xc & Form(b) & l(e) + 1 = n = l{a) + Uv Gen b)],
the var1ABLE v is BOUND in 2 at the nth place.

25. v Fra, z = Var(v) & Form(z) & v = n Glz & n £ l(x) & v Geb n, 2,
the VARIABLE v is FREE in 2 at the nth place.

26. v I'rz = (En)[n £ ) & v Fra, 2],
¥ occurs as a FREE VARJABLE in 2.

27. Sua}) = e2{z < [Pr(l(z) -+ W)Y & [(Fu,v)u,v S v &

z = wusR(n Gla)sv &z = usysv &n = l(u) + 1]},
Su z(}) results from 2 when we substitute y for the nth term of » (provided that
0 <n £ (). ‘
28. 0Stv, 2 = en{n < l(z) &v Fra, 2 & (Ep)n < p £ Uz) & v Frp, 2]},
(k+1)Stv, 2 = s-n{n <kStv,x&vFrn,z& (Ep)n <p <kStv,z
&v Frp, 2]},
k Stw, 2z is the (k + 1)th place in 2 (counted from the right end of the roryura z)
at which v is FREE in 2 (and 0 in case there is no such place).

29. A(v,2) = en{n £ l(z) &nStv,z = 0},

A(v, z) is the number of places at which v is FREE in 2.

30. Sby(xl) = =,

Sby i 1(2y) = Su [Sby(ax})I(F 5 *).

31. 8b(ay) = Sbyq,z( )86
Sb(2?) is the notion sussT a(}) defined above.®

32. z Imp y = [Neg(x)] Dis v,

2 Con y = Neg{[Neg(x)] Dis [Neg(y)}.

35 That n < (Pr([{(x)]?))= ¥ provides a bound can be seen thus: The length of the shortest
sequence of formulas that corresponds to z can at most be equal to the number of subformulas
of z. But there are at most {(z) subformulas of length 1, at most {(z) — 1 of length 2, and so on,
hence altogether at most I(z)(I(x) + 1)/2 = [{(z)]? Therefore all prime factors of n can be assumed
to be less than Pr([{(x)]?), their number =[({r)]?, and their exponents (which are subformulas of
z) <=z.

3% In case v is not a v,\musu-: or x is not a FORMULA, Sb(zf) = z.
37 Instead of S[Sb(x} ) we write Sb(2)¥) (and similarly for more than two VARIABLES).
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x Aeq y = (z Imp y) Con (y Imp 2),
v Ex y = Neg{v Gen [Neg(y)]}.
B.nThe =eyly L2 &Mk S l(z) > (EGlx=13&kGly =EkGlx) v
(AGlz > 13 & EGly = kGlz.[1 Pr(kGLz))")]},
n Th 2 is the nth TYrE BLEVATION of z (in case  end = Th x are FORMULAS).

Three specific numbers, which we denote by 2z, z,, and zs, correspond to the
Axioms I, 1-3, and we define

3. Z-Ax(z) = (x =2, V=12, V& =2).

35. A)-Ax(z) = (Dy)ly £ v & Form(y) & = = (y Dis y) Imp y],

x is a FORMULA resulting from Axiom schema II, 1 by substitution. Analogously,
Agy-Az, Ag-Ax, and 4,-Ax ave defined for Axioms [rather, Axiom Schemata] 1T, 24,
36. A-Aa(x) = A,-Az(z) v A,-Aa(z) v Asz-Aa(z) v A,-Ax(z),
x is a FORMULA resulting from a propositional axiom by substitution.
37. Qz,y,v) = En,m,w)n Sly) &m £ l2) &w 2 &
w=mGlz&wGehn,y&v Fran,y)]
z does not contain any VARTABLE BOUXND in y at a place at which v is FrREE.
38. Lj-Aw(z) = (v, y, 2z, n){v,y,2,n £ 2 &nVarv & Typ,(z) & Form(y) &
Qz, y,v) & z = (v Gen y) Imp [Sb(y2)]},
x is a FORMULA resulting from Axiom schema 11T, 1 by substitution.
39. I,-Az(x) = (Ev, q, p){v, ¢, p < = & Var(v) & Form(p) & v Fr p & Form(g) &
z = [v Gen (p Dis ¢)] Imp [p Dis (v Gen ¢)]},
2 is a FORMULA resulting from Axiom schema I1T, 2 by substitution.
40. R-Ax(x) = (Bu,v,y, W)[u, v, 4, n S xc&nVarv & (n + 1) Varu & u Fry &
Form(y) & z = w Ex {v Gen [[B(u)+E(R(v))] Aeq y]1}],
2 is a FOrRMULA resulting from Axiom schema 1V, 1 by substitution.

A specific number z4 corresponds to Axiom V, 1, and we define:

41, M-Ax(z) = (In)n £z & o = nThz,).

42, Ax(z) = Z-Ax(z) v A-Aa(x) v Ly-Ax(z) v Ly-Az(z) v R-Axz(z) v M-Ax(x),
x is an AXIOM. ; »

43. Fl(z,y,2) =y =zImpa v (F)v £ 2 & Var(v) & z = v Gen y],

2 is an IMMEDIATE CONSEQUENCE of y and z.
44, Buw(r) = )0 < n £ l(z) = da(n Glz) v (Fp, )0 < p,g<n&
Fl(n Glz,p Glz, q Gl)]} & (=) > 0,
z is a PROOF ARRAY (a finite sequence of ¥orMULAS, cach of which is either an axtOM
or an IMMEDIATE CONSEQUENCE of two of the preceding rorMULAS.
45. x By = Buw(x) & [[(»)] Glz = y,
z is a PrROOF of the FORMULA ¥.

46. Bew(x) = (Fy)y Bz,

2 is a PROVABLE FORMULA. (Bew(x) is the only one of the notions 1-46 of which we
cannot assert that it is recursive.)

The fact that can be formulated vaguely by saying: every recusive relation is
definable in the system P (if the usual meaning is given to the formulas of this
system), is expressed in precise langnage, without reference to any interpretation of
the formulas of P, by the following theorem : ,

Theorem V. For every recursive relution R(xy,...,x,) there exists an n-pluce

A
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RELATION SIGN 7 (with the ¥REE VARIABLES®S uy, u,, ..., w,) suck that for all n-tuples
of numbers (xy, ..., x,) we have

1{(271: sl oy CC") —> }"C“'[Sb(';(la‘l';:..;Y(IJ‘,,))]’ (3)
R(xy, ..., 2) = Bew[Neg(Sh(rzta5. 2te,)))- (4)

We shall give only an outline of the proof of this theorem because the proof does
not present any difficulty in principle and is rather long.®® We prove the theorem
for all relations R(xzy, ..., 2,) of the form ay = ¢(ay, . . ., 2,)*° (where ¢ is a recursive
function) and we use induction on the degree of . For functions of degree 1 (that is,
constants and the function a + 1) the theorem is trivial. Assume now that ¢ is of
degree m. Tt results from functions of lower degrees, ¢y, .. ., ¢, through the opera-
tions of substitution or recursive definition. Since by the induction hypothesis every-
thing has alrcady been proved for ¢y, ..., ¢, there are corresponding RELATION
SIGNS, T4, . . ., Iy, such that (3) and (4) hold. The processes of definition by which ¢
results from gy, ..., . (substitution and recursive definition) can both be formally
reproduced in the system P. If this is done, a new RELATION SIGN 7 is obtained from
1, - -+ Tt and, using the induction hypothesis, we can prove without difficulty that
(3) and (4) hold for it. A RELATION SIGX r assigned to a recursive relation®*? by this
procedure will be said to be recursive.

We now come to the goal of our discussions. Let « be any class of rorvurnas. We
denote by Flg(x) (the set of consequences of «) the smallest set of rorduras that
contains all ForaurLas of « and all axroys and is closed under the relation “mmiEpI-
ATE CONSEQUENCE”. k is said to be w-consistent if there is no crass siey a such that

()[Sb(azs,) e Flg(x)] & [Neg(v Gen a)] « 1'lg(x),

where v is the FREE VARIABLE of the CLASS SIGN a.

Every w-consistent system, of course, is consistent. As will be shown later,
however, the converse does not hold.

The gencral result about the existence of undecidable propositions reads as follows:

Theorem VI. For every w-consistent recursive class k of FORMULAS there are recursive
CLASS SIGNS 7 such that neither v Gen r nor Neg(v Gen r) belongs to Flg(x) (where v is
the FREE VARIABLE of 7).

Proof. Let « be any recursive w-consistent class of rormurnas. We define

Buw(z) = (n)[n £ z) > Aa(n Gla) v (nQla)ex v
(Ep, )0 <p,g<n& FinGla,pGla,qGla)}] &l(z) >0 (5)

38 The VARIABLES uy, . . ., i, can be chosen arbitrarily. For example, there always is an r with the
FREE VARIABLES 17, 19, 23, ..., and so on, for which (3) and (4) hold.

39 Theorem V, of course, is a consequence of the fact that in the case of a recursive relation R
it can, for every n-tuple of numnbers, be decided on the basis of the axioms of the systemn P whether
the relation R obtains or not.

40 From this it follows at once that the theorem holds for every recursive relation, since any such
relation is equivalent to 0 = ¢(z,, ..., x,), where ¢ is recursive.

41 When this proof is carried out in detail, 7, of course, is not defined indirectly with the help of
its meaning but in terms of its purely formal structure.

42 Which, therefore, in the usual interpretation expresses the fact that this relation holds.
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(sce the analogous notion 44),
x B,y = Bw(x) &[[(2)] Gl = (6)
Bew, (2) = (Fy)y B x (6.1)

(see the analogous notions 45 and 46).
We obviously have

(2)[Bew,(z) ~ 2 e Flg(x)] (7)
and
(2)[Bew(z) — Bew,(2)]. (8)

We now define the relation

Qz,y) = z B [SU(y2)]- (8.1)

Since 2 B,y (by (6) and (5)) and Sb(y}i,,) (by Definitions 17 and 31) are recur-
sive, so0 is Q(z, y). Therefore, by Theorem V and (8) there is a RELATION SIGN ¢ (with
the FREE VARTABLES 17 and 19) such that

z B [‘Sb y?(y) ] — Bew, [Sb(q4x) 200 (9)

and
& B [Sh(yz)] - Bewi[Neg(Sb(q3() 20y))]- : (10)
We put
p = 17 Gen ¢ (11)

(p is a cLass sieXN with the FrREE VARIABLE 19) and
1 5
7 = Sb(q7¢) (12)

(r is a recursive crass s1aN*® with the FREE VARIABLE 17).
Then we have

Sb(pL,) = Sb([17 Gen q133,)) = 17 Gen Sb(¢i},) == 17 Genr (13)
(by (11) and (12));** furthermore
Sblgdn ) = Sh(Hy) (14)
(by (12)). If we now substitute p for y in (9) and (10) and take (13) and (14) into
account, we obtain
z B, (17 Gen r) — Bew, [Sb(ri%.,)], (15)
B, (17 Gen r) —> Bew, [ Neg(Sb(ril.))]. (16)

This yields:
1. 17 Gen 7 is not x-PrROVABLE.*® For, if it were, there would (by (6.1)) be an n such

43 Since r is obtained from the recursive RELATION s1eN g through the replacement of a VARIAULE
by a definite nuinber, p. [Precisely stated the final part of this footnote (which refers to a side remnark
unnceessary for the proof) would read thus: “REPLACEMENT of & VARIABLE by the NuMERAL for
p.’]

44 The operations Gen and Sb, of course, can always be interchanged in case they refer to
different VARIABLES. .

48 By “x is k-provable’ we mcan z € Flg(x), which, by (7), means the same thing as Bewg(s)-
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that » B, (17 Gen r). Hence by (16) we would have Bew,[Neg(Sb(r17,,))], while, on
the other hand, from the x-provArRILITY of 17 Gen r that of Sh(r}7,) follows. Hence,
» would be inconsistent (and a fortiori w-inconsistent).

2. Neg(17 Genr) is not k-Provanre. Proof: As has just been proved, 17 Gen r
is not x-Provapri; that is (by (6.1)), (n)n B, (17 Gen r) holds. ¥rom this,
(n)Bew [SD(r,,)] follows by (15), and that, in conjunction with Bew,[Neg(17 Gen r)],
is incompatible with the w-cousistency of «.

17 Gen r is therefore undecidable on the basis of «, which proves Theorem VI.

We can readily see that the proof just given is constructive ;*°% that is, the following
has been proved in an intuitionistically unobjectionable manncr: Let an arbitrary
recursively defined class « of Forarunas be given. Then, if a formal decision (on the
basis of «) of the sENTENTIAL ForMmura 17 Gen r (which [for each k] can actually be
exhibited) is presented to us, we can actually give

1. A proor of Neg(17 Gen r);

2. Tor any given n, a *roor of Sb(r37,,).

That is, a formal decision of 17 Gen 7 would have the consequence that we could
actually exhibit an w-ingounsistency.

We shall say that a relation between (or a class of) natural numbers R(ay, ..., 2;,)
is decidable [entscheidungsdefinit]] if there exists an n-place RELATION s1GN 7 such that
(3) and (4) (sce Theorem V) hold. In particular, therefore, by Theorem V every
recursive rclation is decidable. Similarly, a rELATION s1axN will be said to be deciduble
if it corresponds in this way to a decidable relation. Now it suffices for the existence
of undecidable propositions that the class « be w-consistent and decidable. For the
decidability carrvies over from « to z B,y (sce (5) and (6)) and to Q(z, y) (see (8.1)),
and only this was used in the proof given above. In this case the undecidable prop-
osition has the form v Gen r, where 7 is a decidable cr.ass siax. (Note that it even
suffices that « be decidable in the system enlarged by x.)

If, instead of assuning that « is w-consistent, we assume only that it is consistent,
then, although the existence of an undecidable proposition does not follow [by the
argument given above]. it does follow that there exists a property (r) for which it is
possible neither to give a counterexample nor to prove that it holds of all numbers.
For in the proof that 17 Gen 7 is not x-PROVABLE only the consistency of « was used
(see p. 608). Moreover from Bew, (17 Gen r) it follows by (15) that, for every number

z, 8b(r}7,,) is k-PrOVABLE and conscquently that Neg(Sb(rkl,,)) is not k-PROVABLE for
any number.

If we adjoin Neg(17 Gen r) to , we obtain a class of FOorMULAS «’ that is con-
sistent but not w-consistent. «’ is ‘consistent, since otherwise 17 Gen r would be

x-PROVABLE. However, «” is not w-consistent, because, by Bew, (17 Gen r) and (15),
()Bew,Sb(r}7,,) and, a fortiori, (x)Bew,.Sb(r}l,,) hold, while on the other hand, of
course, Bew,[Neg(17 Gen r)] holds.*®
We have a svecial casc of Theorem VI when the class « consists of a finite number
of rormuLas (and, if we so desire, of those resulting from them by 1TYPE ELEVATION).
452 Since ell existential statements occurring in the proof are based upon Theorem V, which, as
is easily seen, is unobjectionable from the intuitionistic point of view.

8 Of course, the existence of classes « that are consistent but not w-consistent is thus proved
only on the assumption that there exists some consistent « (that is, that P is consistent).
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Every finite class « is, of course, recursive.** Let @ be the greatest number contained
in k. Then we have for «

ek~ (Fm,n)m Sax&nSa&nex &z =mThn]

Hence « is recursive. This allows us to conclude, for example, that, even with the
help of the axiom of choice (for all types) or the generalized continuum hypothesis,
not all propositions are decidable, provided these hypotheses are w-consistent.’

In the proof of Theorem VI no properties of the system P were used besides the
following : '

1. The class of axioms and the rules of inference (that is, the relation “immediate
conscquence’) are recursively definable (as soon as we replace the primitive signs in
some way by natural numbers);

2. Every recursive relation is definable (in the sense of Theorem V) in the system P,

Therefore, in every formal system that satisfies the assumptions 1 and 2 and is
w-consistent there are undecidable propositions of the form (2)F(x), where F is a
recursively defined property of natural numbers, and likewise in every extension of
such a system by a recursively definable w-consistent class of axioms. As can easily
be verified, included among the systems satisfying the assumptions 1 and 2 are the
Zermelo-Fraenkel and the von Neumann axiom systems of set theory,*” as well as
the axiom system of number theory consisting of the Peano axioms, recursive def-
inition (by schema (2)), and the rules of logic.*® Assumption 1 is satisfied by any system
that has the usual rules of inference and whose axioms (like those of P) result from a
finite number of scheinata by substitution.®8?

3

We shall now deduce some consequences from Theorem VI, and to this end we give
the following definition: .

A relation (class) is said to be arithmetic if it can be defined in terms of the notions
+ and . (addition and multiplication for natural numbers)*® and the logical con-
stants v, 7, (2), and =, where (z) and = apply to natural numbers only.5° The
notion “arithmetic proposition” is defined accordingly. The relations “greater than”
and “congruent modulo n”’, for example, are arithmetic because we have

g >y~ By =2+ 2],
=ymodn)~ (Lz)lx =y +2.nVy==z+zn]

462 [On page 190, lines 21, 22, and 23, of the German text the thrce occurrences of « are mis-
prints and should be replaced by occurrences of «.]]

47 The proof of assumption 1 turns out to be even simpler here than for the system P, since there
is just one kind of primitive variables (or two in von Neumann’s system).

48 See Problem TTT in Hilbert 1928a. '

482 As will be shown in Part II of this paper, the true reason for the incompleteness inherent in
all formal systems of mathecmatics is that the formation of ever higher types can be continucd
into the transfinite (sec Hilbert 1925, p. 184 [above, p. 387]), while in any formal system at niost
denumerably many of them are available. For it can be shown that the undecidable propositivns
constructed here become decidable whenever appropriate higher types are added (for example,
the type w to the system P). An analogous situation prevails for the axiom system of set theory.

49 Here and in what follows, zero is always included among the natural numbers.

50 The definiens of sucli 2 notion, therefore, must consist exclusively of the signs listed, variah
for natural numbers, z, ¥, ..., and the signs 0 and 1 (variables for functions and sets are not
permitted to occur). Instead of  any other number variable, of course, may occur in the prefixes.
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We now have

Theorem VII. Fvery recursive relation is arithmetic.

We shall prove the following version of this theorem: every relation of the form
zo = @y, . .., ¥,), where ¢ is recursive, is arithmetic, and we shall use induetion on _
the degree of ¢. Let @ be of degree s (s > 1). Then we have either L: 19 ZJ

Loy, .- %) == plxa(®n, - o oh Z0), Xal@hs o o oy Ta)s o ooy X+ o5 ER) TP
(where p and all y; are of degrees less than s) or

2. (0, zg, . . ., %) = Y2y, ..., T,),

ok + 1,2y, .., 1) = plk, ok, 2g, .., 2), 20, .00, 2]

(where ¢y and p are of degrees less than s).
In the first casc we have

Ty = ?’(9?1» ThERel) 93”) ~ (]ﬂyl) sl ym)[]‘)(f’fo: Yis oo e y;:;) &
Sl(yl’ Tis oo xn) & s & Sm(]/m’ Tiseves xn)]’

where R and S; are the arithmetic relations, existing by the induction hypothesis,
that are equivalent to'2g == p(yy, . . ., ¥n) and ¥y = (@4, . . ., 2,), vespectively. Hence
in this case 2y = ¢(2y, ..., 2,) is arithmetic. /

In the second case we usc the following method. We can express the relation

[&] 1
2y = @2y, - - ., 2,) with the help of the notion “sequence of numbers” (f)°* in the
following way :
A . TS P > (I-\[ ]~ .
2y = ¢y, ..., ) ~ (Ff){fo = P(xg, ..., 2,) & (B)[Ek < 2; —
fk+1 = l-’*(]‘.ﬁfl-:r Ty ooy T)] & 2o = frl}'

If S(y, 24, . .., @) and T'(z, a4, ..., x, ;) are the arithmetic relations, existing by
the induction hypothesis, that are equivalent to y = J(2,, ..., 2,) and z = p(zy, ..
x,,1), respectively, then

Lo = ‘P(xlr ctt xn) -~ (L‘f){S(fO: T xn) & (A’)[]‘ < 2>
) T(fk+l’ k’f}w Zgy .o, X)) &3y = f:q}' (17)

¢

.3

We now replace the notion “sequence of numbers” by “pair of numbers”, assigning
to the number pair n, d the number sequence f™® (fi* 9 = [n];, ¢4 1ya), Where [n],
denotes the least nonnegative remainder of » modulo p.

We then have

Lemma 1. If f is any sequence of natural numbers and £ any natural number,
there exists a pair of natural numbers, n, d such that f™ @ and f agrec in the first &
terms.

. Proof. Let [ be the maximum of the numbers &, fo, fi, .. ., fu-1. Let us determine

an 7 such that

n = fi[mod(l + (z + 1)I!)] fori=20,1,...,k — 1, i
which is possible, since any two of the numbers 1 + (¢ + 1)l ¢ =0,1,...,k — 1) L 19 .

81 Of course, not all z,, ..., z, need occur in the x; (sce the example in footuote 27).
52 f here is a variable with the [infinite] scquences of natural numbers as its domain of values.
fx denotes the (£ + 1)th term of a sequence f (fy denoting the first).
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are rclatively prime. For a prime number contained in two of these numbers would
also be contained in the difference (i; — #,)I! and therefore, since |1, — 4, < I, in I!;
but this is impossible. The number pair =, I! then has the desired property.

Since the relation o = [2], is defined by

z=n(modp) &z <p
and is therefore arithmetic, the relation P(zg, 24, .. ., z,), defined as follows: 4

P(zy,...,z,) = (En, ){S([(n)gs1, 2gr - ., ) & (B) [k < 2 —
T([n]l +d(k+2) k: [77]1+d(k+1)? Loy v vy ‘T’n.)] &’ Ly = [n]l +d(xy +1)},

is also arithmetic. But by (17) and Lemma 1 it is cquivalent to 2y = ¢(z,, ..., r,)
(the scquence f enters in (17) only through its first z; + 1 terms). Theorem VII is
thus proved.

By Theorem VII, for every problem of the form (x)F(x) (with recursive F) there is
an equivalent arithmetic problem. Moreover, since the entire proof of Theorem V]I
(for every particular F) can be formalized in the system P, this equivalence is
provable in P. Hence we have

Theorem VIIL. In any of the formal systems mentioned in Lheorem VIS there are
undecidable arithmetic propositions.

By the remark on page 610, the same holds for the axiom system of set theory and
its extensions by w-consistent recursive classes of axioms.

Finally, we derive the following result:

Theorem IX. In any of the formal systeins mentioned tn Theorem VI there are
undecidable problems of the restricted functional calculus®* (that is, formulas of the
restricted functional caleulus for which necither validity nor the existence of a
counterexample is provable).%®

This is a consequence of

Theorem X. Every problem of the form (x)I(x) (with recursive I') can be reduced to
the question whether a certain formula of the restricted functional -caleulus is satisfiable
(that is, for every recursive I we can find a formula of the restricted functional cal-
culus that is satisfiable if and only if (z)F(x) is true.

By formulas of the restricted func‘uonml calculus (r.f. c.) we understand expres-
sions formed from the primitive signs =, v, (2), =, 2, y, ... (individual variables),
F(x), G(w, y), H(z, y, 2),. .. (predicate and 1dzmon \'auables) where (2) and = apply
to individuals only.®® To these signs we add a third kind of variables, ¢(z), Ji(x, ¥).

il

53 These are the w-consistent systems that result from P when recursively definable classes of
axioms are added.

5% See Hilbert and Ackermann 1928.

In the systemn P we must understand by formulas of the restricted functional calculus those that
result from the formulas of the restricted functional caleulus of PM when relations are replaced
by classes of higher types as indicated on page 599.

55 In 1930a 1 showed that every formula of the restricted functional caleulus cither can be
proved to be valid or has a counterexample. However, by Theorera IX the existence of this
counterexample is not always provable (in the formal systems we havo been considering).

56 Milbert and Ackermann (1928) do not include the sign = in the restricted functional caleulus.
But for every formula in which the sign = occurs there exists a formula that does not cuntum this
sign and is satisfiable if and only if the original formula is (sce Gddel 1930a).
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k(, ¥, 2), and so on, which stand for object-functions]Gegenstandsfunktionen]] (that
is, @(), (=, v), and so on denote single-valued functions whose arguments and values
are individuals).?” A formula that contains variables of the third kind in addition to
the signs of the r. f. c. first mentioned will be called a formula in the extended sense
(i. e. 5.).58 The notions “satisfiable” and “valid” carry over immediately to formulas
i. e.s., and we have the theorem that, for any formula 4 1. e. s, we can find a formula
B of the r. . ¢. proper such that 4 is satisfiable if and only if B is. We obtain B from
A by replacing the variables of the third kind, (), /(x, ), . . ., that occur in 4 with
expressions of the form (12)F(z, ), (12)G(z, z, y), . . ., by climinating the “descriptive”
functions by the method used in PJI (I, %14), and by logically multiplying®® the
formula thus obtained by an expression stating about ecach F, G, ... put in place of
some @, i, ... that it holds for & unique value of the first argument [for any choice
of values for the other arguments].

We now show that, for every problem of the form (2)F(2) (with recursive F7), there
is an equivalent problem concerning the satisfiability of a formula i. e. s., so that, on
account of the remark just made, Theorem X follows.

Since ¥ is rceursive, there is a recursive function @(x) such that F(z) ~ [P(z) = 0],
and for @ there is sequence of functions, @,, @,, ..., ¢,, such that ¢, = &, ¢ (x)
=z + 1, and for every @, (1 < k = n) we have either

l' » (1'2, s ® by xm)[(pk(oi @‘2’ LS | xm) == (j)p(x?.: 2 hey T’m)J:
(%, 2g, . . o, BN DAD1(2), 7, - - oy 2] = Dz, Dplz, 25, ..., ), Zoy ..o, 2,0} (18)

with p, ¢ < £,%®

or
2. (xb “w w3 xm)[qv)k(xl’ o ay xm) = ®1((pi1(£1)v L Qis(gs))]ﬁo (19)
withr < k4, < E(forv=1,2,...,53),
or

3. (@1 o NPl oy 30) = DDy, By (O], (20)

We then form the propositions
T @) = 0& (3, 9[0i(2) = uy) >z = y), (21)
(@[ Do) = 0] (22)

In all of the formulas (18), (19), (20) (for £ = 2,3, ..., n) and in (21) and (22) we
now replace the functions @; by function variables ¢; and the number 0 by an

57 Moreover, the domain of definition is always supposed to be the entire domain of individuals.
88 Variables of the third kind may occur at all argument places occupied by individual variables,
for example, ¥y = ¢(z), F(x, ¢(¥)), Gz, ¢(y)), =), and the like.

89 That is, by forming the conjunction.
892 [The last clause of footnote 27 was not taken into account in the formulas (18). But an

explicit formulation of the cases with fewer variables on the right side is actually necessary here
for the formal correctness of the proof, unless the identity function, I(x) = z, is added to the
initial functions.]

8 The g, (1 = 1,..., s) stand for finite sequences of the variables zy, z,, . . ., z,,; for example,

Zy, T3, 23.
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614 GODEL

individual variable 2z not used so far, and we form the conjunction C of all the
formulas thus obtained.

The formula (Fz,)C then has the required property, that is,

1. If (z)[P(x) = 0] holds, (Fz,)C is satisfiable. For the functions @,, @,,..., @
obviously yicld a true proposition when substituted for ¢, @, ..., @, in (Fz,)0);

2. If (EBx,)C is satisfiable, (2)[@(z) = 0] holds. .

Proof. Let iy, o, . . ., b, be the functions (which exist by assumption) that yield a
true proposition when substituted for ¢, ¢, . . ., ¢, in (Ex,)C. Let & be their domain
of individuals. Since (Fx,)C holds for the functions ¢, there is an individual a (in
J) such that all of the formulas (18)-(22) go over into true propositions, (18')-(22"),
when the @, are replaced by the b, and 0 by a. We now form the smallest subclass
of & that contains a and is closed under the operation i, (x). This subelass (§') has the
property that every function ¢, when applied to elements of ¥, again yields elements
of §'. For this holds of ; by the definition of &', and by (18'), (19'), and (20') it
carries over from ; with smaller subscripts to g with larger ones. The functions that
result from the ¢, when these are restricted to the domain S’ of individuals will be
denoted by . All of the formulas (18)-(22) hold for these functions also (when we
replace 0 by a and @; by ).

Because (21) holds for 4] and a, we can map the individuals of §” one-to-one onto
the natural numbers in such a manner Ahat @ goes over into 0 and the function ]
into the successor function @;. But by this mapping the functions 5 go over into the
functions @;, and, since (22) holds for 1 and a, (2)[D,(x) = 0], that is, (z)[P(z) = 0],
holds, which was to be proved.®*

Since (for cach particular #) the argument leading to Theorem X can be carried
out in the system P, it follows that any proposition of the form (x)F(z) (with recur-
sive I7) can in P be proved equivalent to the proposition that states about the corre-
sponding formula of the r. f. c. that it is satisfiable. Hence the undecidability of one
implies that of the other, which proves Theorem IX.62

n

4

The results of Section 2 have a surprising conscquence concerning a consistency
proof for the system P (and its extensions), which can be stated as follows:

Theorem XI. Let « be any recursive consistent®® class of FORMULAS ; then the SENTEN-
TIAL FORMULA stating that « is consislent is not k-PROVABLE ; in particular, the consis-
tency of P is not provable in P,®* provided P is consistent (in the opposite case, of
course, every proposition is provable [in P]).

The proof (briefly outlined) is as follows. Let « be some recursive class of FORMULAS
chosen once and for all for the following discussion (in the simplest case it is the

61 Theorem X implies, for example, that Fermat’s problem and Goldbach’s problem could be
solved if the decision problem for the r. f. ¢. were solved.

62 Theoremn IX, of course, also holds for the axiom system of set theory and for its extensions
by recursively definable w-consistent classes of axioms, since there are undecidable propositions
of the form () F(x) (with recursive F) in these systems too.

63 ‘) is consistent” (abbreviated by “Wid(x)”) is defined thus: Wid(x) = (Fz)(Forin(r) &
Bew,(2)).

64 This follows if we substitute the empty class of rForMuLAS for k.
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empty class). As appears from 1, page 608, only the consistency of « was used in
proving that 17 Gen r is not k-rrovanri;®® that is, we have

Wid (i) —> Bew, (17 Gen r), (23)
that is, by (6.1),
Wid(x) — (2) B, (17 Gen 7).
By (13), we have ‘
17 Gen r = Sb(pil,),

hence

‘ Wid(x) > (2) & B SH{(pLey),
that is, by (8.1),
Wid(x) — (2)Q(z), p). (24)

We now observe the following : all notions defined (or statements proved) in Section
2,65 and in Scction 4 up to this point, ave also expressible (or provable) in P. For
throughout we have used only the methods of definition and proof that are cu:\rt‘mn‘ary
in classical mathematics, as they are formalized in the system P. Tn particular, « (like
every recursive class) is definable in P. Let w be the SENTENTIAL FORMULA by which
Wid(x) is expressed in P. According to (8.1), (9), and (10), the relation Q(z, ¥) is
expressed by the RELATION s1GX ¢, hence Q(z, p) by r (since, by (12), r = Sb(g:)),
and the proposition (z)Q(x p) by 17 Gen 7.

Therefore, by (24), w Imp (17 Gen ) is provable in P57 (and a fortiorl k-PROVABLE).
If now w were k-prOvVARLE, then 17 Gen r would also be k-rrovaBrE, and from this
it would follow, by (23), that « is not consistent.

Let us observe that this proof, too, is constructive ; that is, it allows us to actually
derive a contradiction from «, once a rroOF of w from « is given. The entire proof of
Theorem XT carries over word for word to the axiom system of set theory, M, and to
that of classical mathematics,®® 4, and here, too, it yields the result: There is no
consistency proof for M, or for 4, that could be formalized in MM, or A4, respectively,
provided M, or 4, is consistent. T wish to note expressly that Theorem X1 (and the
corresponding results for A and 4) do not contradict Hilbert’s formalistic viewpoint.
For this viewpoint presupposes only the existence of a consistency proof in which
nothing but finitary means of proof is used, and it is conceivable that there exist
finitary proofs that cannot be expressed in the formalism of P (or of M or A).

Since, for any consistent class «, w is not x-provaBLE, there always are prop-
ositions (namely w) that are undecidable (on the basis of ) as soon as Neg(w) is not
k-PROVABLE; in other words, we can, in Theorem VI, replace the assumption of
w-consistency by the following: The proposition “« is inconsistent” is not x-rroVv-
ABLE. (Note that there are consistent « for which this proposition is x-PROVABLE.)

85 Of course, 7 (like p) depends on «.

85 From the definition of “recursive’ on page 602 to the proof of Theorem VI inclusive.

87 That the truth of w Imp (17 Gen r) can be inferred from (23) is siinply due to the fact that
the undecidable proposition 17 Gen r asserts its own unprovability, as was noted at the very
beginning.

88 See von Neumann 1927.
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616 GODEL

In the present paper we have on the whole restricted ourselves to the system p,
and we have only indicated the applications to other systems. The results will be
stated and proved in full generality in a sequel to be published soon.®8 In that pajer,
also, the proof of Theorem X1, only sketched here, will be given in detail.

Note added 28 August 1963. In consequence of later advances, in particular of the
fact that due to A. M. Turing’s work®® a precise and unquestionably adequate
definition of the general notion of formal system can now be given, a completdly
general version of Theorems VI and XI is now possible. That is, it can be proved
rigorously that in every consistent formal system that contains a certain amount of
finitary number theory there exist undecidable arithmetic propositions and that,
morcover, the consistency of any such system cannot be proved in the system.

682 [This explains the “I” in the title of the paper. The author’s intention was to publish th,
sequel in the next volume of the Monatshefte. The prompt acceptance of his results was one of 1hs
reasons that made him change his plan.]}

89 See Turing 1937, p. 249.

70 In my opinion the term “formal system’ or “formalism” should never be used for anything
but this notion. Tn a lecture at Princeton (mentioned in Princeton University 1946, p. 11w
Davis 1965, pp. 84-88]) I suggested certain transfinite generalizations of formalisms, but thes
are somcthing radically different from formal systems in the proper sense of the term, who
characteristic property is that reasoning in them, in principle, can be completely replaced b
mechanical devices.

ON COMPLETENESS AND CONSISTENCY
(19312)

Let Z be the formal system that we obtain by supplementing the Peano axioms
with the schema of definition by recursion (on one variable) and the logical rules of
the restricted functional calculus. Hence 7 is to contain no variables other than
variables for individuals (that is, natural numbers), and the principle of mathematical
induction must therefore be formulated as a rule of inference. Then the followiny
hold:

1. Given any formal system S in which there are finitely many axioms and in
which the sole principles of inference are the rule of substitution and the rule «of

implication, if § contains® Z, S is incomplete, that is, there are in S propositions {in

! That a formal system S contains another formal system 7' means that every proposition
expressible (provable) in 7' is expressible (provable) also in S.

[Remark by the author, 18 May 1966:]

[This definition is not precise, and, if made precise in the straightforward manner, it does not
yield a sufiicient condition for the nondemonstrability in S of the consistency of S. A sufficicnt
condition is obtained if one uses the following definition: “S contains 7' if and only if evers
meaningful formula (or axiom or rule (of inference, of definition, or of construction of axiuiis}
of 7' is a meaningful formula (or axiom, and so forth) of S, that is, if S is an extension of 7'

Under the weaker hypothesis that Z is recursively one-to-one translatable into S, with demen
strability preserved in this dircction, the consistency, even of very strong systems S, may e
provable in S and even in primitive recursive number theory. However, what can be shown to b=
unprovable in ' is the fact that the rules of the equational caleulus applied to equations, betwies
primitive recursive terms, demonstrable in S yicld only correet numerical equations (provide!
that S possesses the property that is asserted to be unprovable). Note that it is necessary
prove this “outer’ consistency of S (which for the usual systems is trivially equivalent wath
consistencey) in order to ““justify”, in the sense of Hilbert’s program, the transfinite axioms of a

66



Notes

Chaper 1: Introduction

1., Ladriere, Limitations internes des formalismes,
which is out of print. It includes a summary
of mathematical results which point to limitations
in deductive systems, and a chapter concerned’
with the problem of "capturinz' mathematical
intuition in a formal system,.

N

Nagel and Newman, Godel's Proof. This work includes
some introductory material on the mathematical
problems to which Godel addressed himself,

Chapter 2: An exposition of Godel's Theorem

1. This is 30del's original paper. Two English
translations are available, One is by Meltzer and
is published alone in a volume. Another is
included in van Hei jenoori's anthology,

From Frege to Godel.

2. The definition appears in the original on pages
179 and 180. What Godel calls a recursive
function is called a primitive recursive
function today.

3. A number theoretic function is one from the
natural numbers to the natural numbers,

4, Hatcher, in Foundations of Mathematics, requires a
projection function as primitive, in addition to
these two., Whether Gddel implicitly requires this
function I do not know,

5. This is the Fundamental Theorem of Arithmetic,
Proofs are available in many places, FFor one,
see Herstein , I.N., Topics in Algebra,Blaisdell
Publishing Co.,, Waltham, Mass., 1964, p.1l9.

6. Nagel and Newman use a different numbering technique
based on a slightly different system.

7. See van Heljenoort for a reprint of Peano's paper.

8. Implication, equivalence, etc., are defined in the
usual manner based on the primitive notions.

9. 50557(~Z)means substitutins ¢ for the variable v in

¢7
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10. A relation is recursive if there exists a recursive
function satisfied by the members of the relation.

11. Gothic letters represent n-tuples of wvariables,.

12, Other developments of Godel's Theorem do not
require w -consistency., See Rosser, 1939..

13. Tarski has exhibited a system which has been
shown to be simply consistent, but not w -consistent.
See Rosser, 1939.

Chapter 3: On Richard and Godel
1. The paper is reprinted in van Hei jenoort,
2. p. 63.

3. The version of Richard's Paradox glven by Nagel and
Newman is, of course, not the one originally given.
R's work concerns set membership, whereas N&N
involve predication of properties to individusl
numbers, The two are possibly reconcililable,

Chapter 4: An IExtension to Ordinary Language

1. The paradox is developed in an unpublished paper of
John Post, at Vanderbilt., The contradiction comes
when acceptance of the original proposition entails
a sentence which is necessarily true, and therefore
not either possibly false, or neither true nor
false.
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