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ABSTRACT 

This paper examines a possible solution to the problem of disambiguating polysemous nouns 
in machine translation. Latent Semantic Analysis (LSA) , a statistical method of finding and 
representing word sense, is used to differentiate between the different meanings of ambiguous 
words according to the given context. A collection of training texts are sorted according 
to polysemous word and meaning. A word-by-text matrix is created from this data and 
transformed by the LSA method, creating vectors for each text defining it in terms of the 
(non-polysemous) words that appear in it. These representations of textual meanings are 
compared to the context of an ambiguous word to determine the most similar meaning. 
The viability of this LSA model is compared with a simple Bayesian probability model. 
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LEXICAL DISAMBIGUATION IN MACHINE TRANSLATION 

WITH LATENT SEMANTIC ANALYSIS 



Chapter 1 

Introduction 

While researchers have made great progress in the field of machine translation, no existing 

general-purpose translation program can yet rival a human translator. One of the greatest 

obstructions to the development of a professional-quality machine translator is the task of 

correctly interpreting an ambiguous word. Such words with multiple possible meanings are 

called polysemous. While a human translator usually finds it simple to differentiate among 

possible translations for a word in a familiar language, machine translation systems such as 

those freely available online are notoriously faulty in this area of disambiguation. A classic 

example dates from the 1960s: given the idiom The spirit is willing, but the flesh is weak, 

an early English-Russian translator transformed the sentence to Russian and back again, 

whereupon it emerged as The wine is good, but the meat is spoiled. 

Solutions for this flaw in machine translation depend on analysis of the context sur­

rounding the ambiguous word. Given an isolated word such as bow a human has no better 

chance than a computer of guessing whether the word is intended to signify a weapon or a 

knot of ribbons. It is only when some form of context is provided that a human can under­

stand the idea behind the passage, and thus choose the correct meaning of the ambiguous 

word. Even then, if the vocabulary of the passage and its possible relationships to a target 

word are unfamiliar , the human reader can deduce nothing about the target 's meaning. 

The common approach to solving the disambiguation problem is to give the program 
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CHAPTER 1. INTRODUCTION 3 

processing a passage a simulated understanding of the passage 's meaning, as represented 

by the context of the polysemous word. While complete comprehension on the human 

level is currently impossible for the computer, a practical imitation thereof can be gained 

through statistical language processing, as the program represents "meaning" in terms of 

words related to the topic. Theoretically, if a translation program has a body of knowledge 

about words and inter-word relationships comparable to a human's, and if it can use this 

information to represent the historical likelihood of a polysemous word in a particular 

context conveying a particular meaning, then the program can choose the correct meaning 

of such a word if provided a familiar context. 

Such a program should be able to choose between the two possible meanings of bat 

in the sentences The bat flew from the cave and The batter swung the bat, if it has been 

trained on a selection of texts involving baseball and chiropterology. This simulation of 

human disambiguation capabilities is often achieved through creation of a matrix counting 

which words appear in which training texts. The two meanings of the word bat could then 

be represented by the appropriate column vectors , respectively containing collections of 

baseball- and flying-nocturnal-mammal-related words. 

In such a design, a vast quantity of training material is required for the representation to 

be effective, and the knowledge database may grow prohibitively large. In addition, a simple 

word-by-text matrix does not fully represent all the connections between words which the 

human mind is capable of drawing. While this design counts all words that appear near each 

polysemous word, the matrix offers no immediate information on the second generation of 

relationships: all the words near which the "context words'' tend to appear. Humans can 

draw such connections readily, even to the nth degree. 

A human who has read an article on baseball which contained the word bat but not 

the word umpire, and another article (per haps on the woes of the refereeing life) which 

contained references to an umpire in connection with baseball, but never mentioned the 

word bat would probably, if asked to translate the sentence The umpire had a bat, assume 

that both words had something to do with baseball, and that therefore the polysemous 



CHAPTER 1. INTRODUCTION 4 

word referred to the baseball bat rather than the animal. If a computer had made a simple 

word-by-text co-occurrence matrix of both articles, it would see no such association between 

bat and umpire. Possibly programs using such a co-occurrence matrix could implement a 

function examining the contexts of all words appearing in the context to some degree, 

but this would be a time-consuming and highly complicated method . Through matrix 

manipulation, Latent Semantic Analysis offers a solution to this problem - and may offer 

further benefits as well. 

Latent Semantic Analysis (LSA, also known as Latent Semantic Indexing, or LSI) is a 

well-developed technique for representing word and passage meanings as vectors in a high­

dimensional "semantic" space. Through application of linear algebra methods singular 

value decomposition and dimensional reduction, a co-occurrence matrix is transformed to 

better reflect the "latent ," or hidden, similarities between words and documents. The 

technique can be used to determine the most likely meaning of a polysemous word from 

some given context by comparing a vector constructed from that context with document 

vectors. Vectors representing similar passage meanings should be near each other, as LSA is 

said by some of its creators to "closely approximate human judgments of meaning similarity 

between words." [7) 

Most studies to date have focused on LSA 's applications in searching and document 

retrieval. In this field , LSA has been shown to offer a marked improvement over other 

methods. [2) Cross-language information retrieval search results in languages differing from 

the query has also received attention, [11] as has LSA 's use in language modeling. [5) LSA 

has also been tried with human vocabulary synonym and word-sorting tests, in the course 

of research on how well LSA models human conceptual knowledge, and scored not far below 

group norms. [7) On the practical side, LSA has been used in a commercial product called 

the "Intelligent Essay Assessor ," which evaluates students' knowledge and writing skills. [8) 

However, at least one study has addressed LSA's potential in machine translation, specif­

ically in dealing with polysemy in Korean-English translation. [6) This study did not use the 

general context of an ambiguous word, but rather considered a single argument word in a 
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specific grammatical relationship, such as subject-verb, between the argument and the target 

polysemous word. The correct meaning of the target was drawn from a dictionary storing 

examples of argument words. If the given argument did not appear in the dictionary, the 

correct translation class was that of the example word most similar to the argument. The 

project used an LSA model to determine this similarity by finding the example word whose 

vector representation was closest to the argument word 's, under the theory that words of 

similar meaning are "close" in the semantic space. Thus this LSA model relied on vector 

representations of individual argument and example words rather than on representations 

more closely associated to the meaning of the polysemous words themselves. 

In contrast , the LSA model in this paper considers the entire context of an ambiguous 

word. The model represents each document on which it was trained as a separate vector 

according to the words contained in that text. Each such vector is tagged according to 

the particular meaning of the polysemous word contained in it. Thus, to disambiguate a 

target word, the vector representation of the word's whole context is compared to all the 

vectors of training documents for that word, and the closest is chosen as most similar. Such 

a design removes the necessity for a dictionary of grammatical relationships , for part-of­

speech parsing of the context, and for any other exterior input. Theoretically, this contained 

disambiguation module could be attached to a machine translator for use in English-to-any­

language. 



..I 

Chapter 2 

The LSA Model 

To demonstrate its disambiguation capabilities , this LSA model deals only with polysemous 

nouns , leaving ambiguities between parts of speech for later research. Construction of 

the model requires no thesaurus , dictionary, or set of rules as input : only English text 

segments each related to a particular ambiguous noun, tagged according to the meaning 

of this noun. For instance, an article on baseball and an article on vampire bats could be 

training texts respectively identified by tags "bat-1" and "bat-2," where the numerals 1 and 

2 are somewhere connected to the meanings "baseball" and "animal." Such specification of 

separate meanings and classification of texts are themselves challenging tasks , and will be 

addressed later. 

Given such a collection of labeled texts , the content words are extracted and formed 

into a matrix in which each row stands for a unique word and each column for a text , 

as shown in Table 2 .1, such that if the word i occurs in document j , cell a i ,j will have 

value 1 ( or some value indicating the number of times i appears in the text) and otherwise 

0. An alternate approach would be for each column to stand for a unique word-meaning, 

with summed wordcounts from all associated training texts. However, since the following 

matrix manipulations work better on square or nearly-square matrices , and the number of 

training texts is likely to be greater than the number of word-meanings and thus closer to 

the number of words contained in those texts , each text is represented in its own column. 

6 
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So each training document is represented as a vector in an m-dimensional space, where m 

is the total number of unique words across all the documents . An individual word-meaning 

such as "bat-1," with t training texts, can be viewed as the sum or the average of the t 

associated vectors. 

A point of interest here is the exclusion of common words conveying relatively little 

information about the polysemous nouns. This will be discussed in more detail later: in 

the example below, only the italicized words are considered "interesting." 

Training Text Examples (Table 2.1): 

bat-lA: The baseball flew past both the bat and the catcher for another strike. 

bat-lB: The player hit the catcher with his bat after the third strike. 

ball-lA: In baseball, the umpire sometimes gets hit with the ball. 

bat-2A: The bat flew out of the cave on wings as black as night itself. 

bat-2B: Bats hunt from their cave on wings of terror. 

ball-2A: They danced to the music all night at the ball . 

The unique capabilities of an LSA model lie in the transformation of this simple matrix 

(A) with singular-value decomposition (SVD) and a successive dimensional reduction to 

better capture relationships between words and texts. The SVD for an m x n matrix A 

with m > n rewrites the matrix as 

(2.1) 

where U and V are orthogonal matrices with columns of unit length (that is , uru = Im, 

vrv = In) and Dis an m x n diagonal matrix. [3] D holds the unique singular values of A, 

which are the positive square roots of the nonzero eigenvalues for AT A. It has been proven 

that du > d22 > ... > drr > 0, where r is the rank of A. If r < n, the remaining diagonal 

entries of D are 0. [10] 
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Bat-IA Bat-lB Ball-IA Bat-2A Bat-2B Ball-2A 
Baseball 1 0 1 0 0 0 
Flew 1 0 0 1 0 0 
Catcher 1 1 0 0 0 0 
Strike 1 1 0 0 0 0 
Player 0 1 0 0 0 0 
Hit 0 1 1 0 0 0 
Umpire 0 0 1 0 0 0 
Cave 0 0 0 1 1 0 
Wings 0 0 0 1 1 0 
Black 0 0 0 1 0 0 
Night 0 0 0 1 0 1 
Hunt 0 0 0 0 1 0 
Terror 0 0 0 0 1 0 
Danced 0 0 0 0 0 1 
Music 0 0 0 0 0 1 

Table 2.1: Example of a simple co-occurrence matrix on six training documents covering 
four word-meaning pairs. 

"The singular values of a matrix A are precisely the lengths of the semi-axes of the 

hyperellipsoid E defined by E = {y I y = Ax, II x II= 1}." [3] In other words, the ith 

singular value can be said to represent the amount of variation in A along the ith axis of 

the m-dimensional space. 

Thus if A = U DVT is reconstituted using only the first k singular values and the first 

k columns of U and V, where k < n the result A is the optimal projection of A into a k­

dimensional space, [9] which is the closest approximation of rank k to A in the least-squares 

sense. This truncation, or dimensional reduction, preserves information from the axes with 

the most significance. 

(2.2) 

Theoretically, A could be represented as a k x n matrix if different axes were chosen, 

but by keeping the original axes, it has the same rows and columns as A - a necessity for 

use in the disambiguation process. 

One way to think of the effect of this reduction to k dimensions is to consider the 
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inevitable error or "noise" in the original word-document matrix. Because the training 

space is limited , there will necessarily be words that never occur in contexts where they 

should - no occurrence of the word umpire in the training texts for bat, for instance - and 

there will be words which by chance appear disproportionately often or infrequently in 

certain contexts as compared to their distribution in the "semantic space" of the whole 

written language. LSA can be viewed as a way to filter out this noise. [10) Assuming the 

error is evenly distributed in all directions, the smallest singular values must correspond 

to the dimensions in which the error-to-information ratio is largest. By reconstituting the 

decomposed matrix with only the k largest singular values , the error is reduced while the 

dimensions containing the most information about A are retained. 

The resulting structure estimates what the word-document relationships should be. [1) 

The cell values in the approximation A depend upon the whole of the original matrix A, 

since the elements from which they were calculated had been computed to describe the 

original rows and columns as vectors of derived orthogonal factor values. Although some 

information has been removed, the underlying pattern remains, so that the values of the new 

matrix reflect all the original cell values to some extent. Rather than simply representing 

word-text occurrence, a cell a i, j can be thought of as an estimation of the average occurrence 

of word i in all documents related to the other words associated with document j. [7) Co­

occurring words have been mapped onto the same dimensions , causing similar documents 

to show similar values for words in their shared "meaning space." 

The matrix illustrated in Table 2.1 has been reduced into two dimensions. The result is 

shown in Table 2.2. Observe that while catcher retains a value close to O for the columns 

not associated with baseball, it now has a comparable positive value in all three of the first 

columns, despite the fact that it appears only in the first and second documents. Likewise, 

umpire, appearing only in the training text for Ball-1 , is now positively associated with the 

Bat-1 texts . The reconstruction reflects the degree of variance in the original data: since 

the first and second texts share words with the third , the vector representations in the first 

three columns are similar. Similarly, the negative value in a 1,6 (baseball, Ball-2A) reflects 
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the lack of word overlap between the training texts for the second meaning of ball and the 

baseball-related documents. 

Bat-IA Bat-IB Ball-IA Bat-2A Bat-2B Ball-2A 
Baseball 0.6687 0.6668 0.3750 0.0967 -0.0433 -0.0041 
Flew 0.5426 0.4032 0.2228 0.7279 0.4520 0.1724 
Catcher 0.8532 0.8573 0.4823 0.0926 -0.0783 -0.0136 
Strike 0.8532 0.8573 0.4823 0.0926 -0.0783 -0.0136 
Player 0.4209 0.4364 0.2459 -0.0177 -0.0862 -0.0239 
Hit 0.6574 0.6823 0.3845 -0.0313 -0.1373 -0.0382 
Umpire 0.2364 0.2459 0.1386 -0.0136 -0.0511 -0.0144 
Cave 0.1182 -0.1039 -0.0647 1.0617 0.7758 0.2820 
Wings 0.1182 -0.1039 -0.0647 1.0617 0.7758 0.2820 
Black 0.1103 -0.0177 -0.0136 0.6176 0.4441 0.1621 
Night 0.1206 -0.0416 -0.0280 0.7797 0.5639 0.2055 
Hunt 0.0079 -0.0862 -0.0511 0.4441 0.3317 0.1198 
Terror 0.0079 -0.0862 -0.0511 0.4441 0.3317 0.1198 
Danced 0.0103 -0.0239 -0.0144 0.1621 0.1198 0.0434 
Music 0.0103 -0.0239 -0.0144 0.1621 0.1198 0.0434 

Table 2.2: The reconstituted matrix A after application of SVD and reduction to two 
dimensions. 

Then to calculate the most probable meaning of an instance of the word bat, the given 

context is transformed into a vector in the same semantic space: for each row in the matrix, 

a value is assigned to the corresponding component of the context vector Q indicating 

whether the word connected to that row appears in the context. The meaning associated 

to the nearest text-vector is chosen via cosine computation between Q and all the column 

vectors V where the column is tagged with the polysemous word in question: 

cos(8(Q , V)) = (QTV)/(11 Q II · II V II) = (QTV)/( /QTQ · ✓vrv) (2.3) 

The cosine computations for the sentence The bat fl ew from its cave are shown in Ta­

ble 2.3. As the smallest calculated angle is that between Q and a vector belonging to the 

second meaning of bat (column 4: text bat-2A), the second meaning is correctly chosen. 

Note that although neither the word flew nor the word cave appeared in training document 

ball-2A ( column 6) , the LSA method nonetheless calculated a relatively small angle for this 
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vector, due to the overlap of the word night. 

Text Column e 
bat-lA 1 74.13° 
bat-lB 2 82.78° 
ball-lA 3 83.22° 
bat-2A 4 52.13° 
bat-2B 5 54.32° 
ball-2A 6 53.55° 

Table 2 .3: Angles calculated between the context vector Q and the column vectors of A, 
where O indicates identical vectors and 90 orthogonal or completely dissimilar vectors. 

An alternative method of meaning selection is to take the average of all the computed 

angles for each meaning, choosing the smallest average rather than the overall minimum. 

Note also that before the linear decomposition is carried out, log-entropy weighting can 

be applied to the matrix, modifying values to indicate their frequency. Words appearing 

across many documents are less strongly associated with meaning and thus likely to be of 

less significance in telling polysemous words apart. [9] This has been found in the past to 

significantly improve performance of other LSA applications such as information retrieval. 

[7] Weighting has not been implemented here, for the sake of simplicity, readability, and 

computational time constraints. However, as such a transformation is said to emphasize 

meaning-bearing words, [7] presumably it would only have a positive effect on this LSA 

model. 

The simple example given above demonstrates the LSA model's ability to disambiguate 

polysemous nouns, but in this case at least, the same result could easily have been achieved 

using the original co-occurrence matrix with a nai've Bayesian probability calculation, an 

approach common in the field of word sense disambiguation. [9] 
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The Bayesian Model 

For ease of use with the Bayesian probability calculation, the co-occurrence matrix originally 

constructed from the training texts (Table 2.1) is condensed so that each column represents 

the entire collection of word counts from all texts associated with a particular meaning. 

An m x n matrix becomes m x w where w is the total number of meanings over all the 

polysemous words , so that cell ai ,j now holds the number of times word i appeared across 

all the training texts for meaning j. To disambiguate, a probability is calculated for each 

column mapped to a potential meaning of the target noun, as to how likely the given context 

words are to appear in that column. 

Bayes' Rule is used for this probability calculation, the particular implementation based 

on code from a spam-identification program. [4) The algorithm works as follows. 

For every word in the context which appears in the relevant part of the matrix, let its 

adjusted frequency f m be its value in t he column corresponding to meaning m, divided by 

the number of training texts ntxts used for that meaning. If this frequency is greater than 

1, as might occur if the word is used more than once in every document, it is adjusted 

downward to 1. Then for meaning m, the probability Pm,i that the ith word occurs in 

connection with that meaning is its corresponding frequency divided by its spread across 

all k meanings. If this is at 0% or 100%, it is adjusted respectively to 1 % or 99% in 

consideration of the limited certainty of the knowledge base. That a word has not yet 

12 
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appeared in texts of meaning mis no guarantee that it can never do so. 

Pm,i = min( .99, max(0.01, f m,d(h,i + h,i + •· · + fk ,i ))) (3.1) 

Words which do not appear in the matrix may be assigned a probability of 50%, or left 

out entirely. Then the overall probability Pm that all i words in the context appear near 

meaning m - based on their past distribution among the training texts - is 

(3.2) 

For the test sentence The bat flew from its cave, word probabilities for flew and cave are 

respectively at 0.5 and 0.99 for meaning 2 (the nocturnal flying mammal). The probability 

P2 is (0.5 x 0.99)/(0.5 x 0.01 + 0.5 x 0.99) = 0.99 , quite correctly. 

Variations on this calculation, such as using only some number of "interesting" prob­

abilities - the two furthest from 0.5, for instance - may improve results. For this project, 

since the LSA model examines the whole context , the Bayesian model also takes all included 

words into consideration. 

In general, given context words of which one or more have appeared in the relevant 

training texts, the probability calculation can reliably choose the correct meaning. However , 

the Bayesian method has limitations. Only words which appeared in the training texts of 

the polysemous word in question will be useful in the disambiguation process. All the other 

words in the matrix are ignored, which does not accurately simulate the human ability to 

make connections among words. Thus the co-occurrence matrix and Bayesian calculation 

has more limited disambiguation potential than does the LSA model. 



Chapter 4 

Implementation and Brief 

Con1parison 

The Matlab programs written to create the co-occurrence and LSA matrices work with 

simple text files: a flexible approach using separate files for each training text, and a master 

document relating each file to its particular meaning. From this master document is drawn 

the list of polysemous words and their meanings which is stored in parallel with the matrix 

so that each column of the matrix corresponds to the word and meaning related to the text 

of that column. Likewise, a list of the context words is stored in the same order as the 

rows representing those words. The number of training texts used for each word-meaning is 

also stored for use in the Bayesian probability calculation once the columns for each word­

meaning have been merged. Thus the disambiguation program can locate the columns 

corresponding to the target polysemous word, and the rows corresponding to the words of 

the context, as is required by the algorithm. 

On a restricted , deliberately-constructed set of training data (2-5 polysemous words, 20-

100 context words), the Bayesian and LSA methods perform much as expected. Both can 

successfully disambiguate obvious sentences, such as The bat flew from the cave, although 

with such limited training data there is a chance that the LSA method may err in drawing 

non-existent connections. In Table 2.2, note the strong correlation between music and 

14 
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"Bat-2," a potential source of error. Unsurprisingly, neither method can effectively handle 

a confusing sentence such as The umpire carried the bat into the cave. 

LSA performs significantly better than the Bayesian method on disambiguation of test 

sentences chosen for context not contained in the texts associated to the polysemous noun 

in question. On the training set of Table 2.1, the LSA method can successfully disambiguate 

bat in The umpire caught the bat, while the Bayesian method , examining only overlap with 

words appearing in the "Bat-1" and "Bat-2" training texts, cannot determine a meaning 

at all. On sentences whose context belied their meanings (such as The bat fl ew over the 

baseball diamond), both methods performed equally poorly - unsurprisingly, as a human 

translator might also have difficulty with such a sentence. 

As far as the construction of the matrices for the Bayesian and LSA methods goes, the 

former is superior in terms of scaling up the amount of training data. Not only does it require 

less computational time and less space in memory ( all cell values are positive integers , and a 

sparse matrix can be used), but additional training texts can be easily added, incrementing 

values in the appropriate column. Adding documents to the LSA matrix is more difficult, 

as every cell value depends upon the entirety of the original co-occurrence matrix. However , 

there is an alternative to re-computing the entire matrix: the vector of a new document 

can be folded into the space by multiplication with one of the SVD matrices: for a matrix 

M = U DVT projected into a k-dimensional space and a new text vector t , t 's representation 

in the lower-dimensional space is Un x kTt. [9] A drawback is that this requires storage of 

the reduced matrix U. 

In this project, at least, the LSA model is also limited by the efficiency of the computa­

tion program and the power of the computer manipulating the matrix. For large test sets 

(over 10000 words) , the computer's memory could not handle the particular non-optimized 

implementation of the SVD and dimensional reduction. 



Chapter 5 

Applications in Translation 

The construction of the LSA and Bayesian models requires only English texts , but further 

information must be supplied for actual use in a machine translator. A possible advantage 

of these models is that they could be used for any foreign language. The meanings "bat-1" 

and "bat-2" , denoting the general concept of the object thrown in baseball and the flying 

mammal, can be assigned the appropriate translations in French, Italian, or any language 

that actually includes such nouns. All that is required is a mapping from the meaning tags 

used to classify the training texts to the appropriate translation. 

The only point of the process in which the specific language to be translated into matters 

is the assignment of different meanings to the polysemous nouns. This can be based on the 

non-English language: bat is divided into two meanings because French contains the separate 

translations batte and chauve-souris for it. If instead meanings are assigned to the English 

words according to all different definitions in an English dictionary, for instance, then the 

appropriate translations in any language can be mapped to the meanings. If the target 

language does not actually differentiate between some of the meanings (French uses the 

word grue for both the flying crane and the construction crane) , no harm has been done. 

The question of assigning such meanings and matching translations to them is addressed in 

a later section. 

Assuming that a mapping has been made between the words and meanings represented 

16 
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in the model and their translations in the target language, this disambiguator can be incor­

porated into a machine translator. Whenever a polysemous word occurs in the text to be 

translated, its most likely meaning (and thus translation) can be calculated by the LSA or 

Bayesian model. 

This project connects the LSA model to a free online translator to demonstrate its 

translation capabilities , using French as the target language. The program takes a user­

input sentence containing a polysemous word included in the model , and acquires a French 

translation through GoogleTranslate (GT) , which supplies only one meaning for most pol­

ysemous English words: regardless of context , "bat" is always batte , the baseball bat. A 

"repair" function calculates the meaning of the polysemous word using the English context 

and the LSA model, and replaces the French translation of that word if it does not match 

the most probable meaning. 

As currently implemented, this demo has a number of flaws which could probably be 

removed by incorporating the disambiguation module more fully into the translator . The 

replacement of an incorrect French translation relies on a list of GT's default French trans­

lations for the polysemous words and their plurals , which must be generated and attached 

to the disambiguator. Although this works , it is an awkward addition to the process. 

Far more important is the matter of necessary alterations to the French translation if the 

target word must be replaced. As French nouns are gendered, and articles, adjectives , and 

some verb forms must agree with the gender of the noun they modify, the simple substitution 

of a differently-gendered correct translation for the default will result in a grammatically 

erroneous sentence. Without access to the inner workings of the translator, where the parts 

of speech and grammatical relationships are presumably defined, the disambiguator cannot 

fully correct for such changes. However , since gender indicators are included in the model 's 

mapping of meanings to translations, correction of contiguous articles could easily be added 

to the module as it stands. 

The current version of the demo can handle plurals of polysemous words , but has not 

been implemented for possessive forms. Nor does the current version handle multiple poly-
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semous words in one target sentence: it chooses only the first word appearing in the model 's 

set of ambiguous words. This opens the door for erroneous identifications - where the word 

bats is in fact a verb , for instance. Again, a fuller meshing with the translator could easily 

solve this problem. 



Chapter 6 

Automation of Data Acquisition 

An attempt to automate the acquisition of training data and of polysemous words and 

meanings led to less-than-satisfactory results and underlined some of the deepest problems 

with machine translation: the complications of language itself, and the difficulty of using 

texts made for humans in computations. 

A list of polysemous words and their meanings, to be covered by the model, was ex­

tracted from a machine-readable dictionary (MRD) from Project Gutenberg. This required 

analysis of the dictionary entries to find nouns with more than one definition. A sample 

entry ( for bat) is provided below. Since part-of-speech tags were provided, the nouns could 

be distinguished from verbs and adjectives of the same form. Aside from all technical dif­

ficulties of processing the text, the great problem lay in the specification of "meanings" in 

the dictionary: 

Bat , n. [OE. batte, botte , AS. batt; perhaps fr. the Celtic; cf. Ir. bat, bata, stick, 
staff; but cf. also F. batte a beater (thing) , wooden sword, battre to beat .] 
1. A large stick; a club; specifically, a piece of wood with one end thicker or broader 
than the other, used in playing baseball, cricket , etc. 
2. (Mining) Shale or bituminous shale. Kirwan. 
3. A sheet of cotton used for filling quilts or comfortables; batting. 
4. A part of a brick with one whole end. 
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Bat , n. [Corrupt. from OE. back, backe, balke; cf. Dan. aften-bakke (evening) , Sw. 
natt-backa (night) , Icel. ler-blaka (leather), Icel. blaka to flutter. ) (Zool.) One of the 
Cheiroptera, an order of flying mammals , in which the wings are formed by a membrane 
stretched between the elongated fingers , legs , and tail. The common bats are small and 
insectivorous. See Cheiroptera and Vampire. 

On first glance, entries are laid out so that nouns of radically different meanings have 

separate entries denoted by the repeated headword, making identification and selection of 

polysemous nouns a relatively simple matter. The different meanings of each headword­

entry could be represented by assigning a number in order of appearance: here, bat-1 and 

bat-2, with the appropriate dictionary entry attached to define the meaning in a human­

comprehensible way. 

However, separate headwords contain sub-definitions if other meanings spring from the 

original source (here, from the Old English batte and the Danish aften-bakke). Whatever 

their common linguistic origin, these sub-definitions are often radically different, necessitat­

ing their inclusion in the list of separate meanings, so that bat has five rather than two. For 

many polysemous nouns , this is problematic, as some are obsolete, others colloquial, and 

many simply obscure. In addition, some are virtually indistinguishable in what we might 

consider general meaning. For the word ball, two of the definitions provided are 

1. Any round or roundish body or mass ; a sphere or globe; as , a ball of twine; a ball of 

snow. 

2. A spherical body of any substance or size used to play with, as by throwing, knocking, 

kicking, etc. 

Thus the list of words and meanings is faulty, compounding the errors in successive au­

tomation procedures. This ambiguity in the definitions of polysemous words reflects the 

challenge of differentiating between shades of meaning in a way significant to the translation 

process. 

Once this list has been produced, a possible method of acquiring training texts would 

be to search a text corpus for occurrences of the polysemous word, and then to assign it a 

meaning based on overlap between its context and the words in the dictionary definitions 
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attached to the different meanings. The most obvious problem with this approach is that 

the limited and selective nature of the definitions makes correct identification rare and 

unlikely. Augmenting the dictionary definitions with corresponding encyclopedia entries 

would vastly increase accuracy and chance of success, but automated use of encyclopedias 

was beyond the scope of the current project. 

The other time-consuming process which seems a prime candidate for automation is 

the mapping from English meanings to the corresponding translation in a foreign language. 

Again, MRDs in non-English languages and bilingual MRDs are not readily available for 

research purposes. The challenge in meshing entries in such a dictionary with a list generated 

as described above is an entire research project unto itself. 

In the MRD approach, a bilingual dictionary is necessary to find the possible transla­

tions of the target polysemous noun . Few such dictionaries are sufficiently exhaustive to 

cover all the meaning-definitions generated from the English MRD, especially colloquial or 

obscure meanings. Then, a mapping of the different possible translations to the appropriate 

meanings must somehow be found. Consider the entry for bat from the bilingual Concise 

Oxford-Hachette French Dictionary: 

BAT noun Sport batte f ; table tennis raquette f de tennis de table ; Zoology 
chauve-souris f 

Leaving aside the matter of the raquette , assigning batte and chauve-souris to the appro­

priate meanings is itself a difficult task to automate. The provided tagwords ( "Sport" and 

"Zoology" ) are clear enough to human readers, but since neither words fully appears in the 

corresponding definitions in the English dictionary, they are here useless. A larger context 

might be acquired from a less concise bilingual dictionary, or by finding the corresponding 

entry in a French dictionary and translating the definition appearing there into English, yet 

in neither of these cases would there be any guarantee of overlap with the correct English 

definition. In the latter method , the probability of overlap is high, but the translation itself 

would be prone to error . 



CHAPTER 6. AUTOMATION OF DATA ACQUISITION 22 

The order in which the definitions appear is another possible approach to matching, 

especially if English and English-French dictionaries arranged in similar manner could be 

procured. However , unless the dictionaries were fully aligned , errors would still occur. Here, 

while the "baseball" definition does appear before the "zoology" one in both dictionaries , 

they are separated in the bilingual and English entries by one and three irrelevant definitions 

respectively. 

Further complicating the process is the case where multiple meanings are matched to 

the same translation. For instance, the English word crane is translated grue in French 

whether signifying the bird or the machine. For a case such as crane where every possible 

English meaning is translated by the same French word, assignment is simple, but there 

are unfortunate cases where two or more French translations must be matched to a greater 

number of English meanings. This prevents a one-to-one mapping between the meanings, 

unless the French dictionary nonetheless divides the entry into multiple definitions. The 

opposite problem - where one English meaning, such as Bat-1 above, must be assigned 

to several French words, such as batte and raquette from the entry above - is still more 

inconvenient. 

The most common solution to these problems is to abandon altogether the attempt 

to extract the English meanings from an MRD and instead to train a model on parallel 

corpora. A bilingual MRD might still be used to find French words translating an English 

polysemous word . A set of aligned texts (such as the Hansard) in French and English could 

be processed, searching for these French words. Whenever one is found , the corresponding 

English text around that position would be considered an instance of the appropriate English 

meaning. As a means of specifying meanings for English polysemous words as well as 

acquiring training texts for them, this limits flexibility by assigning meanings based solely 

on translations of a specific language. In addition, it requires aligned corpora in the two 

languages , meaning that the results are only as good as the available corpora and the 

translation between the parallel texts. 

In the near future , solutions to the matching problem may be able to make use of 
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a new resource: "WordNet" , a Princeton University project which sorts English words 

into "synonym sets" each representing a lexical concept. This promises to offer potential 

representations for polysemous words according to which synonymy sets they appear in , 

when completed. Projects to create and link together WordNet projects for other languages 

are also underway, but none are yet fully available. 

As for MRDs, if a LSA or co-occurrence model has already been constructed for the 

polysemous English nouns on a representative range of training texts , correct mapping may 

be achieved by calculating meaning similarities on the contexts, although there remains an 

unacceptable potential for error given the likely brevity of such context. However , working 

solely from MRDs without access to an extensive knowledge base, such a mapping seems 

impossible unless the dictionaries are fully aligned . 



Chapter 7 

Extended Tests 

Due to the difficulties of automation and to the absence of an acceptable bilingual MRD, in 

the final model of this project , the automated acquisition of polysemous words , meanings, 

and translations was not implemented. 

Instead, a collection of training materials with all the necessary information for the dis­

ambiguator was created largely by hand for an arbitrarily-chosen set of twenty polysemous 

words with fifty meanings between them, for use in tests of larger size. French transla­

tions and other relevant information, such as plural forms and indication of gender, were 

also manually assigned. This information, and all the training texts , were combined into a 

single XML document , the different parts tagged to indicate function: 

<poly> 
<noun plural="bats">bat</noun> 
<meaning> 

<trans plural="battes" gender="f">batte</trans> 
<ex>The umpire saw the baseball bat in the dugout.</ex> 
<ex>The batter swung his bat.</ex> 

</meaning> 
<meaning> 

<trans plural="chauves-souris" gender="f">chauve-souris</trans> 
<ex>The bat flew from the cave at night.</ex> 
<ex>The bat resembles a winged mouse.</ex> 

</meaning> 
</poly> 

24 



CHAPTER 7. EXTENDED TESTS 25 

This format allows easy decomposition into text files of the form needed for the matrix­

construction and the disambiguation/translation programs, via the Java XML parser. Any 

number of training texts can be added to the lexicon, and the number of texts per meaning 

to be used in the model can also be specified. 

The training data for the extended model was drawn from websites turned up in Google 

searches for the polysemous words, from places such as Wikipedia entries for the appropriate 

definitions of the words, or random, unprofessional webpages. The separate training blocks 

were drawn from text within ten words of an occurrence of the polysemous noun in question, 

without any human supervision. 

This automatically-gathered collection of training texts is highly faulty. Apart from 

the unhelpful or unrepresentative nature of some of the sources used , processing webpages 

produces much questionable data. Although HTML tags and their contents were screened 

out, the files nonetheless contained ads, links, captions, special characters, formatting infor­

mation, the occasional misspelling, and a host of proper nouns. This had less of a negative 

impact on the Bayesian method than on the LSA model. In the latter , similarities between 

texts are of vital importance, and an over-abundant occurrence of the word internet, for 

instance, causes the method to draw connections which do not actually exist. This was 

compensated for , in some degree, by screening out a set of irrelevant words such as click. 

A series of comparisons was carried out using varying numbers of training texts. Al­

though these sets remained relatively small due to computational constraints, varying from 

700 to 7000 words, both disambiguation methods performed well on short, simple sentences 

containing polysemous nouns and between one and ten "interesting" context words that 

is , words which had not been screened out as too common. As expected, the LSA method 

could sometimes disambiguate sentences in which the Bayesian method recognized none of 

the words ( meaning that none of the words had appeared in training documents related 

to that polysemous word). However, LSA not infrequently erred on sentences which the 

Bayesian method had interpreted correctly. In some cases this was due to the faulty nature 

of the training data: LSA was representing as similar training texts which had little in 



CHAPTER 7. EXTENDED TESTS 26 

common other than webpage-vocabulary. 

A more drastic improvement in LSA's performance came when all words occurring 

only once in the test set were cut out of the training data. With such a small training 

space, one can expect a large number of words to occur only once: since the LSA method 

benefits little from the addition of such rare words , excluding them significantly improves 

the representation, as well as the speed and size of the model. A point of interest is that 

the LSA model performed similarly to the corresponding Bayesian model even when the 

unique words were left in the latter. There is no logical reason to remove these words from 

the co-occurrence matrix, nor does their removal cause any significant improvement in size 

and speed. However, for the sake of accurate comparison, the Bayesian model was built on 

the same reduced training set as the LSA. 

LSA results varied dramatically according to the number of dimensions used in creating 

the model. Several different models were constructed for each training set size with varying 

dimensions , and the results of the best used in the experiment. In general, LSA seemed 

to work best with a number of dimensions at about 5% of the number of rows/context 

words. In addition, a limited number of tests suggested a slight improvement in LSA 's 

accuracy when similarity was calculated using the average angle difference between context 

and matrix vectors, rather than the absolute minimum. All results here discussed were 

acquired with the average. 

For all training spaces , the LSA and Bayesian methods both performed well, usually 

with between 70% and 90% accuracy. Both showed marked improvement as the size of the 

training space increased. Looking strictly at the number of successful disambiguations , LSA 

consistently performs better than the Bayesian method, as illustrated in Figure 7.1. 

Considering only the test sentences which the Bayesian method has some hope of dis­

ambiguating, those containing overlap with the columns/training texts of the relevant pol­

ysemous word , the average success percentage is high for both methods: between 85% and 

95% for all training-set sizes (Figure 7.2). While there is always overlap between the LSA 

and Bayesian errors , the sets of incorrect identifications are by no means identical. The 
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Bayesian method has on average a 89% success rate, with no consistent improvement or 

decay in accuracy. The LSA model has an average performance better by only 1.5%. 

Thus we see that the margin in LSA 's favor in Figure 7.1 is primarily due to the test 

sentences in which the Bayesian method fails to recognize any context words, which are 

interpreted as errors for the Bayesian method. LSA usually chooses the correct sense of 

the polysemous word for between 40% and 70% of such sentences, leading to a substantial 

increase in accuracy. 

A point of interest in the results lies in the difficulty both the Bayesian and LSA methods 

have in distinguishing between relatively close shades of meaning. While both are fairly 

adept at differentiating between homophones, words alike in spelling but of different origin 

( bat and bank, for instance), errors seem more common when the meanings of the polysemous 

word are similar and thus have significant contextual overlap. For example, the word age 

can have two translations where its second meaning is that of em, as in the "modern age" 

or "past ages." With the smaller sets of training data, both the Bayesian and LSA methods 

had difficulty with this disambiguation. As differentiating between closely related meanings 

is one of the most challenging aspects of word sense disambiguation in natural language 

processing[6], further tests to see if LSA performs better than the Bayesian method on such 

words might be useful. 
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Figure 7.1: Accurate disambiguations for the two methods as a percentage of attempts. 
The labels along the horizontal axis roughly correspond to increases of 700 words in the 
size of the matrix. 
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Conclusions and Future Work 

As demonstrated in these tests , the LSA method performs significantly better than the 

Bayesian, thanks to its ability to disambiguate words occurring in contexts which were 

not explicitly covered in the relevant portion of the training space (Figure 7 .1). When 

each polysemous word has a context overlapping with its training data, the difference in 

accuracy ratios of the Bayesian and LSA methods is usually negligible (Figure 7.2). Since 

the LSA model implemented here seems to perform as well as the simple co-occurrence and 

probability method for these latter cases, with the added ability to disambiguate words in 

the former category, further research seems worthwhile to determine whether it can be made 

to perform even better, or if the greater space and time requirements nullify the improved 

accuracy as the model 's knowledge base grows. 

Since the LSA method 's accuracy as well as the Bayesian's improves in direct proportion 

to the number of words in the training space, the model seems to scale well in terms of 

successful disambiguation. It is likely that accuracy of the two models will converge as 

the size of the training space increases toward infinity, but LSA has significantly superior 

results for limited training spaces. This suggests that an LSA disambiguator requires a 

smaller training space than the Bayesian model. However, the LSA model grows large and 

slow much faster than the Bayesian, and thus would require a great deal of optimization to 

be of practical use in a machine translator. 
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Although no absolute quantitative conclusions can be drawn as to the relative accuracy 

of the LSA and Bayesian methods, given the small number of tests run , the small size of the 

training sets , and the relatively rough version of LSA implemented here , nevertheless, the 

results offer proof that LSA can indeed be used in disambiguation for machine translation. 

It offers a marked improvement over the simple Bayesian method , which works through 

exact matches between context words , while the LSA method represents and analyzes rela­

tionships between words. 

As for the idea of using the entire context (less common words such as articles and con­

j unctions) of an ambiguous word to find its meaning, we may note that the results of the 

extended-set tests are comparable in success percentage to the results of the grammatical­

relationship LSA model, [6] without the extra work necessitated by creation of a grammatical­

relationship dictionary. 

The next step would be to enhance the model with larger sets of polysemous words 

and of training data from a better corpus - news articles, for instance. The number of 

dimensions used in construction of the LSA matrix could be optimized, and more extensive 

and comprehensive tests performed. There is also the question of whether the model can 

be expanded to work with verbs, adjectives , and other parts of speech. 

Probably the most important issue is that of automating acquisition of training texts to 

build a model sufficiently representative of word frequency distributions in the real world. 

Use of parallel, aligned corpora is one potential approach; analysis of MRDs followed by 

matching with encyclopedia entries is another. In the latter method, further texts could 

be classified as to meaning according to their similarities with the small contextual spaces 

already built . 

If aligned or context-heavy bilingual dictionaries are available, mappings between trans­

lations and word-meanings could also be automated. The disambiguator module described 

here is separate from these mappings themselves, returning meanings to the translator in­

terface, which then has only to choose the appropriate meaning from the table of whatever 

language is implemented. The same LSA model can thus be used to disambiguate trans-
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lations in a wide range of languages, in association with machine translators of various 

types. 

This LSA model has shown that a certain type of human knowledge - contextual asso­

ciation - can be reproduced for use in word sense disambiguation and machine translation. 

Yet other kinds of real-world knowledge, closer to actual human understanding, remain 

beyond the reach of methods such as LSA. This is clearly demonstrated by the well-known 

ambiguity example The box is in the pen. 

Here, only the word box is considered "interesting" in the disambiguation process. Com­

mon, low-information words such as the, or and or is, often called "stop words" , are assumed 

to convey little to no information about the polysemous nouns in whose context they appear. 

Indeed , the inclusion of stop words may badly skew the LSA and co-occurrence matrices , 

especially if the training data is drawn from real-world texts. Through sheer chance, the 

texts for one meaning may contain more occurrences of the, where in fact both meanings 

are nouns equally likely to be assigned the definite article. In the LSA model, all the words 

for the first meaning could then be incorrectly considered "similar" to context elements of 

some other word-meaning which had a heavy the count. 

The natural solution to this seems to be to exclude stop words from the co-occurrence 

matrix altogether. Lists of "Top 100" words are readily available, and could easily be used 

as criteria for exclusion. The model in this paper excludes a moderate number of words: 

articles, prepositions, conjunctions, certain common adverbs, and omnipresent verb forms 

such as was, had, and used. 

Yet in a case such as The box is in the pen, the meaning hinges on the innocuous word in. 

The disambiguation models addressed here will run into difficulties with this sentence that 

a human would find absurdly simple to understand. Only box is used in the disambiguation 

process - but is box any more likely to be associated with the fenced enclosure than with 

the writing implement? What if the sentence were The papers are in the pen? A human 

reading such a sentence uses a sense of relative size in assigning meaning to pen. A box and 

a stack of papers are both clearly too large to fit inside a writing utensil , whereas things of 
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any size are commonly put inside fenced pens - whose whole function, after all , is to hold 

things. Any statistical model like those addressed here necessarily lacks a human 's ability 

to visualize as a scene the concept being described, and thus to assess it for plausibility. Yet 

a rule-based solution - assigning a "size" field to every noun in the translation dictionary 

and comparing sizes whenever prepositions such as in are utilized - is clearly impractical. 

Since the word in seems more likely to occur in connection with the enclosure than 

with the writing utensil, one might think including the stop words in the co-occurrence 

matrix could give LSA a chance to disambiguate these occurrences of pen. Similarly, if the 

sentence read The box is on the pen, which implies the opposite meaning, a model including 

on might have a better chance of correctly interpreting the word than one excluding it -

which would interpret the in/on sentences in exactly the same way. 

Quite apart from the dangers inherent in consideration of stop words , which could 

damage the LSA model's usefulness even if a weighting scheme is applied, other limitations 

of the LSA / co-occurrence model negate this approach. The methods addressed here consider 

words without reference to order , function, or grammatical classification. For sentences in 

which meaning is dependent upon the configuration of the words, LSA can evaluate them 

semantically only, ignorant of any syntactic undercurrents. As currently designed, the LSA 

model is quite incable of differentiating between The box is in the pen and The pen is in 

the box, viewing them as identical sets of disconnected words. 

Despite all its strengths, some ambiguities fall beyond LSA's scope. Its ability to sim­

ulate real-world knowledge, though broad, is nevertheless strictly limited. If researchers of 

other approaches to deal with such problems do not succeed, the box is in the pen prob­

lem may well remain an example of something at which humans are simply better than 

computers. 
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