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INTRODUCTION 

Within the 

enthusiastically 

past five 

begun to 

years the 

employ a 

scient i fic community has 

new tool which has been 

popularly referred to as chaos theory. This tool helps scientists 

to identify order, at least qualitatively, in dynamical systems 

which appear random, or chaotic. Examples of chaotic dynamics 

include the turbulent flow of fluids, weather, phase transitions, 

and population fluctuations. Quantitative analysis of such 

phenomena has evaded scientists ; consequently, they have turned to 

qualitative analysis. In addition to providing insight into the 

dynamics of chaotic systems, the new tool has caused many 

s cientists to quest i on whether 

possible. 

or not quantitative analysis 

I 

is 

Many individuals from an interestingly diverse collection of 

fields have independently developed pieces of chaos theory. Some 

authors have attempted to present the history of this development 

and to explain simp ly the implications of the new theory . In his 

book Chaos: Making £ New Science, James Gleick presents the 

subject interestingly to the non-scientific community . Gl eick 's 

text inspired the author to study in greater depth one particular 

aspect of chaos theory, namely Julia sets. 

In this paper we introduce the reader to a family of functions 

whi ch give rise to Julia sets. Making their home in the complex 

plane, these sets exhibit many interesting properties, including 

chaotic dynamics . The aesthetic quality of Julia sets help us to 

appreciate more fully the properties which these sets exhibit . We 
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encourage the reader to flip through the graphs presented in 

Appendix B, evaluating their artistic value now and their 

scientific value later. 

The study of these sets began during World War I. The French 

mathematicians Gaston Julia and Pierre Fatou wrote extensive 

papers, Julia inJ.918 and Fatou in 1919 and 1920, which established 

the fundamental definitions and theorems of this paper. Largely 

due to the increased computational power and graphical ability of 

modern computers, the subject has recently experienced a flood of 

attention. Among the current mathematicians studying Julia sets, 

Sullivan has classified the dynamics in the stable set (defined in 

this paper) while Douady , Hubbard, and Mande lbrot have analyzed the 
I 

dynamics of quadratic polynomials. 

This work merely introduces the reader to the subject of Julia 

sets, which has been explained in much greater depth by more 

capable mathematicians. In addition to omitting much of the 

established work of the mathematicians mentioned above , we exclude 

a great deal of current work on the subject. The references should 

provide the interested reader with some starting points to pursue 

the subject in greater detail. 
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1. REVIEW OF COMPLEX NUMBERS 

For those readers who have forgotten everything they learned 

about complex numbers, whether intentionally or otherwise, we begin 

with a brief review. (The less forgetful reader should move on to 

the next section.) A complex number z has the form z =a+ bi, 

where a and bare real numbers and i is defined to be J-1 . Note 

that i 2 = -1. The real part of z is a, and b is called the 

imaginary part of z. The set of complex numbers C consists of 

every possible c ombination of real and imaginary parts. 

' To help visualize these numbers, we may represent complex 

numbers as point s (a,b) i n the popu lar Cartesian plane, with the 

real part on the horizontal axis and / the i maginary part on the 

vertical axis. Since we are representing comp lex numbers, we will 

call this space the complex plane. Consult Figure 1. 

As a bonus , we may determine points 

by ordered pairs not only of horizontal 

and vertical distance but also of radius 

and angle. Thus, the ordered pair (r,e) 

represents a point in the complex plane, 

where the radius r measures the distance 

between the po int and the origin ( 0 , 0) , 

and the angle e measures in a counter­

clockwise direction the angle in radians 

between the line connecting the point with 

the origin (0,0) and the rea l axis . 

1 

(o, \:.,) 

0 
(c,C:) 

Figure 1: Coordinates 
of the complex number z 
=a+ bi in the complex 
plane 



Using our rusty trigonometry skills, we find formulas which 

relate a complex number in rectangular form (a, b) to the same 

number in polar form (r,8): 

a= rcose, 

b = rsine, 

e = arctan ( a/b) . 

Thus, a complex number z may have the form z 

z = r(cose + isine). 

a+ bi or the form 

As with reai numbers, complex numbers may be added, 

subtracted , multiplied, and divided in pairs to obtain other 

complex numbers. The rules for addition and multiplication follow. 
I 

Given any two complex numbers x =a+ bi and y = c + di, where a, 

b, c, and dare real numbers, 

x + y = (a+ bi) + (c + di) = (a+ c) + (b + d)i and 

xy (a+ bi) (c + di) = (ac - bd) + (ad+ bc)i. 

Subtraction and division are simply the inverse operations of 

addition and multiplication, respectively . For every non-zero 

complex number z there exists a unique additive inverse -z and a 

unique multiplicative inverse 1/z. Thus, subtraction and division 

can be defined in terms of addition and multiplication as follows: 

X - y = X + (-y) and 

x/y = X ( 1/y) . 

In addition to these binary operations, one may also f ind the 

absolute value or the square root of a complex number z =a+ bi 

as follows: 
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i z i = J ( a 2 + b 2 ) and 

Jz =)[(a+ J(a 2 + b 2 ) )/2) + 

(sgn b)i)[(-a + J(a2 + b 2 ))/2) 

Note that the absolute value equals the radius of the complex 

number in polar form. Also, the square root is defined to be 

positive, and the value (sgn b) is defined to be +l if b > 0 and 

-1 if b < 0. 

2. FAMILIES OF FUNCTIONS 

The setting for the sets which we will study is the Riemann 

sphere. This surface is simply the union of the complex plane with 

the point at infinity: * C = CU {oo} . Af the name implies, one may 

picture th i s surface as a sphere. Zero corresponds to the south 

• 
2_ I ( , 

l , 

Figure 2 Projection of the 
Riemann sphere onto the 
complex plane 

pole; infinity to the north pole. Lines 

of the form y = izoi , where z0 is a fixed 

point in * c, correspond to latitude 

lines whose distance from the south pole 

is z 0 • 

As visual images tend to enlighten 

the mind as well as please the eye, we 

present how the Riemann sphere can be 

cons tructed from the complex plane. 

Imagine a sphere mounted precariously 

upon a plane which extends as far as 

the eye can see. Consult Figure 2. The origin marks the point of 

contact between the two surfaces. Pick any point on the plane and 
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draw a line through that point and the north pole of the sphere. 

The line will intersect the sphere in exactly one point so that a 

one-to-one correspondence exists between every point on the plane 

and every point except the north pole on the sphere. As mentioned, 

the north pole represents the infinity point. 

When studying Julia sets in general, mathematicians ususally 

examine the family of rational functions in the home of the Riemann 

sphere . 

Definition 2.1 : A rational f unction R: c* ➔ c* has the form 

R(z) = p(z)/q(z), wpere p(z) and q(z) are polynomials with complex 

coefficients and no common factors. The degree of R measures how 

many times R wraps the Riemann sphere around itself , and this 
I 

number is simply the maximum of the degrees of p and q. 

The work of Julia and Fatou applies to rationa 1 funct i ons 

whose degree is at least two. Since we wish to examine some of 

the results of Julia and Fatou while keeping the study as simple 

a s possible, we limit ourselves to the familiar family of functions 

called the quadratic polynomials. Note, however, that many of the 

theorems in this paper apply to rational functions in general. 

Definition 2 .2: A quadratic polynomial is a function 

p: c* ➔ c* of the form p(z) = az 2 + bz + c, where a, b, c E c and 

a t- O. 

Ever striving for simplicity, we present the following theorem 

which allows us t o study the properties of t he whole family of 

quadratic polynomials while only examining a certain subfamily of 

these functions. 
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Theorem 2.3: A function p: c* ➔ c* of the form p(z) = az 2 + 

bz + c, where a, b, c EC and a 1 O, can be transformed by the 

function z' = q(z) = (1/Ja)z - b/(2a) into a function of the form 

p(z') = (z') 2 + c', for some c' EC . 

Proof: p(z') = p[q(z)J = p[(l/J a)z - b/(2a)J 

= a[(l/ J a)z - b/ (2a)J 2 + b[(l/J a)z - b/(2a)J + c 

= a [(l/a)z2 - (b/a 31 2 )z + b 2/(4a2 )] + 

(b/ J a) z - b2/ ( 2a) + c 

= z 2 - (b/Ja)z + b 2/(4a) + (b/ J a)z - b 2/(2a) + c 

Q.E.D. 

This proof establishes that c' = - b 2/ (4a) + c. Observe that 

q is simply a linear function so that the composition of p with q 
I 

rotates, shifts, and magnifies or shrinks the image of p . Now 

rota ting, shifting, and magnifying or shrinking--as opposed to say 

bending, ripping, and tearing--do not alter the properties of the 

images of p which we will study . As a result, we delightedly limit 

our family of quadratic polynomials to {p: c* ➔ c* l p(z) = z 2 + c 

V C E C } . 

3. AN APPROACH TO JULIA SETS 

Iteration begins this app roach to Julia sets . The process is 

simple enough. Choose a complex value z 0 and a quadratic f u nction 

p ( z) = z 2 + c, for some particular complex number c. 

number - crunching 

p(p(p(zo)))' etc . 

computer 

For 

and calculate 

convenience, we write 

Find a 

p(p( . .. p(z) . .. )), where the iteration on the right is repeated n 

5 



times. Be careful not to confuse this notation with similar 

notation for products and derivatives: p 2 (z) i p(z)p(z) and 

p 2 ( Z) i p I I ( Z) ! 

In each of the definitions which follow, we will consider a 

point z0 E c* and a quadratic polynomial p: c* ➔ c* given by 

p ( z) = z 2 + C I for some c E C. 

Definition 3.1: The forward orbit of z 0 is defined to be the 

sequence of iterates o+(z 0 ) 

The inverse orbit of z 0 is defined to be the sequence of positive 

iterates of the inverse function p- 1 , 0- ( z 0 ) = ( z 0 , p -1 ( z 0 ) , 

-1 -1 -n p (p (Z o)), ••• ,p (z o), ••• ). 

Note that p -n repres e nts the n-th1 iteration of the invers e 

fu nction and that in constr ucting the inverse orbit of a point, we 

take the inve rse f unction as the posit i ve square root: 

+ J (z-c). 

After writing out a few ite rates of a point, one wonders where 

the sequence is headed. Will the sequence tend to a fixed number, 

will it tend toward infin i ty, will it tend toward a fixed cycle of 

numbers, or will it simply wander aimlessly? 

In anticipation of the a nswers to these questions we pres ent 

the following definit i ons . 

Definition 3.2: If pn(z 0 ) = z 0 for some natural number n and 

some z 0 EC, then z 0 is called a periodic point . If n = 

inf { i E N p i (z 0 ) = z 0 } , then n is called the period of O+(z 0 ). If 

n = 1 then z 0 is called a fixed point. Further, O+(z 0 ) is said to 

be eventually periodic if pn(z 0 ) is a periodic point for some n. 
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Periodic points can be classified according to their 

eigenvalues. 

Definition 3.3: The eigenvalue L(z 0 ) of a periodic point 

z 0 E C with period n is the derivative of then-th iterate of p, 

The orbit of z 0 is then said to be 

1) attracting if 0 ~ 'L' I I < 1, 

2) repelling if 'L' I I > 1, or 

3) neutral if 'L' = 1. I I 

These terms describe how other points react to the orbit of 

a periodic point, whether the periodic orbit attracts, repels , or 

remains indifferent to other points. Neutral points are so 

difficult as to merit being ignored in 1this paper. 

To illustrate some of these definitions, consider the simplest 

polynomial in the family, namely p(z) = zz. We can find an 

abundance of nonperiodic orbits; for example, 

0+(2) = (2,4,16,256, ... ) , 

O+(l/ 2) = (1/2,1/4,1/16, ... ), and 

O+(l + i) = (1 + i,2i,-4,16, .. . ) . 

Of periodic points, p has three fixed; O, 1, and co. In order to 

find points of period two or higher, recall from the depths of 

complex analysis then n-th roots of unity: the solutions to the 

equation wn = 1, are 1, n-1 ... , wn , where 

wn = cos(2rr/n) + isin(2rr/n). 

For example, the three cube roots of unity are 1, 

w3 = (- 1 + i )J )/2, and w/ (- 1 - iJJ)/2. Thus, an example of a 
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orbit of the first fifth root of unity demonstrates a per i od of 

Knowing which points are per i odic, we can calculate their 

eigenvalues: 

L(0) = p' (0) = 0, 

L(l) = p' (1) = 2, 

L(w3 ) = (p2 ) '(w3 ) = 4, and 

L(w5 ) = (p 4 ) '(w5 ) = 16. 

Thus, O is an attracting point, and 1, w3 , and w5 are repelling 

points. We also say that oo acts as an attracting point. 

In order to define the Julia set of a polynomial, we need to 

review t he defin ition of c losure . For completeness, we define some 
I 

closely related t erms as well. 

Definition 3.4: The closur e of a set A is the set of all 

points a such that A contains points arbitrarily near to a. A set 

is closed if it is identical with its closure. A set is open if 

its complement is closed. The exterior of a set is the complement 

of its closure. The interior of a set is the exterior of its 

complement. The boundary of a set is the int ersection of its 

closure with the closure of its complement. 

We finally give a definition of Julia set. 

Definition 3.5: The Julia set of p, denoted J(p), is the 

closure of the set of repelling per iodic points of p. The stable 

set of p , denoted S (p) , is the compl e ment of the Julia set, i.e., 

S(p) c* - J(p). 

In our e xampl e us ing p(z) = z 2 , the Julia set i ncludes 1 a nd 
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the various roots of unity. 

is exactly the unit circle. 

As we will see later, the Julia set 

Consequently, the entire Riemann 

sphere, except the unit circle, constitutes the stable set. 

The stable set gets its name from the fact that it contains 

all of the attracting points, which may be fixed or periodic 

points, and that every point in the stable set tends toward one of 

these attracting points or orbits. We conveniently group points 

in the stable set which have the same attractor. 

Definition 3.6: If z 0 is an attractive, fixed point, then 

its basin of attraction is defined to be the set A(z 0 ) = , 

{ z E c* i pk ( z) .... z 0 as k .... oo} . If Pis an attractive orbit of 

period n, say P = ( z 0 , z 1 , ••• , zn-i , z 0 , ••• ) , then each periodic point 
I 

z i , i = 0,1, ... ,n - 1, has a basin of attraction, and the basin of 

attraction of the orbit is the union of the bas i ns of attrac ti on 

of each point, i.e., A(P) = A(z 0 ) U A(z 1 ) U · · · U A( zn_ 1 ). 

Returning to our example, all of the points inside the unit 

circle lie in the basin of attraction of O while all points outside 

the unit circle lie in the basin of attraction of oo. The Julia 

set, which is the unit circle, marks the boundary between these two 

basins of attraction. 
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4. ANOTHER APPROACH TO JULIA SETS 

This alternate approach to Julia sets is actually the approach 

taken by Julia and Fatou. Complex analysts take great delight in 

the definitions and theorems which are presented here, and indeed 

they sho~ld, for such definitions allow us to prove many of the 

theorems which characteriz e Julia sets and stable sets. As usual, 

we begin with a review of some definitions. 

Definition 4.1: Consider a family of rational functions 

i E I } , for some index set I. The sequence of 

values {Rn(z)} is said to converge uniformly to R(z) if v E > o 

there exists an integer N such that when n > N, lR( z) - Rn(z) l < E 

* V Z E C . I 

For those readers less famil iar with this concept, note tha t 

the definition of uniform convergence closely resemb les the 

definition of convergence. The only difference is that the Nin 

the definition of uniform convergence exists independently of th e 

value of z, whereas the Nin the definition of convergence depends 

upon the value of z . Note that every sequence which converges 

uniformly also converges, although the converse is not true. Thus, 

uniform convergence speciali zes the concept of convergence. 

Without defining compactness, recall that a set is compact if 

and only if it is c l osed and bounded. 

We now introduce a definition which characterizes a family of 

functions in a way unfamiliar to most of us. 

Definition 4.2: Let G be an open subset of c*. The family 

{Ri : G ➔ c* l i EI} is said to be a normal family if every sequence 
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{Ry,} contains a subsequence {Ry,k} which converges uniformly on 

compact subsets of G. 

Before using this new term to define the stable set and the 

Julia set, let us try to relate this characteristic of a family of 

functions to another characteristic which is more familiar. 

Definition 4. 3: The family of rational functions { Ri : c* ➔ c* 

i E I} is an equicontinuous family if g iven E > o, there exists 

i E I. 

Note that each, function in an equicontinuous family is itself 

continuous, which is a more familiar property than normality. The 

following theorem allows us to equate normal families with 
I 

equicontinous families. 

Arzela•s Theorem 4.4: * Let G be an open subset of C . The 

family {Ri : G ➔ c* I i E I} is a normal family if and only if it is 

an equicontinuous family on every compact subset of G. 

We now present an alternate definition of the Julia set. 

Definition 4.5: Given a polynomial p: c* ➔ c* such that 

p ( z) = z 2 + c for some c E c, a point z E c* is said to be an 

element of the stable set S(p) if there exists a neighborhood G of 

z such that the family of iterates {Pn iG} , restricted to G, is a 

normal family. The Julia set J(p) is the compl ement of the stable 

set. Points in the Julia set, then, have no neighborhood in which 

{Pn iG} is a normal family. 

For the example p ( z) z2 
' 

we can show that points lying 

outside the unit circle lie within S(p). 
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Theorem 4.6: { z E c* i i z l > 1} c s (p) , where p ( z) = z 2. 

Proof: Let z be any point inc* such that izi > 1 and let Uz 

be a small, open disk of radius 6 > O about z. Consider the family 

We wish to show that the sequence 

{pn(z)} = {z2n} converges uniformly to f(z) = oo on compact subsets 

Let e > O be given, let K be any compact subset of U2 , and let 

z 0 be the point in K farthest from z = oo and, hence, closest to 

z = 0. Thus, for every z in K, I I ~ I I Since I z I > 1 V z E K, I Z o I I z I • I I 

n n z I 2n 2n I z I 2 ~ that I 22 00 I ~ I Now for large, so - Z o - 00 I • n I O I I I I 

n 
I z 2 
I 0 

n 
- oo I < e so that I z 2 - 00 I < e V z E K. Q.E.D. I I I 

Furthermore, we can show that the Julia set of p(z) 
I 

exactly the unit circle. 

z 2 is 

Theorem 4.7: {z E c* i i zi = l} = J(p), where p(z ) = z 2 • 

Proof: We need to show that the family of iterates {p n} is 

not equicontinous on any open set which intersects t he circle . 

Th a t is, given 6 > 0 we need to show that, V e > 0 and any t wo 

points z 11 z 2 E J (p), I z 1 - z 2 I < 6 implies that 

> e for some n. Let 6 > 0 be given and let 

z 1 = ei9 1 and z 2 = e i92, where 8 1 and 8 2 are angles in radians. Not e 

that the angle between 8 1 and 8 2 is approximately equal in si ze to 

6 . Now apply ing the function p to z 1 and z 2 simply doubles the size 

of the angles 8 1 and 8 2: Hence, 

the angular difference between the two points also doubles so that 

Q.E.D. 
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5. PROPERTIES OF JULIA SETS 

For the remainder of this paper, we adopt the first definition 

of the Julia set. The primary reason for introducing the second 

definition is that this approach, used by Julia and Fatou, is used 

more frequently in pro_9fs of the theorems which describe the 

properties of the Julia set and the stable set. As we will see, 

however, the two definitions are equivalent . But whether we 

consider the Julia set as the closure of the set of repelling 

periodic points or as the set of points on which the family of 

i terates {pn} is not normal , the properties o f the Julia set are 

the same. These properties have become the principal interest for 

those who study Julia sets and stable ets. 

Perhaps the most important p ropert y of any set is whether or 

not it contains anything. 

Theorem 5.1: J(p) is nonempty. 

Proof: Suppose J(p) = 0 - Then S(p) = c*, and therefore , the 

family {pn} is normal inc*. Hence, there exists a subsequence 

{pnk} which converges uniformly to a limit function P. Now, Pis 

a continuous function on the Riemann sphere so that deg ( P) is 

finite. But, deg(pnk )--+ oo as nk --+ oo and deg (pnk )--+ d eg(P) as 

nk --+ oo, a contradiction. Q.E.D. 

As promised, we present a theorem which shows tha t the two 

definitions of Julia set are equivalent. Here, the Julia set is 

defined as the closure of the set of repelling periodic points. 

Theorem 5.2: J(p) = {z I {pn} is not normal at z}. 

The rather involved proof of this theorem is found in Robert 
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Devaney's An Introduction to Chaotic Dynamical Systems. The proof 

provides us with two additional properties of the Julia set. 

Corollary 5.3: J(p) is a perfect set; i.e., every point in 

J(p) is a limit point of other points in J(p). 

Corollary 5.4: J(p) is completely invariant; i.e . , if 

z E J ( p) , then p ( z) , p- 1 ( z) E J ( p) . 

As Devaney remarks, a modification of the proof of the above 

theorem leads to another, useful theorem and its corollary. 

Theorem 5. 5: Let z 0 E J (p). Then J (p) = closure (u;= □P-k ( z 0 ) ) • 

Corollary 5.6~ J(p) has empty interior. 

This theorem provides us with an algorithm for computing Julia 

sets graphically. Suppose we want toge erate a graph of the Julia 

set of the polynomia l p ( z) = z 2 + c, where c is some complex 

number. First, we find a point z 0 in the Jul ia set using the 

definitions of periodic and repelling, and plot this point. Next, 

using the definition of the square root of a complex number, we 

calculate the inverse image of z 0 , which gives us t wo points: 

p- 1 (z 0 ) = ±J (z 0 - c). Plot these two points. Repeat the procedure 

for each new pair of points. 

In actually programming a computer to run this algorithm, one 

confronts the problem of keeping track of all the new points 

generated. Wi th each step of the algorithm the number of i nverse 

images doubles so that the program would soon eat up gobs of 

memory . In order to solve this problem, we used a II random" 

function to select either the positive or the negative inverse 

image during each repetition of the algorithm. Consult Appendix 
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A for a Turbo Basic program, inspired by Michael Barnsley, which 

employs this random algorithm. 

Note that the instructions to the program listed in the 

appendix assert that the initial value need not be a point in the 

Julia set. We have found this assertion to be correct on many 

trials. The program generates the same graph regardless of whether 

the initial value is in the Julia set or the stable set, provided 

the first ten points are not plotted. We again encourage the 

reader to examine some of the graphs provided in Appendix B. These 

graphs were generated on an IBM pc using the program given i n 

Appendix A. 

The Julia set e xhibits the follow ng property as well. 

Theorem 5.7: J(p) is locally eventually onto; i. e ., if G is 

an open subset of c* such that G n J(p) f 0, then there ex i sts an 

N such that J(p) = pN( G n J(p)). 

This theorem states that if we select an arbitrarily small, 

open piece of a Julia set, then we can generate the entire Julia 

set simply by iterating the polynomial p enough times on the 

selected domain. Notice how this property resembles the phenomenon 

of cell division. A human being begins as one cell and after many 

repetitive divisions becomes a fetus. Granted, growth involves 

much more complicated actions , such as specialization of cells, but 

it is interesting to note the similarities between mathematics and 

biology. 

The final property we present to 

pursue the study of chaotic dynamics, 
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popular in modern mathematical and scientific research. 

Theorem 5.8: pis chaotic on J(p); i.e., p has the following 

properties: 

1) sensitive dependence on initial conditions, 

2) topological transitivity, and 

3) dense periodic points. 

We comment on the first and third properties of chaos. That 

p depends sensitively on initial conditions means qualitatively 

that if we choose two points in J(p) which are close together, then 

the orbits of these two points will tend to spread arbitrarily far 

apart. That p has dense periodic points means that between any t wo 

points in J(p) lies a third point int e set. 

Notice how the property of sensitive dependence on initial 

conditions might affect the prediction ability of scientif ic 

models . Suppose a meteorologist develops a chaotic dynamical model 

for the weather consisting of a number of differential equations. 

Suppose further that he observes some initial conditions, say 

temperature and pressure, using instruments which inherently have 

a small degree of error in them. If the meteorologist attempts to 

predict future weather by iterating the equa tions using these 

measured values for the initial conditions, t hen the further into 

the future he trys to predict, the more inaccurate his predictions 

will be. This phenomenon is re ferred to as the "butterfly effect" 

because, presumably, the flapping of a butterfly's wings, 

representing the error in init ial conditions, could lead to an 

unpredicted hurricane next month. If weather systems really behave 
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chaotically, as such a model predicts, then meteorologists will 

never have the ability to forecast weather far into the future 

because there will always be a small degree of error in measuring 

the initial conditions. 

6. CLASSIFICATIONS OF JULIA SETS 

Having described some of the properties common to the Julia 

sets of all polynomials in the family {p:c* ➔ c* i p(z) = z 2 + c, 

for some c E C}, we now present two means of categorizing these 

Julia sets. First, the structure of the stable set determines the 

type of Julia set. 

Theorem 6. 1: The stable set of consists of one, two, or 

infinitely many connected components. 

The graphs in Appendix B demonstrate each of these three 

possibilities. 

shows that the 

The "cauliflower" Julia set of p(z) = z 2 + 0.4 

stable set consists of one connected component 

engulfing the broken pieces of the Julia set. The Julia set of 

p( z) z 2 0.5 divides the stable set into t wo distinct 

components. The Julia set of p(z) = z 2 - 1.25 separates the stable 

set into infinitely many connected components. 

The second method of categorizing Julia sets comes about 

through an examination of the orbit of the critical point z 0 = 0 

as follows: 
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1) if O+(O) ➔ oo, then J(p) is a Cantor set, 

2) if o+(O) ➔ attracting fixed or period ic point, then 

J(p) is the closure of one, t wo, or infinitely many 

Jordan curves, and 

3) if O+(O) is eventually periodic, but not periodic, then 

J(p) is a dendrite. 

Of course, the categories remain meaningless until we define 

them . 

Definition 6.2: A Cantor set is any collection o f points in 

c• which is closed , ' totally disconnected, and perfect. 

A set is totally disconnected if each connected component 

consists of only one point, and as state previously, a perfect set 

contains all of its limit points. To construct the classic example 

of a Cantor set, begin with the closed interval [0,1] on the real 

line, remove the middle th ird of 

this interval so that the set 

[0 ,1/3] u [2/3,1] remains, 

remove the middle thirds of each 

of t hese intervals, and repeat 

this process ad infinitum. 

Consult Figure 3 . The resulting 

set, although not much to look 

at, does contain some points, 0 

and 1 for instance. 

Consider the polynomial 

0 

0 ' ~ 
3 -; 

' 2. I J. 1 -\ 0 ~ 'I 3 3 'I 
------

p ( z) = z 2 + 3. 
Figure 3: Producing the classic 

The forward orbit Cantor set 
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of the critical point is o +(O) = (0,3 , 12,147, ••• ). Since this 

orbit tends to increase without bound, J(p) must be a Cantor set. 

The graph of this Julia set, provided in the Appendix B, shows four 

clusters of points. Enlarging one of the clusters reveals a graph 

similar to the original picture and provided on the following page 

of the appendix . Theoretically, the Julia set has the same 

structure at all levels of magnification . All Julia sets share 

this quality, and the fact that J(p) is locally eventually onto 

affirms this observation: the structure of the entire Julia set 

derives from an arbitrarily small piece of the set. 

For the second class we provide the following definition. 

Definition 6.3: A curve is s a id o be a Jordan curve if it 

is closed and simple. 

Basically, a simple curv e 

itself. The Julia set of p(z) 

does not intersect or ov erlap 

= z 2 - o. 5, pointed out in a 

previous example, provides a good example of a Jordan curve. 

Now consider the polynomial p(z) = z 2 - 1. The orbit of the 

critical point is O+(O) = (0,-l,0,-1, •.• ), which has period two . 

Since L(O) = O, zero is an attracting point, and hence, J(p) is 

the closure of one, two, or infinitely many Jordan curves. The 

graph in Appendix B indicates that J(p) consists of infinitely many 

Jordan curves. Notice that each Jordan curve engulfs a component 

of the stable set. Interestingly , points in each component 

eventually map into the center component and approach the orbit of 

the critical point; i.e., points in S(p) which lie inside a Jordan 

c u rve are part of the basin of attraction of the critical point. 
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Finally, we define the third class of Julia sets. 

Definition 6.4: Any subset of C which is closed and connected 

and does not bound a reg i on in C is called a dendrite. 

Such sets are named for their resemblance to strips of 

minerals found in mines and to certain neural cells, which bear 

the same name. What dendrites are not named for are lightning 

bolts, which they also resemble. 

C 

Figure 4: Julia set of p ( z) 
= z 2 + i (from The Science 
of Fractal Images) 

7. THE MANDELBROT SET 

Consider the polynomial p(z) = 

z 2 + i. The forward orbit of the 

critical point is o+(O) = 

(O,i,-1 + i,-i,-1 + i,-i, ... ) . 

Since the orbit of the critical point 

is eventually periodic but not periodic, 

J (p) is a dendrite, as it appears in 

Fi gure 4. 

In considering the family of functions {p: c* ➔ c* : p ( z) = 

z 2 + c, c E C} , the p a r ameter c has thus far been a fixed point in 

the complex plane. Allowing c to vary provides us with another way 

to study this family of quadratic polynomials. Consider the set 

of all possible values for c, namely the complex plane, which is 

al so ref erred to as a parameter space. If we wish to study a 

certain property of Julia sets, say connectedness, we could plot 
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the point of each value of c for which t he given property holds for 

the Julia set of the corresponding quadratic polynomial. The 

resulting set of points, whose graph is provided in Appendix c, is 

easily defined as follows. 

Definition 7.1: 

functions { p: c• .... c• 

connected} . 

The Mandelbrot set for the family of 

p(z) = z 2 + c, c E C} is {c E - C : J(p) is 

Benoit Mandelbrot used computers to investigate the properties 

of this set while men such as Douady, Hubbard, and Sullivan proved 

theorems regarding · the Mandelbrot set, the stable set, and more. 

The more recent work of these men builds upon the older work of 

Julia and Fatou. One must make great strides in understanding 
I 

simply to keep up with the current work of such men . The field 

remained relatively quiet, however, during the years between the 

1910 1 s and the 1960's . The cause of the more recent interest in 

the subject arose with the advent of computers to speed up the 

repetitive iterations and to provide colorful graphs to inspire 

otherwise disinterested intellectuals . 

Returning to the subject at hand, we present a theorem proved 

by Douady and Hubbard concerning the Mandelbrot set itself. 

Theorem 7.2: The Mandelbrot set is connected. 

Thus, a certain similarity exists between the Mandelbrot set 

and the Julia sets whose parameters lie within the Mandelbrot set. 

Indeed as Michael Barnsley points out in Fractals Everywhere, Julia 

sets even seem to share a similar structure with the regions of the 

Mandelbrot set in which the i r corresponding parameters lie. 
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It is interesting to observe the changes in the various Julia 

sets as we vary the parameter c. For instance, consider the 

sequence of Julia sets from c = 3 to c = -3 along the real axis of 

the Mandelbrot set. The Julia sets begin as Cantor sets, develop 

into cauliflower shapes whose pieces become connected at c 0.25, 

round out to a circle, develop an infinite number of sharp edges 

which eventually join to divide the stable set into an infinite 

number of components, flatten to form the closed interval [-2,2] 

at c = -2, and finally break apart again into Cantor sets. 

Julia sets whose parameters lie off the real line are equally 

interesting. Note the examples provided in the Appendix B. As can 

be seen, the Julia sets from above the eal line are simple mirror 

i mages of thos e below the real line . Also, observe that the Julia 

s e t s far away from the Mandelbrot set tend to look more like sets 

of t wo or f our points, although clos er obs erva tion revea ls tha t 

these are Cantor sets. 

Note that the main body of the Mandelbrot set has the shape 

of a heart, or a cardioid, and that the main piece just to the left 

of this cardioid is circular. The following theorems provide the 

equations for these two structures within the Mandelbrot set. 

Theorem 7.3: {c : p has an attracting fixed point} is bound ed 

b y a cardioid of the form 

x = cos8[1/2 - (1/2)cos8] + 1/4 

y = sin8[1/2 - (1/2)cos8]. 
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Proof: Let c EC be an arbitrary point such that p(z) = 

z 2 + c has an attracting fixed point z 0 • Since z 0 is a fixed point, 

so that 2 
C = Z o - Z o • Since z 0 is attracting, 

0 ~ iL(z 0 ) I < 1 so that O ~ i zai < 1/2 . 

In polar form, 

in radians. Thus, 

z 0 = r(co~e + isine), where r = I z I 
I O I and e is 

C = Z o - Z o2 

r(cose + isine) - [r(cose + isine) ] 2 

= cosG(r - 2r2cosG) + r 2 + isine(r - 2r2cosG). 

Rewritten in parametric form, c = x + iy, where 

x = cosG(r - 2r2cos8) + r 2 and 

y = sinG(r - 2r2 osG). 

The graph thus described is a translation by r 2 along the x-axis 

of the graph given by 

x = case (r - 2r2cosG) , 

y sine (r - 2r2cosG). 

The equation for this graph in polar form (see Anton, p. 722) is 

r = r - 2r2cos8, which is the general form of lima9ons and 

cardioids. Now the ratio 1/2r determines the shape. Recall that 

O ~ r < 1/2. If r = o, then the graph is simply a point. If 

O < r < 1/ 2, then 1/2r > 1. Henc e, if 1/ 2r ~ 2 , then the graph is 

a convex lima9on. If 1 < l / 2r < 2, then it is a dimpled lima9on. 

As l/2r ➔ 1, the graph approaches the shape of a cardioid. 

Therefore, as r ➔ 1/2, the graph of (c I p has an attracting fixed 

point} approaches the shape of a cardioid. That is, since 

O ~ r < 1/2, {c I p has an attracting fixed point} is bounded by 
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a cardioid given by 

x = cos9[1/2 - (1/2)cos8] + 1/4, 

y = sin8[1/2 - (l/2)cos8]. Q.E.D. 

Theorem 7 • 4 : {c p has an attracting periodic point of 

period two, but not period one} is bounded by a ci r cle given by 

: C - ( -1) : = 1/ 4. 

Proof: Let c E C be an arbitrary point such that p(z) = 

z 2 + c has an attracting periodic point z 0 of period two. Since z 0 

is periodic, p 2 (z 0 ) = z 0 so that c = -z / + z 0 or c = -z / - z 0 - 1 . 
, 

Since z 0 is an attracting point, 0 ~ :L (z 0 ) i < 1 so that 

If c = -2 02 + z 
0 ' 

then the inequa ity O < < 1/4 

implies that O ~ iz o: < 1/2 . Thus, c is an element of the set 

{ c p has an attracting fixed point} and is bounded by the 

cardioid given in the previous theorem. If c 2 -z 0 -z 0 - 1, then 

0 ~ I 3 I 
I Z o + Z aC I < 1/4 implies that O ~ : -z / - 2 0 : < 1/4. Since 

-z 02 - z 0 = c + 1, the inequality is equivalent to 

0 ~ l e 
I ( -1) : < 1 / 4. That is, c is any point inside a circle 

centered at -1 with a radius between O and 1/4. Therefore, 

{ c q has an attracting periodic point of period two, but not 

period one} is bounded by a circle given by :c - (-1): = 1/ 4 . 

Q.E.D. 

The graphs of these boundary sets, presented in the Appendi x 

C, mark the beginning of the Mandelbrot set. 
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8. FRACTAL DIMENSION 

In addition to working in the parameter space of the family 

of functions {p: c* ➔ c* p(z) = z 2 + c for some c E C}, Benoit 

Mandelbrot also s tudied sets with fractional dimension, D. The 

dimensions of a point (D = 0), a line (D = 1), and a plane (D = 2) 

are familiar to us. Mandelbrot observed sets which appeared to 

have dimensions greater than a point, but less than a l i ne, or 

greater than a line, but less than a plane . He named these sets 

fractals because of their broken appearances. As the reader can 

attest from his observat ions of the graphs, most Julia sets are 

fractals. 

Consider a coastline, Mandelbrot SJO.ggests. At the beach with 

a cool drink in h and, we grow restless and decide to measure a 

strip of the coast. Beginning with a city block as a measuring 

stick, we measure t he strip along the water line, accounting for 

as many bends as possible, and jot down the value . After another 

drink, we grab a smaller measuring st ick, say a meter stick, and 

repeat the experiment. We find that the measurement is greater 

because we have accounted for more of the bends and rocks and so 

forth. Continuing to drink and measure the strip of coastline with 

progressively smaller measuring sticks, we find, rather Mandelbrot 

found, that the length of the coastline continually increases and 

shows no signs of settling down to some "true" length even though 

we show signs of settling down to sleep off a mysterious headache. 

Mandelbrot claims that for structures such as coastlines, the 

concept of length is inappropriate because it varies with the 
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measuring device. He suggests that dimension provides an absolute 

measure of a coastline, i.e. a measure, not of the distance along 

a coastline, but of the jaggedness of the coast. In fact, 

Mandelbrot cla ims to have developed a new geometry which considers 

natural images, such as clouds and trees, in terms of fractional 

dimension . The reader may acquaint himself with some fractal 

images, namely a broccoli tree, a fern, and a Sierpinski triangle, 

found in Appendix D. The Turbo Basic code used to generate these 

images is provided in Appendix A. 

Although mathematicians have developed many different 

definitions for "dimension," Mandelbrot selected a definition which 

al lows us to compute dimensions exr:i rimentally. Rather t han 

present Mandelbrot's definition, we present a theorem due to 

Barnsley which demonstrates, in the spirit of Mandelbrot yet more 

simply, how to compute the fractal dimension of any fractal. We 

conspicuously avoid defining fractals and abandon the reader to 

his intuition. Barnsley, however , investigates the subject more 

thoroughly. We assume that the fractal is situated in the complex 

plane, although the theorem holds for any finite -dimensional 

Euclidean space. 

The Box counting Theorem 8.1: Let F be a fractal lying in 

the complex plane. Cover C by closed, just-touching square boxes 

of side length rn, where O < r < 1, r E R and n E N. Let Nn(F) 

denote the number of boxes of side length rn which intersect F. If 

D = li~➔"' [ln(Nn (F) )/ln(l/rn)] 

exists, then F has fractal dimension D. 
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To demonstrate how this theorem works, consider the class i cal 

Cantor set, which we denote C. Using boxes of side length 1/3n and 

counting the number of boxes needed to cove r C, we find 

N1 (C) = 2 = 2 1 

N2 ( C) = 4 = 2 2 

8 

Nn ( C) = 2n 

Thus, D = li~➔"' [ln(2 n )/ln(3 n ) J = ln(2)/ln(3). So the fractal 

dime nsion of the classical Ca ntor set is about 0.631. 

As another example, consider the Sierpinski tr iangle s, 

constructed as follows. Draw a filled ight triangle with arms of 

length one. Remove an inverted triangle of arms length 1/ 2 from 

the center of the filled triangle. Remove an inverted triangle of 

arms length 1/ 4 from each of the three remaining triangles. 

Continue this process ad infinitum . A representation of the 

resulting fractal is provided in Appendix D. 

Now let us compute the fractal dimension of this Sierpinski 

triangle. Use boxes of side length l/2n. Then the number of boxes 

needed to cover Sare 

N1 (S) = 3 = 3 1 

N2 (S) = 9 3 2 
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Therefore, the 

Sierpinski triangle has fractal dimension of about 1.585. 

Julia sets also have fractal dimensions. From the graphs in 

Appendix B these dimensions seem to range from about zero to one, 

where the finer Cantor sets have dimensions closer to zero and the 

circle has dimension one. To know whether or not any of these or 

other Julia sets have dimension greater than one requires more 

extensive research on fractal dimension. A preliminary answer 

might be obta ined from Barnsley, who devotes a section of his text 

' to a method of experimentally estimating the fractal dimension of 

sets such Julia sets. 

I 

9. UNFINISHED BUSINESS 

This paper has barely t ouched on t h e abund ance of information 

a v ailable on the topic of Julia sets. Hopefull y , we have whetted 

the reader's appetite for the subject so that he will investigate 

some of the sources listed among the references. Even the reader 

who is dismayed with Julia sets may find a source, perhaps on an 

attempted application of chaotic dynamics in science, which better 

suits his interests . If all else fails, the reader can flip 

through a copy of Peitgen and Richter's The Be auty of Fractals to 

view their wonderful art, which humiliates the meager graphs 

presented in this paper. 

Finally, we point out that during our first attempts to 

generate Julia sets using the algorithm outlined in the text, we 

plotted the flowering graph provided in Appendix E. We had 
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anticipated generating the Julia set of p(z) = z 2 , which is simply 

the unit circle. The program was clearly wrong. The correct 

algorithm, which calculates and plots successive preimages of an 

initial complex value X o + employs the following 

iterations: 

Xn+ l = ) [ (Xn + ) (Xn2 + y/ ) )/2) and 

Yn+ l = (sgn Yn) i J [ (- Xn + J (x/ + y/ ) )/2). 

The mauled version of the algorithm employed the following 

iterations instead: 

x:+i J [ ( xn + J ( x/ + y / ) ) / 2) and 

Y n+l = ( sgn Y n) i J [ ( - Xn+l + J ( Xn+/ + Y / ) ) / 2) . 

The difference is subtle, but the con~equences, as shown in the 

graphs, are remarkable. The lesson which this error teaches is 

that the study of Julia sets depends upon one kind of iteration, 

bu t other kinds of iteration ma y lead to interesting results as 

well. Furthermore, we have not read any works which investigate 

sets generated via an alternate method of iteration. We leave the 

reader with an open question: Is the graph in Appendix E fractal? 
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APPENDIX A: TURBO BASIC PROGRAMS 

The follow i ng programs were written and tested in Turbo Basic 
on an IBM pc with graphics capability. / The algorithms and much of 
the code for these programs were found in Michael Barnsley's 
Fracta ls Everywhere . The first page shows a sample output, not 
including the graph , from the first program. The first program 
generates Julia sets for the family of quadratic polynomials {p: 
c* ---+ c* I p ( z) = z 2 + c, for some c E C } . Many examples of the 
output from this program are provided in Appendix B. The last 
three programs generate the fractal images of a Sierpinski 
triangle, a fern, and a tree, respectively. These three fractals 
are provided in Appendix C. 
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'Julia Set Generator 

'John W. Deighan Washington and Lee University 3/15/89 

This program generates Julia sets for quadratic functions 
'of the form f(z) = zA2 + c, where z is a complex variable and c 
'is a complex parameter which is fixed for each set . The program 
'employs a random selection process in the main loop. 

"Julia Set Generator" 

"Would you like to read the instructions (y/n)? 
= "y" then gosub instructions 

II i$ 

els 
print 
print 
input 
if i$ 
print 
input 
input 
input 
input 

"Enter 
"Enter 
"Enter 
"Enter 

a value for the parameter c =a+ bi: 
an initial value z = x + yi: ", x!, y! 
the number of points to compute: ", n% 

II a!, b ! 

the plotting window v = d + ei, u = f + gi: 
e!, f!, g! 

print 
print "When graph is complete, press esc to return to 
TurboBasic. 11 / 

print "Press any key to begin plotting." 
while not instat 
wend 
screen 2 
els 
window (d! ,e!) - (f! ,g!) 
for i % = 1 to (n % + 10) 

newx! = sqr((sqr((x!-a!)*(x!-a!) + (y!-b!)*(y!-b!)) + 
x! - a! )/2) 

if sgn(y!) = -1 then 
sign%= -1 

else 
sign% +l 

end if 

II d!' 

newy! (sign%)*sqr((sqr((x!-a!)*(x!-a!) + (y! -b !)*(y!-b!)) 
- x! + a!)/2) 

next 
end 

r! = rnd 
i f (0 <= 

x! 
y! 

else 
x! 
y! 

end if 
if i % > 

'continu ed 

r!) and (r! < 0.5) then 
-newx! 
-newy! 

newx! 
= newy! 

10 then pset ((0. 75*x!),y!) 



instructions: 
print 
print" This program generates a Julia set for a" 
print "quadratic function of the form f(z) = z"2 + c, where" 
print "z = x + yi is a complex variable and c =a+ bi is a" 
print "compl ex constant. When inputting complex values" 
print "such as z = x + yi, enter the real parts, x and y," 
print "on the same line separated by a space. The initial" 
print "value of z may be any point in the complex plane, 

print "but it helps if the initial value is a point in the" 
print "Julia set. The plotting window is the portion of" 
"the complex plane which you wish to examine. The" 
"window is determined by its lower left- and upper" 

print "right-hand points." 
return 

I 

print 
print 



rem Example of Chaos Algorithm 
rem Michael Barnsley, Fractals Everywhere, p. 91 
rem This program generates a Sierpinski triangle. 

a[l] = 0.5 b [ 1 J = 0 c[l] = 0 
d[l] = 0.5 e [ l] = 1 f[l ] = 1 
a [2] = 0.5 b [ 2] = 0 c[2] = 0 
d[2] = 0.5 e [ 2] = 50 f[2] = 1 
a[3] = 0.5 b [ 3] = 0 c[3] = 0 
d[3] = 0.5 e[3] = 50 f[3] = 50 
screen 2 : els 'initialize computer graphics 
window (0,0)-(100,100) 'set plotting window to 

'O < X < 1, 0 < y < 1 
X = 0 : y = 0 : numits = 20000 'initialize (x,y) and define 

'the number of iterations, 
'numits 

for n = 1 to numits 'Random Iteration begins! 
k = i nt( 3*rnd-o.00901) + 1 'choose one the number 1, 2 ' 

'or 3 with equal probability 

rem apply affine transformation number k to (x,y) 

newx = a[k]*x + b[k]*Y + e [k] 
newy = c[k]*x + d [k] *Y + f[k] 
x = newx: y = newy 

if n > 10 then pset(x,y) 

next end 

I 

'set (x,y) to the point thus 
'obtained 
'plot (x,y) after t he first 1 0 
'iterations 



rem Example of Chaos Algorithm 
rem Michael Barnsley, Fractals Everywhere, p. 91 
rem This program generates a fern. 

a[l] = 0 b [ 1] = 
d[l] = 0.16 e[l] = 
a[2] = 0.85 b[2] = 
d[2] = 0.85 e[2] = 
a[3] = 0.2 b [ 3] = 
d[3] = 0.22 e[3] = 
a[4] = -0.15 b[4] = 
d[4] = 0.24 e[4] = 
screen 2 : els 
window (-5,0)-(5,10) 
X = 0 : y = 0 : numits 

for n = 1 to numit~ 
r! = rnd 

0 
0 
0.04 
0 

-0.26 
0 
0.28 
0 

= 50000 

c[l] = 0 
f[l] = 0 
c[2] = -0.04 
f[2] = 1.6 
c[3] = 0.23 
f[3] = 1.6 
c[4 ] = 0.26 
f[4] = 0.44 

'initialize computer graphics 
'set plotting window 
'initialize (x,y) and define 
'the number of iterations, 

'numits 
'Random Iteration begins! 

if (0 < r!) and (r! <= 
if (0.01 < r!) and (r! 
if (0.86 < r!) and (r ! 
if (0 . 93 < r!) and (r! 

0.01) then k = 1 
<= 0.86) then k = 2 
<= 0.93) then k = 3 
< 1) then k = 4 / 

rem apply affine transformation number k to (x,y) 

newx = a[k]*x + b[k)*Y + e[k] 
newy = c[k]*x + d[k]*Y + f[k] 
x = newx : y = newy 

if n > 10 then pset(x,y) 

next end 

'set (x, y) to the point thus 
'obtained 
'plot (x,y) after the first 10 
'iterations 



rem Example of Chaos Algorithm 
rem Michael Barnsley, Fractals Everywhere, p. 91 
rem This program generates a fractal tree. 

a[l] = 0 b[l] = 0 c[l] = 0 
d[l] = 0.5 e[l] = 0 f[l] = 0 
a[2] = 0.42 b [2] = -0.42 c [ 2 ] = 0.42 
d[2] = 0.42 e [2] = 0 f[2] = 0.2 
a[3] = 0.42 b [3] = 0.42 c[3] = -0.42 
d [3] = 0.42 e [3] = 0 f [3] = 0.2 
a[ 4] = 0.1 b[4] = 0 c[4] = 0 
d[4] = 0.1 e[4] = 0 f[4] = 0.2 
screen 2 : e l s 'initialize computer graphics 
window (-0 .25 ,-0.05)-( 0.25,0.45) ' set plotting window 
X = 0 : y = 0 : numits = 30000 'initialize (x' y) and define 

' the number of iterations , 
'numits 

fo r n = 1 to numits 'Random Itera t ion begins! 
r! = rnd 
if (0 < r!) and (r! <= 0 . 05) then k = 1 
if (0.05 < r!) and (r! <= 0 . 45) then k = 2 
if (0.45 < r!) and (r ! <= 0 . 85) then k = 3 
if (0.85 < r!) and (r! < 1) then k = 4 / 

rem apply affine transformation number k to (x, y) 

newx = a[k]*x + b[k]*Y + e [k] 
newy = c[k]*x + d[k] *Y + f[k] 
x = newx : y = newy 

if n > 10 then pset( x ,y) 

ne xt end 

'set (x,y) to the p oint thus 
'obtained 

'plot (x,y) after the first 1 0 
'iterations 



APPENDIX B: IMAGES OF JULIA SETS 

The following graphs were produced using the program provided 
in Appendix A. The quadratic polynomial associated wi t h each Julia 
set is ind i cated. With the exception; of the second graph, ea c h 
graph shows the portion of the complex plane form - 2 - 2i to 
+2 + 2i with zero at the center of each set. The second graph, 
which is an enlargement of the first, has a window from 0.25 + l.5i 
to 0.5 + 2i. Each Julia set is classified as outlined in Section 
6 , and special features of some sets are indicated. 



' .. 

➔(2):; ·i2 1 3 
( - 2; 2) - ( 2, 2) 

n 

:: Y1 C IC, ~~ ':'] \ C, (1 .'.) Q_ '('" Cc, 

f>°-< -\- o; -) ht "'S C _a..n -\ c. r 

'.::>~ +. lhe, bo i~cl po iD"t S 

C\. Y'° ~ «l.°'-;j '1 ; ~i ~ d C, 0 -the, 
-ro I low i nJ p<>-:-5 ~~ 

- -- - - •_ .. ____ -·----- ... --·---- ..,---------~--- -'--------



~ -, -
( l , .. • I 

" 1, •, , ___ ,,/ 
~ 

, 

( 0 .2.S , ,.SJ - ( o · 5 .. 2.) 

M '\:J", \ , u,-\ , o ,-, cS b"' '<e J ''JI c, , ·, .,J 
Cu. ,--A c r -:, c -\- e> n f' ~ \! ; c:, '--\... ~ f'><:.\J ~;:'. · i\ c.~ ~ 
4\1.~ S\\"°);\o..r; i-y 0 \ s"tn,A. ~~1..1-.r~ . 



... 'j 
,I ', J .... _ _.. 

I . 









3(0 \'5 a.. ~o,clo.'1 cux'-l~ . 

""'i"h~ 3, c,._ph co,,-si' s+.s cY, \y ~~ ~JJ~~ 
J\~) \"5 'n ~\N\.1:_,~ J :\:·\trer. ~ 10:.. b\f' 

-- -·- -----·••'- ... - . ·-· · · ·- ·--



Aff"'""t\y , :}(.\) ls a.. ::I,, <lo.n ~~, % 

Nc-\-e -\hoJ· .\,\,e, po.ncrne·h c \Iles \,e. -\,- ~~ n 

+\,<e- vna..; n e,n,cd i o I J ~ ~ d c:_ in:\ e ·, n ,\-\," 

I"" o.n~E. \ \J n:, t ·~~A-. .. 

-:,r :;:• - · ~ 





It 
' <JI 

~( \) ~0.Cfc, u.\-1d:; 

C:c., \'V\ f C' n ~: 0 i '.) C· ~ 
j -r ~c A 1c, ·<h.J...\'Y'I \)Lr 

'n 0.. \j ~ p \C d \.A. C ~ d 

1 n ~ ·, n 1 \ 'c \, 1...1. ¥Y 1 ~ .) v_ c 

'S (_ \'.) . i'\-: ·\e. + 'nQ-\­ C\. 

~ \ \ ~ ( a. 1 i C 0 j 'w C v... \ cl 
S~o..'I pt'-' 1 1 '01C-...5 I? . 



,-.. 

C:c cv-,p c· n en-t :S 

ho, i "le:o-\-a. \ 

a_ \J. i ~ 0. V"\ cl 

i"1\'. , ,'); \~\ y 

S(fo). ~c"1 ~ 
~ C\_ -Y"\ •y 

-\\ ~I o.__ -t 
),~ s c'rl ~h~ 

Y'lc 4-'h i c: k \') e 3 ~ . 



1h~ ,ek\ , n \1::JYa. \ L-2,..2j 
f\ c \- '"' -~ 'rro.:t -\\,, ck n e :.; :s c- -~- \, 1"112_. c~ v-, J 
';)YY\(~ \I '' "'1c..1 <.s' ' 0..1 1:::. c-L.1...~ -h_., p •~-2 \ 
s i t_ C;:, o .. Y'I d C.::.c. ,·v. p 1..L -t oJ · i c n l"l \ e 1' c.-, } 

I ES f>lc'.C..~-, \/ l:,. I y . 



·- .... --

\'r, I~ CL'..V°" ~ ( 1\ t) C -t i ; ~- s 

C'.> ,l ·-th~ r"'·c-. \ 1 , V'\ {:, ., c1.ppa.ren~\ y 

bc- -..1.\'\Jed by a... be ,___,·-\- ·- J.5 \..::i \::.. \ o v-v 



. r. i • . , 
\ 
\ 

,,---..J. 
~.,...,......,.. 

\ 
\ 

\ 

? a..l"C\. VV1e.-\er 1,~:s v,J,-\,~in 

SC \\,o..--r TC~) S ~O\.L \d 

\v\a.D <le\ b ra-\- 'S\::. --\ 

~ tc:. C. c:, V'\ \") ~ + e. J . 

-----_________ ....,_ ____ ,.. _____ ·- ----



I 

,i 

. 
,,,- ,' 

•••• 1* 1• 



I'\ I I \ \ \ I \ 
· \/ c , <c:.. -r n c.\. ·, ., n ~ :s ~ 
(1...,,-~ C.:. \\ ec.'t ,c.,,, ::, c.,+ ,,,,,,-· ' // +c,-,o.\\Y J ;".:,'-cr,,-1~('..--\ cl 
fC.•; nt _:s _ 

C. ,n:. \e...d pc.,,·, ·h, o..r-12. ,· n 3 0,. \ 1 o.. s~ -t . 
\''L-ndow: (-1 000,-1o c-. c,.) Ta ( \c, c, c:,, \C:-. C,C.0 

C..o.n'to, :iQ...i 





APPEND'X C: IMAGES OF THE MANDELBROT SET 

The following sketch marks the beginning of the Mandelbrot 
set, based on the analysis in Section 7. Points lying in the 
interior of the cardioid and the circle mark parameter values c 
for which the Julia set of p ( z) = 'll' + c is connected. The 
equation of the cardioid is 

x = cos8[1/2 - (l/2 )cos0] + 1/4 
y = sin8 [1/ 2 - (1/2)cos8]. 

The equation of the circle is Jc - (-1) J = 1/4. 
The second graph is an image of the Mandelbrot set from The 

Science of Fract a l Images. 
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APPENDIX D: FRACTAL IMAGES 

The three graphs in this appendix were produced using the 
programs provided in Appendix A. Tp ese fractal images are a 
Sierpinski triangle, a fern, and a tree. 
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APPENDI X E: AN UNIDENTIFIED IMAGE 

The graph in this appendix was 
v ersion of the program for generating 
A. The error is analyzed in Section 

/ d . pro uced using an erroneous 
Julia sets listed in Appendix 
9. 
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