```
arch
    378.2
    Farquhar
```

SPECIFICATIONS AND DESIGN
OF A
288 SPAN THROUGH, PIN-CONNECTED HIGHWAY BRIDGE.

9 Panels 32 feet, divided by Sub-verticals. Curved Upper Chord.

General Specifications: Circular No. 100, U. S. Department of Agricultuxe, Office of Public Roads. Filed herewith.

ADDITIONAL SPECIFICATIONS

In case the maximum stresses due to wind added to the maximum stresses due to vertical loading (including impact) shall exceed 19000 pounds per aquare inch, properly reduced for compression, addition must be made to such sections until this limit is not exceeded. The permissible stresses for the connections shall be increased proportionally. Should the stresses be reversed in any possible case, proper provision must be made for such stresses in the opposite direction.

The shearing stress on rivets, bolts, or pins shall not exceed 11000 pounds per square inch of section; and the pressure upon the bearing surface of the projected semi-intrados (diameter times thickness) of the rivet, bolt, or pin hole shall not exceed 22000 pounds per square inch. In field riveting, the number of rivets thus found shall be increased 25 percent if driven by hand, and 10 percent if satisfactory power riveters are used. The amount of field riveting must be reduced to a minimum, without, however, diminishing the number of rivets requisite for strength and rigidity. Whenever it is practicable, all designs are to be so made that the field rivets can be driven readily. For members of any importance, more than two rivets are to be used for each connection. Rivets are not to be used in direct tension. If the extreme fiber stress resulting from the bending due to the weight only of any member does not exceed 10 percent of the specified unit stress, the effect of such bending may be ignored; but if it does so exeeed, its effect must be combined with those of the other stresses, using, however, for determining the sectional area, a unit stress 10 percent greater than that specified.

In general, all trusses shall have main end posts inclined. The effective length of pin-connected spans shall be the distance between centers of end pins of trusses. The effective depth shall be the perpendicular distance between gravity lines of chords, which lines must pass through the centers of pins.

In $2 l l$ main members having an excess of section above that called for by the greatest combination of stresses, the entire detailing is to be proportioned to correspond with the utmost working capacity of the member, and not merely for the greatest total stress to which it may be subjected. In this connection, though, the reduced capacity of single angles connected by one leg only must not be forgotten.

General Principles of design from Waddell's Specifica-
tions.
Floor-Beams: Effective length to be the distance between center lines of trusses.

Sections of Intermediate Posts: The effective length shall be the greatest length between points of the axis that are rigidly held in the direction in which the strength is being considered. The least width of posts in pin-connected trusses shall be limited to 10 inches.

Sections of Diagonals and Suspender: Counter-stresses must be provided for wherever caused by the increased live load; and in case of reversal of stress the member must be designed to resist such reversal. The use of more than a single system of cancellation in bridges shall be confined entirely to lateral systems and sway bracing, except that in the middle panels of trusses two rigid diagonals connected at their intersection may, for appearance, be employed, provided that either diagonal have sufficient strength to carry the entire shear in either tension or compression, and that the adjacent vertical posts be figured accordingly. All through spans shall have stiff end vertical suspenders.

Diameter of Pins: The stress in the outer fibers of pins shall not exceed 25000 pounds per square inch, the points of application of the stresses in the connecting members being taken at the certers of bearings. In designing all pin-connected work ample clearance for packing must be provided, and ample room must be left for assembling members in confined spaces. Lower chords are to be packed as closely as possible, and in such a manner as to produce the least bending moment on the pins, but adjacent eye-bars in the same panel must never have less than a one-half inch space between them, in order to facilitate painting. The various members attached to any pin must be packed as closely as practicable, and all interior vacant spaces must be filled with steel fillers, where their omission would permit of the motion of any member of the pin. All bars are to lie in planes as nearly as possible parallel to the central plane of the truss, no divergence exceeding one-eighth of an inch to the foot being permitted.

Upper Chord Sections: In members subject to compression, rivets shall be so spaced that they shall not be farther apart in the direction of the stress than sixteen times the thickness of the thinnest external plate connected, and not more than fifty times that thickness at right angles to the direction of the stress.

Section of Inclined End Post: The inclined end post must be so proportioned that the algebraic sum of the stresses per square inch resulting from the direct compression and the maximum bending moment due to the wind pressure shall not exceed 19000 pounds per square inch. Every column that acts as a beam also must have solid webs at right angles to each other, as no reliance shall be placed on lacing to carry a transverse load down the column.

Lateral Bracing: All lateral bracing shall be made
of shapes which can resist compression as well as tension. In detailing struts composed of four angles with a single line of lacing, the clear distance between backs of angles shall never be made less than three-quarters of an inch, in order to permit the insertion of a small paint-brush. The stiff diagonals of the lower lateral system, of which there shall be two in each panel, shall be riveted rigidly to the stringers where they cross them, so as to transfer in an effective manner the thrust of braked trains to the truss posts without causing the floor beams to bend horizontally. In designing short members with riveted connections the sectional area of the piece shall be increased from 10 percent for 6 inches $x 3 \frac{1}{2}$ inches angles to 25 percent for equal-legged angles beyond the theoretical requirements for the direct stresses, so as to compensate for the secondary stresses due to the eccentric grip of the rivets.

Portal Bracing: All through spans shall have stiff portal bracing at each end, connected rigidly to the end posts. The bracing shall be made as deep as the specified clear head room will allow. When the height of the trusses es great enough to permit it, there shall be used at each panel point a rigid bracing frame riveted to the top lateral strut, and to the posts, and carried dow to the clearance line. When the truss depth is not great enough for this detail, corner brackets of proper size, strength, and rigidity are to be riveted between the posts and the upper lateral struts.

Pin Plates: Rivets shall not be countersunk in plates less than seven-sixteenths of an inch in thickness.

Pin plates shall be used at all pin holes in built members for the double purpose of reinforcing for the metal cut away and reducing the unit pressure on pin and bearing to or below the specified limit. They shall be of such size as to dism tribute properly, through the rivets, the pressure carried by such plates to both flanges and web of each segment of the member; and
they shall extend at least six inches within the tie plates of said member, so as to provide for not less than two tranverse rows of rivets there.

It is always better, whenever practicable, to avoid cutting away the ends of channels, but if they must be trimmed, the ends must be reenforced so that the strength of the member shall not be reduced by the trimming.

In riveted tension members, the net section through any pin hole shall have on area 40 percent in excess of the net sectional area of the body of the member. The net section outside of the pin hole along the center line of stress shall be at least 70 percent of the net section through the pin hole.

Tie Plates and Lacing: At the ends of compression members the pitch of rivets shall not exceed four diameters of the rivet, for a distance equal to twice the greatest width of the member.

All segments of compression members connected by lacing only, shall have tie plates placed as near the ends as practicable. The tie plates shall have a length not less than the greatest width of the member, and a thickness not less than onefortieth of the distance between the lines of connecting rivets, measured at right angles to the length of the member.

Single lattice bars shall have a thickness of not less than one-fortieth, and double bars connected by a rivet at the intersection of not less than one-sixtieth of the distance between the rivets connecting them to the members; and their width shall be:

For $15^{\prime \prime}$ channels, or built sections with $3 \frac{1}{2} "$ or $4^{\prime \prime}$
angles - $2 \frac{1}{2}$ inches (seven-eighth inch rivets).
For 12 " and $10^{\prime \prime}$ channels, or built sections with $3^{\prime \prime}$ angles - $2 \frac{1}{4}$ inches (three-fourth inch rivets).

For $9^{\prime \prime}$ and $8^{\prime \prime}$ channels, or built sections with $2 \frac{1}{2}{ }^{\prime \prime}$
angles - 2 inches (five-eighth inch rivets).

The distance between connections of lattice bars shall not exceed eight times the least width of the segments connected.

End Bearings: The greatest allowable pressure upon expansion rollers of fixed spans, when impact is considered, sha.ll be determined by the equation $p=600 \mathrm{~d}$, where p is the allowable pressure in pounds per linear inch of roller, and d is the diameter of the roller in inches. The least allowable diameter for expansion rollers is four inches. The bearing shall be so designed as to permit a free movement of the rollers in the longitudinal direction of the span sufficient to take up the extreme variations in length due to temperature changes and deflections, and at the same time prevent any tranverse motion of the end of the span.

All shoe plates, bed plates, and roller plates are to be so stiffened that the extreme fiber stress under bending, when impact is included, shall not exceed 16000 pounds per square inch. Bed plates shall be so proportional that the pressure upon masonry (including impact) will not exceed 400 pounds per square inch.

Pedestals shall be either of cast steel or built up of plates and shapes. In built pedestals, all bearing surfaces of the base plates and vertical bearing plates must be planed. The vertical plates must be secured to the base by angles having at least two rows of rivets in the vertical legs; and the said vertical plates must bear properly from end to end upon the base. No base plate, vertical plate, or connection angle shall be less in thickness than three-quarters of an inch. The vertical plates shell be of sufficient height and must contain enough metal and rivets to distribute properly the loads over the bearings or rollers. The bases of all cast-steel pedestals shall be planed, so as to bear properly on the masonry or rollers. All rollers and the faces of base plates in contact therewith are to be planed smooth, so as furnish perfect contact between rollers and plates
throughout their entire length. All pedestals, whether built or cast, must have one or more diaphragms between webs, carried up as high as the general detailing will permit, so as to transmit any transverse horizontal thrust to the base without overstraining the webs by bending in their weakest direction.

Design -
Apperamation of weight:

$$
w=230-0.75 l+0.0153 l^{2}=1291 \text { lbs pu pt ron turner }
$$

ane $w=262+0.96 l+0.066 l^{2}-103 y e l s$-pepper tuothumalne.
 THy $24^{\circ} 100 \mathrm{~K}$. I- Dean for 7 lm Beam $=\frac{100 \times 20}{16}$

$$
10 \quad 25
$$

$$
\text { Slicer at } 3^{\prime} \text { approx }=7 \times \$ 2=
$$

Oncute Paring average thentenn $4^{\prime \prime 1} 2=17 \times \frac{4 \frac{1}{2}}{12} \times 288 \times 1 / \sqrt{0}$
" sichivilt " " $3^{* / 2}=10 \times \frac{3 / 2}{12} \times 288 \times 150$ shared covering for uraducy. $6^{*}=17 \times \frac{6}{12} \times 288100$ Ck in formula for total weight

$$
=1930 \text { ko } y x .
$$

\therefore use 2000 lbs. Tu ft, for dial load tor Head parcel lo al =

$$
v=300+l+22 k+\frac{1}{15} b l\left(1+\frac{e}{1000}\right)
$$

lota tunas
\qquad

$$
\frac{640.637}{288}=2.22 \mathrm{Kip}_{\mathrm{i} / \mathrm{s}-14}
$$

Nesiyn
iphraxinatim of weiglet.
$w=230-0.75 t+0.0153 t^{2}=1291$. Us. fuept. Yer trusisalno temr Beam- $24^{\prime \prime} 100$ ts I-ream. $\frac{100 \times 20}{16}=125$ Slingun - $10^{425 l b, t-\text { Beam. } 7 \times 25^{-}=175^{-} ~}$
Concute paring, assum 4 " $-\frac{1}{3} \times 17 \times 150=850$
assure D.L. 2 oos the pur nung \mathcal{H}.
Ck tomla fir totul wajnt $\omega=300+l+22 b+\frac{1}{1 A} b l\left(1+\frac{l}{1000)}=1930\right.$ Pand luad D.L $=2000 \times 16=32$ Kups.
 the pollnonig

Struiger -
D.L.
assumes $10^{\prime \prime} 25 \mathrm{lk} I$-beams. spand 3^{\prime}
D. Llvor and cushme fue withe 3^{\prime}, pupt $=\frac{2150}{17} \times 3=380$ lls tsee abre. 1 L.L. Soun (su plate). Sime $\frac{10}{16}>0.586$, put 1 kearywhal at center, max. momet $=\frac{1}{3} \times \frac{10000}{2} \times 16 \times \frac{12}{2}=160,000 \mathrm{lvs}$-in.
 \therefore Use Roun resulto.
 Ullns i 3,000 ths - in 2, thinin, $\frac{306}{13}=23.5 \mathrm{~m}^{2}$-equiele.
10'2ritb. I-Bean gines area 24,4 in $^{2} \because 4 d e$.

Floverbames.
Flon and cushon $=2150 \mathrm{Y} 16=34.4$ ITips pun μ (Lue above. Stringus $\quad=7 \times 25 \times 16=2.8 \quad$.
Floor nem 20180
D.L. Max MIII mut $=\frac{1}{8} \times 38.8 \times 20 \times 12=1,164.0 \mathrm{Knts} \cdot \mathrm{in}$.
L.L.Poller small whil transfur to large $\left.\frac{(6-10}{16}\right)+5,000=1,370$

$$
\begin{aligned}
& \begin{array}{l}
R_{1}=\left[\frac{14.5}{20}+\frac{8.1}{20} / \times 11320=13,100 R_{1}\right. \\
R_{2}=9640
\end{array} \\
& R_{2}=9640 \quad M=9640 \times 8.5 \times 12=983.000 \mathrm{ll}-\mathrm{in} . \\
& \text { L.L.(loslbs } \mathrm{H}^{2} \text {) } \frac{1}{8} \times 100 \times 18 \times 16 \times 16 \times 12=692.000 \mathrm{lbs} \text { in. }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { Use } 24^{\prime \prime} \text { solp. Ineam, } \frac{T}{C}=174.0 \quad \frac{2147}{13}=165.2=\frac{I}{C} \\
& \text { Stresses - }
\end{aligned}
$$

Sy Mettood of Kmuts, neasming leven anns, Atr D. L. strines wue rond as in kelno pijure. thier wier ehecked, ey Eraptrial mithod, to a reasmable degue of acomacy.

Ther wind loads were thm calculated; por wppre and trwe Latinal Lyptun, bead and L.L. allming 150 lts . The umingt. and the hive load calalater for the rmiege and a strin shut maceost as her polluving pages.

Live Load Stresses.

* Datals are $2 x$ addition of columns on account of ensor.

* Latals are $2 x$ additions of columns au account af ensor The values in the above tables were gotten lug the graphic method.
stress sheet.

> Intermediate posts. !eambiain

opacuing.

Make Morts of tho chauels alunt two ares 1 to each a thew equal. $2 \times 103.2=2\left[3.9+8.82(2 x-0.651)^{2}\right], x=8 \prime$. 318 2ny $641 \quad 12$ "251bs.
-88.1 ellnuare stus $=16000-\frac{701}{2}=16000-\frac{50 \times 12 \times 20}{4.43}=6.15$
$\frac{88.1}{6.15}=14.3 \quad 2 \times 7.31=14.7 \quad \therefore$ use.
spaciny, calculatied as elne $=10.07$

-62.0 alluable itcin $=16000-\frac{52 \times 12.10}{4.61^{10}}=6.52$
$\frac{62}{6.52}=9,52 \quad 2 \times 6.03=12.06$.
Spamiy calculated us alrove $=10.44$
Fdopiced Spacing $10^{3} / 3 / 8$
it tensin +77 . Merwable atim 12500 Us $1911 L^{\prime \prime}+5$ ths, $0=7.35$, to.39 Met utim at $\overline{\sin }, 7.35^{-}$ $0.39 \times 63 / 4=1.364$
sue desijn pin piatu.
$9.7182=9.42$ in $^{2} \frac{73}{12.5}=6.16$ an 2 inse.
piágounls and turpoutess.

Sizo of Bans wed ruat emporm to pins uned. as lagest hole allnuabs in bar mut be as lay on give wed.

Design of Pins.
The design of one fin will he given in detach and only she results mel be given for the athens.

shear in table below $=$ resultant or component of full strength of memperorizontal Forces on Pin.

Shear	Dist.	Increment	Moment
+60.3	2.28	+137.3 m	+137.3 max.
-53.4	0.92	-49.1	+88.2
+6.9	5.98	+41.3	+129.5

Vertical Forces on Pin
$+45.82 .28+104$.

| -71.2 | 0.92 | $+104.3^{-}$ |
| :--- | :--- | :--- | $+104.5$

-12.1
-65.5 $+39.0$
$+159.9 \quad 0.98$
-11.9 $+27.1$
$M=\sqrt{M_{h}^{2}+M_{V}^{2}}=\sqrt{13.23^{2}+326^{2}}=431$ +326.1 max.

$$
\begin{aligned}
& \frac{I}{c}=\frac{M}{s}=\frac{431}{25}=17.2 \quad\left\{\frac{I}{C}=\frac{T .01}{L}=0.049 d^{4^{3}}\right. \\
& \left.\therefore 0.098 d^{3}=17.2 \quad d^{3}=\frac{17.2}{2}=0.098 d^{3}\right\}
\end{aligned}
$$

Since we have chore $0.098=176 \quad d=5.6 \therefore$ wee $6 " / \mathrm{min}$

$$
\begin{aligned}
& \text { Hull strength } U_{2} U_{3}=12480 \times 58.5=12=710 \\
& \frac{720000}{22000}=32.7 \frac{32.7}{12}=2.72^{\prime \prime} \\
& u_{1} u_{2}=12310 \times 58.5=720,000 \\
& \text { Where } 2.77^{\prime \prime} \text { and } 2.72^{\prime \prime}
\end{aligned}
$$

Size of other fris are shown on fleoteo accompanying these
upper chord bection
" timated Clearance for ruticale and Eye-Bans 19" Estunater defter \because Theadsof Eye-Bam.
 $L=0.4 \times 20=2.00 \quad$ Allnwathe
$i d d 1$ a paut $\frac{730}{12.62}=57.8$.

$$
\text { Midd } 1 \text { e paul, } \frac{730}{12.62}=57.8
$$

'somposition:
1 corver plate $28^{\prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}=14 \mathrm{~m}^{2}$

$$
\begin{array}{ll}
44^{\circ} 3^{\prime} \frac{1}{2} \times \frac{1}{2} \times \frac{10^{\circ}}{16} & =13 . \\
2 \text { plates } 18^{\prime \prime} \times \frac{10}{6} & =22.5 \cdots \\
4 \text { flats } 5 \times \frac{1}{2} & =\frac{10 .}{59.5 .}
\end{array}
$$

Radim of gyratim abnt A B evdently leart. (su Nelow.) Calculation. Monsut of:

$$
\begin{aligned}
& \text { 1 crruplate }=\frac{1}{12} \times 28 \times\left(\frac{1}{2}=0.28 \mathrm{in}^{4}\right. \\
& A x^{2}=13(9.0+0.125+0.25)^{2}=1141.92 \\
& 4 / 5 \\
& 4 \times 3.64 \\
& 1+x^{2}=13(9,12 r-1.06)^{2} \\
& =14.05 \\
& =884.9 \mathrm{~g} \\
& 2 \text { corbl plates }=2 \times \frac{1}{12} \times \frac{5}{8} \times 18^{3}=607.50 \\
& 2 / \text { feats } 4 \times \frac{1}{12} \times 5 \times 1 / 2(1)^{3}=0.83 \\
& A x^{2}=10(9.125+0.5)^{2} \quad=926.4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
3536.47 \\
-2.5 ?
\end{array} \\
& \text { 示 } 533.9
\end{aligned}
$$

Wive radim of ppation $L=\sqrt{M} \frac{M}{A}=\sqrt{\frac{3533.4}{54.5}}=7.77$.
The alnwakie 2 tim $=16000-\frac{70}{2}=16000-\frac{70 \times 32 \times 12}{7.77}=12.54$
$\frac{730}{12.5}=58.25 \quad \therefore$ ust this section pre chend 4-5
3to. 4 - 728.8 allnwable atren $=16000-\frac{32.06 \times 12 \times 70}{7.77}=12.53$

$$
\frac{728.8}{12.5^{3}}=58.2 \quad \therefore \text { use. }
$$

2t03-690.6 allnvable stãen $=16000-\frac{32.50112 \times 20}{7.77}=12.48$

$$
\begin{aligned}
& \frac{690.6}{12.48}=55.35 \quad \therefore \text { use. } \\
& 1 \text { to } 2-635.9 \quad 16000-\frac{70 \times 12 \times 34.18}{7.77}=12.295 \quad \frac{635.9}{1.295}=51.75
\end{aligned}
$$

und post. Because of strusses brught m ly effect of wind puesure, evven plate vas increand in end post srifunt Thickun, mive tred and $3 / 4$ "Fond wousany. Covected nenust for thi rectini alnt Korjintal nunticl aris is 5831.8
i at muddle of End Posy.

$$
\begin{aligned}
& N=\frac{1}{2} P R=\frac{1}{2} \times 25 \times 12 \times 16.8=2520
\end{aligned}
$$

$S_{1}=5.74$
give unt =tur < $19 / \mathrm{Kip}_{\text {is }}$

Mout for Ahi ectini calculatid as akn $=9128.4 \mathrm{in}$.

$$
\begin{aligned}
& \begin{aligned}
\Lambda_{1}=\frac{4128.4}{65^{5}}
\end{aligned}=6.99 . \quad \text { Allnwable then }=16000-70 \times 12 \times 95 \cdot \frac{\pi}{7.99} \\
& \text { Lotal } \text { shagut }=11.125 \times 65=723 \mathrm{kps} .
\end{aligned}
$$

Mont of sectimin oy eppueleard alut CD (Du Fiy artare). was fand to be $I^{\prime}=5465.6$. $\therefore 7$ int Nemet med.

Poital Bracing.
Each ban taher $\frac{1}{2}$ Atre shean. on 38 Rips.

Lout $r=1.66$.

$$
\begin{aligned}
& \text { Allnuable stru }=16000-\frac{70 \times 12 \times 10^{-}}{1 . k 6} \\
&=8400 \\
& \frac{38}{8.4}=4.54 \mathrm{~m}^{2} . \\
& 44^{5} 3^{\prime \prime 1} / 2 \times 33_{2} \times \frac{1}{2}=\text { gime, } 4 \times 3.25=13 \mathrm{~m}^{-2} \\
& \therefore \text { safc. }
\end{aligned}
$$

Pin Plates.
"'e table shown below guies the diviscion of stresses at the different panel points in the ufha chord.
 for allavalele compression $S=16000-701$. As the stresses are very nearly the same for each paint, we vile wee she largest, namely that at $\mu_{4}-u_{5}$, in an discussion for ale font, thees making them uniform.

The web takes $142.2-82.5$ more she os than it gets from him bearing = 59.7. which Comes from the $1 / 2 "$ file er Saving $66-59.7=6.3$ which comes from ale ocher plates in froportion to their thickness. This adds to these plates (shown in diagram: helaw) from get to right $1.15,115,1.43,1.43,1.15$.

$$
\begin{aligned}
& \text { Total stresses }
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{In}(1)=66+1.15=67.15 \\
& \text { 2 }=66+1.15=67.15 \tag{3}\\
& \text { (4) }=82.5+1.43=83.93 \\
& \text { (3) }=67.15
\end{align*}
$$

(5) requires $\frac{67.15}{4.510}=15$ rivets wee 7 on bottom 14 thru (1) in double shear bear value $=14 \times 8.2=115.0$ Combined stresses (5) and (1) $=67.15+67.15^{-}=134.3-115^{-}=19.3$ =additional stress carried by rivets in single shear $\frac{19.3}{4.510}=5$ rivets through (1) \therefore plate (1) is length to catch 6 rivet, 3 in each dinge,

Combined stress (1,4$)+(5) 67.15+67.15+83.93=218.23$ Bear value to rivets in towhee shear $=20 \times 8.2^{\frac{164.0}{54.23}}$
$\frac{54.23}{4.51}=12$ ninets $i,(4)$ is eptended ta catch 8 rivets, 4 in each angle.

Combined stresse filler folate ta meb $=59.7+1.43+1.15=62.28 \quad \frac{62.28}{4.51}=14$ sinets Liller filate io extended for affearance, and hos 4 rivet hetween anglen for

The aboue diagram gives the location of flates and rinets at fanel faints in uffer chord. The numbers shown on the drawing sefor to she some fireces in the diagcom outche frevions fage. Suspenders.
1音 Pawk. $\quad 52.8=4.22$ in' 2 on 2.11 in' 2 for ench straind.
Top.
8" 16.25 th. chaunls. a rea $=4.78$ in $^{2} t=0.21$ Lesnints $3 \times 1 \times 0.4 \frac{4.63}{4.15}$ i $=$ net ouea.

$$
\text { Full stingth }=4.18 \times 12.5=51.9 \mathrm{Ki} \mathrm{Hs} .
$$

 shear $3 / 4$ "viet in sugh shan $=2.6 \mathrm{r} 1 \mathrm{~T} \not \mathrm{f}$..
trell shi, th gries $\frac{51.9}{2.651}=20$ virbts. Hee 12 in each chaund. Bearing of virlts. $=12 \times 3375=40.7$ Tifs. \therefore safe.
thon Beam Cnn to att insfendensitposts.
 $\frac{52.8}{41550}=120$ vivets. Use 8 on each ride 5-Beam $=4580 \mathrm{tbs}$. Seaing in $\frac{1}{2}$ "mital $=16 \times 7.87=126$ Kips \therefore ort.
Plates häupering slean vetiven chamels., is of which is caned frum Hoor-beam uch to ontside claunl.
 $\frac{26.5^{4}}{266}=10$ riöls. Beaming of vivels $20 \times 3375=67.5$ kiks.
steryth of clulatuts. pos area $=4.28$

$$
\text { Limholes }=\frac{.60}{4.11}=\text { net ma }
$$

$$
4.15 \times 2=9.30 \quad 9.30 \times 15=139 / \mathrm{lips} \therefore 011
$$

Sturt to end post fugiied same sectesis, haing and no.of vivats as top of ittruppender \therefore used as sleomin. second post.
het area of cleanal $=5.00 \times$ allmablestun, $5 \times 12.5=62.5$
2 piin plailes. $\geqslant 6 \times 6=2.62$

$$
\begin{aligned}
& 5 \times 12.50=32.7 \\
& 115 \times 12.5=18.8
\end{aligned}
$$

$$
6 / 16 \times 4=1.50
$$

Seaniry, allved 2215 per in' $\quad \frac{62.5}{22}=2.84, \frac{32.7}{22}=1.49, \frac{18.8}{22}=0.85$ دotal Beaing $=5.18 . \mathrm{m}^{2}$

Beariny $\frac{3}{4}$ " in dowbleshem $=5.301$

$$
\frac{32.7}{\sqrt{3.301}}=6 \text { uivel. } \quad \frac{18.8}{5.301}=4 \text { uirts }
$$

Sotime and post.

Wossarea wel． $7.3 \mathrm{~s}^{-}$
2 月ニ゙ Hates．
6．ao
$1 / 2 \times 12$
Lesi pin hole $6 \times 1.39=\frac{6.00}{19.35}$
net aren．
11.01

$$
11.01-7.35=3.66 \quad \frac{3.66}{7.35}=50 \%
$$

Det ura cluaul $=500 \therefore 40 \%$ in exun of Boch of chandel．

$$
\begin{aligned}
1 / 2 \times 6^{\circ} \text { plate } & =5.90, \text { Lotal strette }
\end{aligned}=5 \times 12.5=62.50
$$

$\frac{62 . J^{-}}{22}=2.84$ in $\frac{37 . J^{-}}{22}=1.70$ m $\frac{25}{22}=1.18-i n:$ Beaiyopr，
 por thesion，and alve $p i=$ sure aod top por coup

Post $V_{2} L_{2}$（ 31 Prit．）Unwable $\operatorname{stu}=16000-\frac{70 \times 12 \times 4+4}{7.28}$
$\frac{130.5^{-}}{22.000}=5.43 \Delta^{\prime \prime}$ for fearing．$\frac{5.4^{3}}{6}=1^{\circ}$ atmy pin．$\therefore t=1 / 2$ endelanal．
Het are cliaul $=5.82 \approx^{2}$

$$
\begin{aligned}
\text { plate } 7 / 16 \times 6^{*} & =2.625 \quad \text { stuplii }
\end{aligned}=5.82 v 7.38=43.0
$$

\therefore moly｜pir Nate $7 / 16^{\prime \prime}$

Bottrm some as $2^{n n}$ post at all $\frac{19.4}{2.65}=7.6$ restets pruets used tos tog
 $\frac{4.43}{4.5}=6$ ． T_{1} pis．
twll stryth $=2 \times 6.55 \times 7.35=96.2 \pi . \quad \frac{16.2}{22}=4.36 \mathrm{~m} 2$ $\frac{4.36}{2 \times 6}=0.363 \mathrm{mi}^{\prime} \therefore$ only prin poute $7 / 16^{22}$

Bothrn same． $8-3 / 4$ ninti used
$5^{\text {th }}$ post．Jame as previons．
Live ". $150 \times 32=9.8 .1 \mathrm{~T}$
Lover Lat. Fystum. Max cm $=22.6+21.6=44.2 \mathrm{Tip}$.
Alluable emp $=16000-\frac{20 \times 12 \times 10}{1.015}=8100$
$\frac{441^{2}}{8.15}=5.4 \mathrm{in}^{2} \therefore$ was. $231 / 2 \times 31 / 2 \times 1 / 2$ \& hack to back.
upper Lat system: Yenually accepted system in pori of L^{s} bach to rack as zeus and $2 y$ tum of $\sin i<s$ tide is qettim in barking or baltim Water. Ser Rioter. Camber.
sOlved as pie rpeapcations.

Nind Load thamfund to rost $=16.8 \mathrm{kips}$ 16.8

$$
\begin{aligned}
& 2 \times 16.8=33.6 \\
& \text { int assund max at } 14 \text { fthm } i \text {. }
\end{aligned}
$$

$$
M=\frac{1}{2} N L=\frac{1}{2} \times 14 \times 12 \times 33.6=5650 \mathrm{K1} \% \mathrm{~s}-\dot{\min }
$$

$$
S_{1}=\frac{N 1 c}{I-\frac{p l^{2}}{6 E}}
$$

$\stackrel{168}{7_{7}^{6}} \quad \downarrow \rightarrow^{16-8}$

End Beasings. (Rollu.)
the -xpansion heaing used is the standard une deaigued by learge S. Marison, shown on fage 22s, Part III Rbafs and Aridges, anse also in the dramings accompanyring these notes.
$p=600 \mathrm{~d}$ where p is frescure frer liviar in ang d is the diametar of a raclen. $\therefore p=600 \times 6=3600$ llelini. we used 6 rollers which are $35^{\circ " l o n g}$ Hence $6 \times 35=210^{\circ}$
$210 \times 3600=76.7$ Kifs pressure ufheld by rallens.
The nesticil fressure exerted on tctere rollus is 587 kifo. \therefore ite are safe in recing 6 rolearo.

This fres sure io thansfored from the thin at thi foint thin 4 sets of flates distibited acroso the fin aind thence and to the roleres. Lo figure the acige of these flates we cure fule strength of the nallerar For ond set of theee plates $\frac{767}{4}=192$ Nifo $\frac{192}{12 \times 63 / 4}=1.29^{\prime \prime} \quad \therefore$ use $3-1 / 2^{\prime \prime}$ flates. "aje of him

Section at End Pin
showing arrangement above the expansion bearing.

Sidewalt. (seeplate)
 J×37.5 = 112.5 por linear. 4 .
$8^{\prime \prime}$ I-ream $=18$.
'Channa' $=\frac{5}{135.5}$
LIV世 Load at 100 lbs persy. $\mathrm{H}+=5 \times 100=300$.
$L \cdot L \cdot A 1=\frac{1}{8} \omega l^{2}=\frac{1}{8} \times 300 \times 16^{2}=9690$ Us H $=115,000 \mathrm{lbV}-\mathrm{in}$
$D . L N=\frac{1}{8} \omega l^{2}=\frac{1}{8} \times 135.5 \times 16^{2}=\frac{43.400}{158.4 ~ M 1 \% s-r i c}=$ tota $1 M$.
$\frac{158.4}{13}=12.2=\frac{I}{c .} . \therefore U s e 8181 \mathrm{~h} . \quad I$-Beam $\frac{I}{C}=14.2$

$$
\begin{aligned}
1 / 2 \text { Load: 7/oor } & =56.25 \\
\text { rraam } & =18 \\
\text { Channa } & =5 \\
\text { Pailiny } & =\frac{10}{89.25} / \mathrm{hs} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { L.L. } \quad \begin{aligned}
\quad= & 2 \frac{1}{2} \times 100 \times 16= \\
& \text { Tutal }=\frac{4000}{5428}
\end{aligned} \\
& =38000 \mathrm{lhselt}
\end{aligned}
$$

Haliby rivat. as perplata.
$s_{1} \times 6 x^{\frac{1}{2}}+16 s_{1} \times 1=49 \mathrm{~s},=38000 . \therefore \mathrm{s},=775 / \mathrm{bs}$. per rivils.
I" rints gives 7060 lbs instugle shaur \therefore US 4 ok.

Analysis of Weight. 1/2 Truss
upper chord.
1 Caver flate $28^{\prime \prime} \times 1 / 2^{\prime \prime}=\frac{14}{144} \times 490=47.6$
4 Angles $31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ From cambia $=44.4$
2 Allates $18 " \times 5 / 8^{\prime \prime}=\frac{18}{144} \times 490=61.2$
2 Zlat $5^{\prime \prime} \times 1 "=34.0$
Lengtha
Chord $1=45.25$
Plates
187.2 lfo perlinear

$$
\begin{aligned}
2 & =34.17 \\
3 & =32.56 \\
4 & =32.06 \\
1 / 25 & =\frac{16.00}{160.04 \mathrm{ft}}
\end{aligned}
$$

Gaw $\frac{1}{2} \times 16 \times 27=0.154$ Etra for $160.00 \times 187.2=36,000$ lboft foct conening sin $1 / 2 \times 16 \times 27=0.154$ $\sin 1 / 2 \times 16 \times 37=0.206$ Eielen $1 / 2 \times 11 \times 40=0.153$

$$
0.667 \mathrm{f}^{3} \text { ifulate }
$$

Lee flates $9-1 / 2 \times 16 \times 28=1.36$

$$
\begin{aligned}
& 4-1 / 2 \times 16 \times 20=1.90 \\
& 3 / 2-1 / 2 \times 28 \times 28=0.95
\end{aligned}
$$

Lacing $=2 \sqrt{2} \times 160 \times 1 / 2 \times 2=\frac{0.55}{2.86 \times 490}=1400$ ll .f
Prin $41 / 2 \times 30 \times 71 \times 9 \times 0.353=1340 \mathrm{lbo}$
Hain Compresoin member $=30,000 \mathrm{lbo}$
Eth for End poat Soveng Eitra for End
Plato
Jier plateo
Din

$$
\text { 7atal }=\frac{1345}{39,700} \quad "
$$

Lower chord.
Eye bano

$$
\begin{aligned}
8-8 \times 1 \times 32 \times 12 & =24600 \\
4-9 \times 1.12 \times 32 \times 12 & =14680 \\
6-10 \times 1.37 \times 32 \times 12 & =\frac{30680}{69960} \times 0.353
\end{aligned}
$$

Puino $51 / 2 \times 35 \times \pi \times 1 / 2 \times 0.353$
Verticals
$36^{\prime}+54^{\prime}+56^{\prime}=146 \times 25 \times 2=7300$ lbo

$$
48^{\prime} \times 30 \times 2,=2880
$$

Lacing $\frac{2 \sqrt{2} \times 178 \times \frac{1}{2} \times 2}{1728} \times 440=299 \quad$ "
Olates $4 \times 4-12 \times 1 / 2 \times 27=2590$

$$
4 \times 2-12 \times 1 / 2 \times 56=2690
$$

$$
4 \times 2-12 \times 1 / 2 \times 22=1050
$$

$$
4 \times 2-12 \times 1 / 2 \times 35=\frac{1680}{8010 \times 0.353}=\frac{2830}{13309}
$$

Sub Verticals.
8"-16.251 b . Chawets. 6 " $\$ 3.001 \mathrm{~b}$ chachls.
24', (andnoit)
20,
20
26^{\prime}
24^{\prime}

Lacing $\frac{3}{3} \times 2 \times \sqrt{2} \times 134 \times \frac{1}{2} \times 2=150 / \mathrm{bs}$.
$15^{\prime}\left(\frac{1}{2}\right.$ antar)
$\overrightarrow{134^{\prime}}$

$$
\begin{aligned}
& 134 \times 2 \times 16.25= 43601 \mathrm{hs} \\
& 2470 \\
& 6830
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
24 \\
27 \\
29 \\
\frac{15}{95^{\prime}} \\
95 \times 13 \times 2=2970 \mathrm{lbc} . \\
\text { Fotal }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Platus } \\
& \text { PlatuJ. } 3 \frac{1}{2} \times 2 \times \frac{1}{2} \times 13 \times 25=1140 \\
& 3 \frac{1}{2} \times 2 \times \frac{1}{2} \times 12 \times 25=1100 \\
& \begin{aligned}
& 3 \frac{1}{2} \times 2 \times \frac{1}{2} \times 12 \times 25= 1100 \\
& 264026 \mathrm{abo} \\
& 1050,
\end{aligned} \\
& \begin{array}{l}
1050 \because \\
1680 \\
\hline 7620
\end{array} \\
& 7660 \times .353=2200
\end{aligned}
$$

Tota $/$ weyget subveils. $6830+230+2200=9760$
Tral " Veilecals.

$$
\text { Pluspins. } 4 \frac{1}{2} \times 26 \times \pi \times 4 \times 0.353=
$$

$$
\begin{gathered}
13309 \\
23069 \\
520 \\
23589
\end{gathered}
$$

Diàyonals.

$$
\begin{aligned}
& 4-8^{\prime \prime} \times 1^{\prime \prime} \times 21^{\prime}=672 / \mathrm{bs} \\
& 2-4^{\prime \prime} \times 3 / 4^{\prime \prime} \times 37^{\prime}=222 \\
& 4-7^{\prime \prime} \times 1 \prime \times 3 \prime^{\prime}=870 \\
& 2-4^{\prime \prime} \times 33_{1}^{\prime} \times 37^{\prime}=222 \\
& 6-5^{\prime \prime} \times 1 \times 84^{\prime}=1020 \\
& 2-5^{\prime} \times 11^{\prime \prime} \times 36^{\prime}=360 \\
& 2-5^{\prime \prime} \times 1^{\prime \prime} \times 36^{\prime}=360 \\
& 2-4^{\prime \prime} \times \frac{3}{4} \times 35^{\prime}= \\
& 210 \\
& 3946 \times 12 \times 0.353=16,750 / \mathrm{s} .
\end{aligned}
$$

Floor Ba ams and strinquirs. (1/2sustom)

$$
\begin{aligned}
\text { Hor Bean }-8 \frac{1}{2} \times 9 \frac{1}{2} \times 80 & =6450 \\
3 \frac{1}{2} \times 25 \times 144 & \frac{-12600}{19050}
\end{aligned}
$$

Parimy.
Boud ray

$$
\begin{aligned}
& 8 \frac{1}{2} \times \frac{4 / 2}{12} \times 144 \times 150= 68700 \\
& 81 / 2 \times 6 / 2 \times 144 \times 100=61200 \\
& 124900
\end{aligned}
$$ ctuisott Platus silawalt

$$
\begin{aligned}
& 8 \frac{1}{2} \times \frac{1}{2} \times 15 \times 0.353 \times 12=2740 \\
& 5180
\end{aligned}
$$

$$
5 \text { Beaus } 2 \times 144 \times 18=\frac{5180}{9920}
$$

Jidawulk.

$$
5 \times 3 / 1 / 2 \times 150 \times 144=30,000
$$

$1 / 2$ opper Lateral systam.
portal. $1 \times 30 \times 11.1=333$
Panels. $7 \times 26 \times 11.1=2000$
struts. $8 \times 20 \times 19.6=3130$
PlateJ $8 \times \frac{1}{2} \times 17824=575$
$9 \times \frac{1}{2} \times 11 \times 22=384$
1/2L.L.S.

$$
9 \times 20 \times 19.6=3530
$$

plates. $9 \times 4.5=\frac{1710}{11.662}$
Tota/ N\&ight.
upparchord. $\begin{array}{ll}39700 \text { lhs. Tryat Bridye. } \\ 27940 \text {. }\end{array}$
Lowar varticals.
Diayonals

$$
23589
$$

$$
4 \times 248519=1194,076 / 63
$$

Toor Baames ystre.
parmig.
s thed walk.
Lataral systams $\frac{11662}{298519}$
$16>50$
10058

160900 7920

Pespectuely intruntod.
ßm IAFangulias

