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I. ABSTRACT 

It has been long recognized that many folds observed in the field and in 
seismic reflection data are created as stratigraphic layers are displaced over 
nonplanar fault surfaces. As material is moved over a bend in a fault, the rock 
layers are forced to fold, a process termed "fault-bend folding." Fault-bend 
folding has been geometrically characterized and forward modeled, but a 
rigorous inverse model does not exist. An inverse model is currently being 
developed that uses a genetic algorithm to find the fault shape over which 
displacement of material fault could have created the observed structure given 
the geometric and kinematic constraints of fault-bend folding. As part of the 
development of the inverse model, this study aims at creating a reasonable initial 
population of faults for the genetic algorithm by observing the fold shape and 
estimating the fault shape based on a few aspects of the fold. By integrating a 
few simple structural geology concepts into the prediction of fault shapes from 
fold shapes, a program was created that produces a more intelligent initial 
population of folds for the genetic algorithm. 

The algorithms developed can be separated into two categories: 
simplification and description of the observed fold and fault shape estimation. 
Fold simplification is accomplished by an area-based line simplification algorithm. 
The properties of the fold are observed (line length, spatial X and Z locations) 
and dip domains are described. The fault shape is then estimated by using the 
information observed about the fold and dip domains to predict the initial X and Z 
location of the fault, length of the fault, number and location of fault bends, and 
slope of fault segments, and the input slip is also estimated. The algorithms 
were tested on four synthetic fault-bend fold models that were generated by the 
forward modeling program. The tests explored the estimated fault shapes 
generated by varying the fault parameter range, line simplification, and 
complexity independently and together. It was observed that the line 
simplification is the most sensitive parameter to change, and that variations in 
fold shape and complexity make it such that there is no single optimal value for 
any of the parameters used. As such, it was determined by using the test 
functions developed that by varying all of these parameters within a specified 
range it is possible to generate an initial population of faults with the desired 
variability around the known fault shape. Future work includes testing and 
refining the algorithms and testing their most effective implementation into the 
inverse model. 
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II. INTRODUCTION 

It has been long recognized that many folds observed in the field 

and in seismic reflection data are created as stratigraphic layers are displaced 

over nonplanar fault surfaces. As material is moved over a bend in a fault, the 

rock layers are forced to fold, a process termed "fault-bend folding" (Figure 1 ). 

This process was first geometrically and mathematically described by Suppe 

(1983). The description was extended to multi-bend fault-bend folds (Medwedeff 

and Suppe, 1997) and curved hinge fault-bend folds (Suppe, et al., 1997). An 

understanding of the geometry and kinematics of fault-bend folding is essential in 

addressing structures observed in the field and in seismic reflection data (Shaw 

et al, 2005). 

The process of fault-bend folding has been kinematically forward-modeled 

(Hardy and Poblet, 1995), meaning that given an input fault shape, as slip 

increases at each time step, the deformation can be described by a velocity 

model of the particles (Figure 1 ). As expected, the inverse model asks the 

reverse of this-given an observed fold shape, displacement of material over 

what fault shape could have created that structure given the geometric and 

kinematic constraints of fault-bend folding? Computer modeling of fault-bend 

folding has been addressed by several studies (Contreras and Suter, 1990, 

Zoetemeijer and Sassi, 1992, Hardy and Poblet, 1995, Egan et al, 1999), but a 

rigorous inverse model does not exist. 
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The velocity description of the inverse model has been derived for simple 

cases (Connors, et al, 2005), and the extension of this model to more complex 

structures is the motivation for this study. A complete forward fault-bend folding 

model has been developed (Connors and Upchurch, 2003) that serves as the 

basis for the inverse code. The inverse code is based upon a genetic algorithm, 

which functions by the following steps: 

1. An initial population of fault layers and input slip are created, 

2. The "fitness" of each population member is assessed, based on 

how closely the fold forward modeled from that set of 

parameters fits the observed attributes of the objective fold. 

3. The most fit members are selected to survive to the next 

generation, 

4. The members that survive are mutated by randomly changing 

their attributes slightly. In addition, population member 

attributes are shared or "crossed-over" between members to 

create some new members with characteristics from multiple 

members from the previous generation. 

5. Steps 2-4 are repeated. 

While this model works very well for simple geometries, its ability to address 

more complex structures is limited because many of the fault parameters are 

"hard-coded" and have to be manually changed in order to find better inverse 

solutions. 

This study attempts to address this by creating a method of looking at 

folds and estimating the fault shape based on a few aspects of the fold. By 

integrating a few simple structural geology concepts into the prediction of fault 

shapes from fold shapes, a program was created that produces a more intelligent 

~·-·---· 
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initial population of folds for the genetic algorithm. This will allow for a prudent 

narrowing of the parameter space being searched-unreasonable fault shapes 

will not be included, yet the parameter space is not too specific such that the 

genetic algorithm might become stuck in local minima. This will allow only 

reasonable fault options to be searched, and will create an improved ability to 

analyze more complex structures. 
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Ill. THEORY 

A. Fold Simplification 

Folds can be defined in the traditional way of delineating two dipping 

"limbs" separated by a hinge (figure 2a); however, it is also useful to think of a 

fold as a series of "dip domains," or regions of uniform dip, separated by axial 

surfaces (figure 2b ). The latter definition of a fold is useful in describing how fold 

and fault shape are geometrically related for fault-bend folding. 

Line Simplification 

The first step in reducing a fold down to its essential components is 

simplification of the line segment that represents the fold shape. Line 

simplification is performed by an area-threshold-based filtering algorithm. First, 

all collinear points are removed. Then, triangles are created by connecting three 

collinear points on the polyline, and the areas of the triangles are calculated. If 

the area of a given triangle is above the specified standard deviation of the area 

of all three-point triangles, then this point is eliminated from the polyline 

(Visvalingam and Whyatt , 1993). 

Describing dip domains 

There are multiple ways to describe dip domains that are useful in 

predicting fault shape. One method is that a dip domain is defined as a dipping 

region bounded by axial surfaces that dip the same direction. The dip domain 
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may include several segments that dip varying amounts, but the full dip domain 

includes all segments that are bounded by axial surfaces that dip the same 

direction (Figure 3a). 

Another useful way to describe dip domains is that each dip domain is a 

dipping segment that is bounded by a synclinal and an anticlinal hinge (Figure 

3b ). For example, within a dip domain bounded on the left by a synclinal axis, 

there may be multiple synclinal hinges within the dip domain, but the dip domain 

will not end until an anticlinal hinge is encountered. 

B. Fault Prediction 

Using the above described methods of fold simplification, there are a 

number of properties of the fault that may be estimated. In some cases, 

knowledge of more than one folded layer allows one to make more detailed 

predictions. 

Initial position (X) and Layer length 

Estimation of the initial X position of the fault is determined by the 

minimum X value of the folded layer (the leftmost point of the fold) minus the 1.5 

times the estimated slip amount. Because the estimated slip is not certain, as 

slip is consumed and produced at synclinal and anticlinal fault bends, 

respectively, allowing for 1.5 times the estimated amount ensures that the initial 

position of the fault is beyond the undeformed extent of the layer. 

8 



The length of the fault is the maximum X value of the folded layer (the 

rightmost point of the fold) minus the initial X value plus half of the slip. This 

ensures that the last point of the fault is sufficiently beyond the end of the folded 

layer. Both layer length and initial X position are fixed because they are 

maximum estimates that are beyond the extents of the fold that define the 

boundaries. All parameters to follow are not fixed, as varying these parameters 

is useful in generating a variety of different faults. 

Estimate initial height (Z) 

Estimation of the initial height of the fault is dependent on the amount of 

input data for the fitness objectives. If the shapes of multiple folded layers are 

input, then the predicted Z value for the fault is the lowest Z value in the polyline 

minus this value times the range for the GRFPms. This is done so that the range 

covers the area immediately below the lowest Z value of the fold, with the highest 

possible value being the Z value of the fold. 

If information on only one fold layer exists, then the maximum possible Z 

value is the minimum Z value of the fold minus the range of Z values for the fold. 

The range of Z values explored is then from this point minus three times the 

range of Z for the fold to the determined maximum Z value. The multiplier of 

three is arbitrary, but allows for a significant range of initial Z values to be 

explored. Since there is only information on one layer of the fold, little can be 

known about the depth of the fault below the fold, so a wide range of initial 

heights of the fault is appropriate. 
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Information about the observed fault may also be input as a fitness 

objective. If something is known (input as a fault objective) about the first 

segment of the fault, then the minimum value between the the minimum Z value 

of the input fault objective and the lowest Z value of the polyline is used for the 

initial height of the estimated fault (Z value). 

Finding active axial surfaces to predict fault bend locations (FRW) 

Integral to the concept of fault-bend folding is that as material moves over 

bends in the fault, folds in the rock layers develop. Thus the location of bends in 

the fault may be predicted by the shape of the fold. In a syncline/anticline 

bounded dip domain of a fold, the leading synclinal axis corresponds to an active 

axial surface and a bend in the fault. Subsequent synclinal bends within the dip 

domain similarly may be correlated with synclinal bends in the fault. The final 

anticlinal bend in the dip domain correlates with a passive axial surface; this axial 

surface represents the current position of the material that sat at the active axial 

surface when deformation began. Similarly, in an anticline/syncline bounded dip 

domain of a fold, the leading anticlinal bend in the fault corresponds to an active 

axial surface and an anticlinal bend in the fold, and subsequent anticlinal bends 

in the fold dip domain may be correlated with anticlinal bends in the fault, with the 

final synclinal axis corresponding to a passive axial surface (Figure 4a). 

Because the axial surfaces modeled are relatively steep, and because the 

faults are only meant to be a close approximation around which a range of faults 

will be generated, it is adequate to approximate the X coordinate of the fault bend 
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as the X location of the corresponding bend in the fold (the exact location would 

be described as the point where the fault intersects the axial trace that 

corresponds to that bend in the fold; this approach may be implemented in the 

future). 

The length of the fault is estimated, as described above, as the range in X 

values for the fold plus 1.5 times the estimated slip in order to ensure that the 

estimated fault is well beyond both sides of the undeformed layers. Because this 

is an overestimation, the relative width of the end segments as estimated is less 

than they should be; for that reason, the first and last fault segments' fault 

relative widths are multiplied by 0.3 and 0.2 to account for this error. These 

values were determined by empirically testing a number of faults and seeing 

what values best readjusted fault relative widths to account for the error in layer 

length overestimation. 

In approximating the fault shape, it is useful to consider both the simple 

generalization of the fault shape and the more specific description. In the simple 

case (hereafter referred to as 'simple'), only the leading active axial surfaces of 

dip domains are correlated with bends in the fault. This approach provides a 

rough approximation of the fault shape (figure 4b ). In the more general case, 

intermediate axial surfaces are also correlated with bends in the fault (figure 4b ). 

This approach provides a more detailed approximation of the fault, but includes 

more points in the fault shape. The number of points in the simplified line 

controls the number of points that are correlated to fault bends in this case, so 
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the value used for the fold polyline simplification threshold plays an important role 

in the number of bends determined in the more complex approach. 

Estimating input slip 

The input slip may be estimated in several ways that are dependent on 

analyzing the backlimb of the fold. Slip is increased, or produced, at synclinal 

fault bends and decreased, or consumed, at anticlinal fault bends, so an 

approximation of the slip is dependent on the number and nature of the fault 

bends, which is in turn dependent on the number of points that result from 

simplification of the fold polyline. For one-synclinal-bend faults (like the one 

shown in Figure Sa), the length of the backlimb of the fold is a good 

approximation of the maximum amount of input slip. However, as the number of 

synclinal bends increases and the fault becomes more rounded, the length of the 

backlimb is much larger than the actual input slip (Figure Sb). Thus, maximum 

slip is calculated as the minimum value of the two following possibilities: 

1. Length of the back limb (Sa, Sb.) 

2. The change in height of the fold divided by the sign of the maximum slope 

(Sc.). 

Because it is difficult to estimate the input slip in the case of very rounded faults 

(in a very rounded fault, a very small slip would produce a very long backlimb ), 

because slip is produced and consumed at synclinal and anticlinal fault bends, 

respectively, the minimum slip estimate is zero . 

• =·...:: ... :....._ 
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Estimating fault segment slopes 

The relationship between the slope of segments of the fold and segments 

of the fault in fault-bend folding is complex and is fully characterized by Suppe, 

1983. However, to provide a simple approximation of this in order to generate a 

reasonable and sufficiently diverse initial population, the following algorithm for 

the estimation of fault slope is implemented: 

1. The slope of the first fault segment is approximated as the slope of 

the first fold segment. 

2. The slope of subsequent fault segments is estimated as the sum of 

the slopes of the current and previous fold segments (skipping flat 

segments because material is being translated through these 

regions) (Figure 6). 

In cases where fault simplifications have a large number of points, fault slopes 

quickly grow to an irrationally steep slope. To address this, the maximum fault 

slope allowed is the maximum slope of any fold segment. While in some cases 

this leads to an under-estimation of fault slope, this provides reasonable fault 

shapes in most cases; refinement of this algorithm to address this issue will be 

addressed in the future. The minimum allowed slope of any fault segment is 

zero; while this is not always true (particularly in extensional cases), instances of 

negatively-sloping fault segments in contractional fault-bend folds are rare, and 

only contractional structures were modeled in this study. This will be addressed 

in future work as well. 
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IV. CODE IMPLEMENTATION OF THEORY 

The above-described theories were written as several functions in Matlab, 

and are used in conjunction with previously written functions (Appendix II) to 

create populations of faults within specified parameter ranges based on the input 

fold shape (all functions written by the author except simplifyline, written by C. D. 

Connors). The main function is 'estGRFPms', which is the abbreviation of the 

function's purpose-estimation of the generation of random fault parameters. 

Within this function, the most complex subroutine is the determination of dip 

domains, which is accomplished by the function 'dsbDipDomains'. Please refer 

to the program maps of 'estGRFPms' (Figure 7) and 'dsbDipDomains' (Figure 8) 

to see the flow of function implementation for this Matlab toolbox. 

Simplification of the fold polyline is accomplished by the function 

'simplifyline'. Minimum and maximum X and Z values, slopes, and a variety of 

other quantities that describe the fold are attained by evaluating the function 

'getFitObjVal'. From this information, dip domains are described as polylines that 

are bounded by synclinal and anticlinal bends or include all same-dipping axial 

surfaces by the function 'dsbDipDomains' (Figure 8). Fault bends are found in 

the 'simple' case by the function 'dscFaultBendsSimple' and the 'all' case by 

'dscFaultBendsAII'. Slip estimates are made by 'estGRSlipPms'. Fault slopes for 

each segment are estimated by 'dscFaultSlopes', and the relative width of each 

fault segment is estimated by 'dscFRW'. From these estimations and the range 
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specified by GRFPmsVal, 'genGRFPms' creates ranges for fault relative width, 

fault slopes, and Z values. 

The function 'testEstGRFPms' is a wrapper that runs 'estGRFPms' with 

specified range values, simplification values, and 'simple' or 'all' for a specified 

number of faults and plots them over the fitness objectives and known fault. 

'testEstGRFPms2' is the same as 'testEstGRFPms', except that it inputs ranges 

for the specified values above and randomly selects from those ranges a value 

for each individual fault in the population. This allows faults in the population to 

have a range of fold simplifications, ranges for fault parameters, and 'simple' or 

'all' designations, creating a diverse fault population. 

Help documentation for each of the functions created in this thesis may be 

viewed in Appendix I. Additionally, these functions may be found in the folder 

.. .fbf\src\fbflnv\general\estimatelnitial within the fault-bend folding modeling code. 
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V. RESULTS AND DISCUSSION 

Several tests were developed and executed to explore numerous aspects 

of the fault estimation algorithm. The tests were designed to observe the range 

of fault shapes that could be generated, the sensitivity of different parameters, 

limitations of the current algorithm, and biases or tendencies of the algorithm to 

favor certain solution sets. It was then possible to create hypotheses about the 

causes of the trends that became apparent from observations of the results of 

these tests. 

It is important to note that the intention of developing this algorithm is to 

create a broad and diverse range of possible fault shapes that are reasonable 

given basic properties of the observed fold; it is readily acknowledged that many 

of the approximations made in the algorithm do not directly predict the precise 

answer. Rather than predicting the exact solution, the intention is to create a 

population of reasonable solutions that are similar to the correct one, as it will be 

valuable to use this population in the genetic algorithm of the inverse model. 

Because the exact solution is not the primary goal of the algorithm, it is 

understood that the estimations made in the algorithm introduce some bias into 

the solution populations. 

Fault estimation was conducted on four synthetic fault-bend fold models 

that were generated by the forward modeling program: one flat-20 degree ramp­

flat fault-bend fold (Figure 9), one flat-ramp flat where the ramp had two bends 

(10 and 30 degree fault slopes for ramp segments) (Figure 10), a rounded fold 
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(Figure 11 ), and flat-ramp-flat-ramp-flat (two 20 degree ramps separated by a flat 

detachment) (Figure 12). In figures 13, 14, 15, 16, 17, 24, 25, 26, 27, and 28 a 

population of 50 faults is displayed. The 'all' designation is used in the 

generation of all figures except in figure 23, column 1, and 50% of the time in 

figures 24, 25, 26, 27, and 28. 

A. Varying fault parameter range value 

Exploration of the parameter space for the fault parameter range, or size 

of the window within which fault parameters can be chosen, are shown in figures 

13, 14, 15, 16, and 17 for the different fold shapes described above. As shown in 

Figure 13, points that represent the vertices of the fault cluster near the known 

fault vertex locations, but as the range value increases, the estimated vertex 

points spread more evenly around the known fault vertices. The range of the first 

bend's estimated vertex is flatter because the slope of the first segment is always 

zero (there is no variability in this value regardless of the fault parameter range 

specified), as specified by the algorithm, because the slope of the first overlying 

segment of the fold is also zero. 

For each of the fold shapes shown in figures 14-17, as the range value 

increases, the variability of the fault shape increases, but estimated fault shapes 

generally cluster around the known fault shape (in red). It is important to notice 

that in the simple flat-ramp-flat case (Figure 14 ), faults are fairly evenly 

distributed above and below the known fault shape, and thus the population of 

faults created appears to cover the parameter space as desired. However, when 
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the fault shape becomes more complex, approximations made in the algorithm 

cause the estimated populations to be biased in certain directions; for instance, 

because the algorithm estimates the location of an anticlinal fault bend as directly 

below a leading anticlinal hinge in the fault (instead of down the axial trace), the 

location of the first point in the upper detachment in figure 15 is estimated as too 

far to the right; additionally, the fault slope is underestimated because the 

algorithm used to determine fault slope is inexact. 

Similarly, the fault is estimated as too high (above the known fault shape) 

in the flat-ramp-flat-ramp-flat case (Figure 17) because, while the slopes are 

estimated correctly, the same error in fault-bend location as described above has 

caused the relative width of each of the segments to shift slightly. Because the 

beginning and end segments are multiplied by scalars to account for the 

overestimation of fault length (described in 111.B section 3) this compresses the 

other segments; multiplying any intermediate flat fault segments by a scalar 

value should rectify this, as accounting for the overestimation of fault length 

should be distributed over all flat segments in the fault. 

However, it is also evident in this and the following examples (Figures 14-

17) that the higher the fault parameter range value, the more population 

members fall both above and below the known fault shape (there is more 

symmetry to the range about the known fault), suggesting that a higher value in 

fault parameter range can negate some of the bias introduced by the 

approximations made in the algorithm. Because the inverse model will be used 

to address fold shapes with considerable complexity and the fault shape cannot 
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be perfectly estimated, a relatively broad range of population members is 

necessary to find the optimal solution. 

It has been observed that at and above a range value of 0.4, the 

population members become unrealistic and no longer reflect the information 

known about the fault; thus it appears that using value around 0.3 may create the 

best range for more complex faults, while it is possible to generate a reasonable 

population for simpler faults (Figure 14) with a smaller range value. 

B. Varying line simplification 

The line simplification value may be considered the most sensitive 

parameter tested, as slight variations in this parameter greatly affect the 

simplified fold shape, which then controls the nature of the estimated fault shape. 

The line simplification number represents the cutoff standard deviation of the 

area of all three-collinear-point-generated triangles, where a point is removed 

from triangles having a lower area than the specified line simplification value. 

Line simplification values of 0.01, 0.05, 0.10, 0.50, and 1.00 were tested on the 

four example fault-bend fold shapes (Figures 18-21 ). 

It is evident that different line simplification values are required to capture 

the critical points of the fold, and that the nature of the fold shape determines the 

range of line simplification values that will work. For example, in the case of the 

simple flat-ramp-flat (Figure 18) fault-bend fold, because the fold shape is simple 

and angular, higher values (0.50-1.00) for the simplification value find the 

essential points on the fold, and the estimated fault shape is very close to the 
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known fault shape. Using a lower line simplification value (0.001-0.10) results in 

superfluous points being retained in the fold shape, and as a result, the 

estimated fault shape is also less accurate. 

However, when there are two bends in the fault ramp (Figure 19), use of 

line simplification values of as low as 0.1 0 and result in elimination of the 

intermediate bend from the simplified fold shape. Because of the subtle changes 

in slope in the backlimb of the fold, the area of triangles connecting these points 

is fairly small such that these points are eliminated with fairly low cutoff values. 

At higher simplification values, the estimated fault does not have any information 

about the intermediate bend in the ramp, and is estimated as a single, gently 

sloping backlimb. 

This consequence is also observable in the case of the rounded fold 

(Figure 20); because the area of collinear points on the rounded limbs is very 

small, these points are eliminated quickly as line simplification value increases. 

In this case, because the change in slope is very gradual, the area of collinear 

triangles are very small, the fold shape is reduced to a single-segment backlimb 

at a simplification value of 0.16, and high line simplification values (0.50-1.00) 

result in no intermediate points being retained in the simplified fold shape. 

In the case of the flat-ramp-flat-ramp-flat fault bend fold, a relatively low 

simplification value is necessary, as the fold shape becomes too simple for the 

fault estimation code to find the second ramp with increasing line simplification 

values. Part of this may be attributable to the way dip domains are defined; if dip 

domains were defined as bounded by synclinal and anticlinal hinges instead of 
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including all segments with same-dipping axial surfaces, this could help address 

the issue observed in higher line simplification values. 

Overall, variation of line simplification value for different fold shapes 

reveals several general trends. First is that there is no single optimal fold 

simplification value-the nature of the fold shape determines whether high or low 

fold simplification values work best and whether the most favorable range of 

values is narrow or wide for a given fold shape. Additionally, it is probable that 

use of "simple" or "all" specification and describing dip domains differently may 

have an important impact on line simplification. 

Also illustrated is that a tradeoff exists in estimating more complicated and 

rounded structures-using a small line simplification value results in an estimated 

fault shape that may be close to the actual fault shape, but has numerous points 

in the estimated fault. Conversely, the number of points may be reduced by 

using a higher simplification value, but critical aspects of the fold may be missed. 

It is unclear which approach is better-preliminary use of fault populations with 

numerous points in the inversion modeling code have shown that when initial 

faults have too many points, better solutions are not found in subsequent 

generations of the evolution. 
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C. Complexity: Simple vs. all 

It is evident by testing different fault shapes that in different situations it is 

preferable to use a "simple" estimate of the fault rather than correlating all of the 

points in the fold to points in the estimated fault. For example, consider a dip 

domain in which all axial surfaces are dipping the same direction but there are 

multiple segments within it; the "all" designation would correlate each point in the 

dip domain with a point on the fault, whereas the "simple" designation would 

consider only the endpoints of the dip domain. 

In the case of a flat-ramp-flat-ramp-flat fault-bend fold (Figure 22 a.), if the 

line simplification value is too low (top), the "simple" designation results in a 

better approximation of the fold; however, if a more appropriate line simplification 

value is used (bottom), this effect is removed and both cases are the same. In 

the case of the two-bend fault bend fold, if the fold is under-simplified (top), using 

the "all" designation, the resulting fault is too steep; the segments very quickly 

reach the threshold slope value. However if the "simple" designation is used, the 

second bend in the ramp is not observed. If line simplification values are more 

appropriate (bottom), the "simple" designation still misses the second fault bend, 

but the "all" designation captures the essential aspects of the fault. Use of 

syncline/anticline bounded dip domains with the "simple" designation should 

result in a very good approximation of the fault shape; this will be tested in the 

future. 
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D. Random Number Generation ('Seed'} 

The random number used in generating the fault population members also 

plays an important role in the appearance of the population. In figure 23, three 

different random number scenarios are shown; although all of the rest of the 

parameter values are the same in each test, each population qualitatively 

appears different because of the different random numbers used in each case. 

This effect, although subtle, is lessened by increasing the number of population 

members or repeating the process multiple times. 

E. Combination of the above 

As is evident by the above discussion of the effect of varying different 

range values in creating a fault population, there is no single value that works 

best for estimating all faults; different combinations of fold simplification values, 

fault parameter ranges, use of "simple" or "all" fold points, and syncline/anticline 

bounded dip domains or same axial surface dip direction dip domains are 

necessary to create an initial fault population. Thus it was determined that by 

randomly selecting a value for each of these parameters out of a specified range 

for each population member, a diverse fault population may be achieved. 

In figures 24, 25, 26, 27, each of the parameters is given a range from 

which a value is randomly selected in the generation of each of the 50 population 

members (by using testEstGRFPms2, see Appendix 1 ). The parameters window 

is randomly selected as any value between zero and 0.3, and 50% of the time, 

the "simple" designation is used. The fold simplification range varies for each of 
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the different folds, as it was shown above that this is the most sensitive 

parameter and varies the most for each fold shape. In each of the cases, use of 

a range of values for each of the parameters has created a population that is 

appropriately distributed around the known fault shape. 

24 



VI. FUTURE WORK 

There are several areas of future work aside from the issues addressed in 

the previous section. New algorithms to approximate the relative width and 

slopes of each fault segment will be tested in an attempt to improve these 

aspects of the fault prediction process. Integrating the syncline/anticline­

bounded dip domain description into fault estimation will also be investigated, as 

this has been shown to lend more insight into the estimated fault in some cases. 

The major area of future work is in using the fault populations generated 

by this estimation code as the initial population for the inverse fault-bend folding 

code. This has many challenges associated with it, as faults with different 

numbers of segments may prove difficult to integrate into the genetic algorithm. 

This will be tested extensively and will likely lead to investigation of several 

additional topics, including post-processing/simplifying the estimated fault or 

using the 'simple' designation and adding complexity in later generations in the 

genetic algorithm. 

Long term goals include establishing a Bayesian belief net or neural net to 

get the fault estimation algorithm to find what values for the parameters are most 

effective for certain structures at finding the best estimated faults. This will 

ultimately lead to the ability to model more complex structures, including 

imbricates. Additionally, the ability to use more kinds of fitness objective data, 

such as strike and dip measurements and possibly growth strata, may be 

developed. 
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Figure 1. Kinematic model of fault bend folding; As slip increases (top to bottom) 
more material passes through the active axial surface, where it is translated as its move­
ment becomes parallel to the next fault segment, forming a kink band. Red is the fault, 
blue are pre-deformation strata, black are syn-deformational "growth11 layers, and active 
axial surfaces are in green. 
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a. 

b. 

Figure 2. 

a. Folds can be described as dipping limbs divided by a hinge region where dip 
changes quickly. 

b. Alternatively, folds can be described as dip domains, regions of similar dip, bound­
ed by axial surfaces. Axial surfaces are green dashed lines, each different colored shad­
ed region is a dip domain. 
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a. 

• 

b. 

Figure 3. Describing dip domains. 

a. Dip domains (peach-colored shaded regions) are bounded by axial surfaces that dip the 
same direction. 

b. Dip domains are bounded by synclinal (magenta points) and anticlinal (blue points) 
bends. 



a. 

b. 

Figure 4. Estimating the location of fault bends from dip domains. 

a. Dip domains including all segments bounded by synclinal to anticlinal hinges 
and anticlinal to synclinal hinges. Each leading synclinal axis in the fold corre­
sponds to a synclinal bend in the fault, and each leading anticlinal axis in the fold 
corresponds to an anticlinal bend in the fault. 

b. Dip domains including all segments bounded by axial surfaces that dip the 
same direction. Active axial surfaces are green, passive axial surfaces are in yel­
low. In generalized description of the fault, the leading active axial surfaces are 
correlated to bends in the fault; the fault is approximated as shown in purple. In 
the more detailed description of the fault, all intermediate bends are correlated with 
bends in the fault; fault approximation is in aqua. 
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a. 
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b. 

C. 

Estimation of Slip 
(Method 2) 

Range in Z values for a fold 

Figure 5. Estimation of input slip. 

a. In cases of one fault bend, the maximum input slip is approximated as the 1.5 times 
the length of the sloping back limb (magenta), actual input slip is shown by the blue arrow. 

b. In multibend and rounded fault cases, the length determined by the above method 
far overestimates the slip; 

c. Slip is therefore calculated as the minimum of this value (in b.) and the hypotenuse 
of the triangle formed by the range in Z values for a layer and the maximum positive slope 
(a) of any segment. 
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Figure 6. Estimation of fault segment slopes 

The slope of the first fault segment is estimated as the slope of the first fold segment. 

The slope of subsequent fault segments are estimated as the sum of the slopes of the 
current and previous fold segment. 
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Figure 7. Program Map for estGRFPms. Intermediate variables are only shown for variables generated within the function 
estGRFPms and not those generated by subroutines executed within estGRFPms; other intermediate variables exist, but 
are omitted for clarity of presentation--arrows represent where an intermediate product of one function is an input to a sub­
sequent function. 
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No. of Segments: 3 

Slopes: 0, 20, 0 degrees 
Fault relative width: 35, 30, 35 
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Figure 9. Simple flat-ramp-flat fault-bend fold used for testing, with properties of the 
known fault and fitness objectives given. 
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Figure 10. Two bend fault-bend fold used for testing, with properties of the known 
fault and fitness objectives given. 
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Initial X: 0 
Initial Z: 8 
No. of Segments: 9 
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Figure 11. Rounded fault-bend fold used for testing, with properties of the known 
fault and fitness objectives given. 
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Figure 12. Two flat-ramp-flat composite fault-bend fold used for testing, with properties 
of the known fault and fitness objectives given. 
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Figure 13. Variation in the range from which the random fault may be generated (GRFPms range). 
Known fault in red, known fold (fitness objectives) in blue. Line simplification cutoff is 0.3, simplified 
line is colored line with open circles at vertices. Fault parameter range values are given in the upper 
left of each figure, and vertices of the estimated fault are plotted as multicolor points. As range 
increases, the range of randomly generated fault vertices increases its spread. Because the final and 
initial points X values are fixed, note that variation in these points is only in the Z direction. Additionally, 
note that variation in the first bend's location is elongated in the X direction. 
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Figure 14. Varying fault parameter range for a fault with one 20 degree ramp. Fault parameter 
range value is in the upper left for each figure. 

Simplification cutoff: 0.30 
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Figure 15. Varying fault parameter range for a fault with two bends, fault ramp segments slop­
ing 10 and 30 degrees. Fault parameter range value is in the upper left for each figure. 

Simplification cutoff: 0.07 
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Figure 16. Varying fault parameter range for a rounded fault-bend fold. Fault parameter range 
value is in the upper left for each figure. 

Simplification cutoff: 0.07 
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Figure 17. Varying fault parameter range for a two flat-ramp-flat fault-bend fold. Fault parame­
ter range value is in the upper left for each figure. 

Simplification cutoff: 0.20 
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Figure 18. Variation in simplification cutoff for a flat-ramp-flat fault-bend fold. Ramp is 20 degrees. 
Line simplification cutoff value is in the top left of each figure. 
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Figure 19. Variation in simplification cutoff for a two-bend fault-bend fold. Ramp angles are 10 and 
30 degrees. Line simplification cutoff value is in the top left of each figure. 
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Figure 20. Variation in simplification cutoff for a rounded fault-bend fold. Line simplification cutoff 
value is in the top left of each figure. 



47 

0.01 

-~·· ---~----- "~ --~ - -- -_ -_ 

0.05 

~·· --~__,. >··~ --
0.10 

0.50 

1.00 

Figure 21. Variation in simplification cutoff for a two ramp fault-bend fold. Ramps are both 20 
degrees. Line simplification cutoff value is in the top left of each figure. 
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Simple All 

Simple All 

----=====::::::::::-~ 

Figure 22. Use of 'simple' or 'all' to predict fault bends as a function of simplification cutoff for 
the fold. 

a. Two ramps: If the fold is under-simplified, 'simple' is a better approximation (top). If fold 
is simplified at the right threshold, the distinction does not affect the shape of the predict 
ed fault, although the number of points still varies(bottom). 

b. Two bends: If the fold is undersimplified, 'all' creates too steep of a fault with many 
bends, 'simple' creates a fault that is too gently dipping and does not capture the second 
bend (top). When the fault is simplified at a better threshold (bottom), 'all' approximates 
the fault better than 'simple.' 
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Figure 23. Result of varying all values and parameters, using default ranges for a flat-ramp-flat fault-bend fold. Randomly 
generated populations of faults may look somewhat different, although the default ranges remain the same (top and bottom). 
Default Ranges: Fold Simplification Range: [ 0.01 0.4 ]; Parameters Range: [ 0 0.3 ]; 100% 'all1; 50 faults in the pop- ~ 
ulation. co 
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Figure 24. Result of varying all values and parameters for a flat-ramp-flat fault-bend fold , using ranges specified. 

Ranges: 

Fold Simplification Range: [ 0.01 0.4 ]; 
Parameters Range: [ 0 0.3 ]; 
50% 'all', 50% 'simple; 
50 faults in the population. 
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Figure 25. Result of varying all values and parameters for a two-bend fault-bend fold, using the ranges specified below. 
Note that the Fold Simplification Range has been reduced from other tests, but all other ranges remain the same. 

Ranges: 

Fold Simplification Range: [ 0.01 0.1 ]; 
Parameters Range: [ 0 0.3 ]; 
50% 'all', 50% 'simple; 
50 faults in the population. 

~ 



40 

35 

3) 

25 

20 

15 

10 

5 

0 
-40 -20 0 20 40 60 80 100 120 

Figure 26. Result of varying all values and parameters for a rounded fault-bend fold, using the ranges specified below. 

Ranges: 

Fold Simplification Range: [ 0.01 0.4 ]; 
Parameters Range: [ 0 0.3 ]; 
50% 'all', 50% 'simple; 
50 faults in the population. 
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Figure 27. Result of varying all values and parameters for a two flat-ramp-flat composite fault-bend fold , using ranges specified . 

Ranges: 

Fold Simplification Range: [ 0.01 0.4 ]; 
Parameters Range: [ 0 0.3 ]; 
50% 'all', 50% 'simple; 
50 faults in the population. 

0, 
c.> 



XI. APPENDIX: DESCRIPTION OF THE ROLES, INPUTS, AND OUTPUTS OF 
INDIVIDUAL FUNCTIONS 

Help files for all functions written in the completion of this toolbox. Please 
refer to the program maps (Figures 7 and 8). 

Program Index: 

Function 
addFlatSegBeg 
addFlatSegEnd 
combineSegsFromBool 
dsbAxialSurface 
dsbDipDomains 
dsbLayer 
dsbSegSlope 
dscFau ltBendsAII 
dscFaultBendsSimple 
dscFaultSlopes 

addFlatSegBeg 

Pae 
22 
22 
23 
23 
24 
24 
25 
25 
26 
27 

Function Pa e 
dscFRW 27 
estGRFPms 28 
estGRSlipPms 29 
mergeSegsAntSyn 29 
mergeSegsSameDip 30 
mergeSegsSynAnt 30 
separateSegsSameDip 31 
testEstGRFPms 31 
testEstGRFPms2 32 

ADDFLATSEGBEG adds a flat segment 1 unit long to the beginning of a line 

FOrudOut = addFlatSegBeg(FOrudln) 
FOrudln -- any n x 3 matrix that describes a line/polyline as X-Y-Z 
FOrudOut -- the same, but with a 1 unit long flat seg added to the front 

this is useful so that the properties of the first real segment can be 
considered when analyzing the fold in estGRFPms 

see also estGRFPms, addFlatSegEnd 

addFlatSegEnd 

ADDFLATSEGEND adds a flat segment 1 unit long to the end of a line 

FOrudOut = addFlatSegEnd(FOrudln) 
FOrudln -- any n x 3 matrix that describes a line/polyline as X-Y-Z 
FOrudOut -- the same, but with a 1 unit long flat seg added to the front 

this is useful so that the properties of the last real segment can be 
considered when analyzing the fold in estGRFPms 

see also estGRFPms, addFlatSegBeg 
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combineSegsFromBool 

COMBINESEGSFROMBOOL takes use and append vectors and creates 
polylines 

segsArrayFinal = combineSegsFromBool(segsAII, use, append) takes 
use and append boolean vectors and creates a cell array of polylines of 
the dipdomains as specified by the booleans 

segsAII -- an n X 1 cell array 2 X 3 matrices that describe the 
beginning and end point of each individual segment in 
the FOrud fold 

use -- whether to use ( 1) a segment in generating a dip domain 
or not (0) 

append -- whether it should be appended to a previous segment as 
part of apolyline (1) or not (0) 

segsArrayFinal -- a cell array of matrices that give the points in the 
polylines that describe the dip domains as prescribed 
by the input use and append booleans. 

use and append created by mergeSegsSynAnt,mergeSegsAntSyn, and 
mergeSegsSameDip 

also see dsbDipDomains 

dsbAxialSurface 

DSBAXIALSURFACE describe each hinge as syn/ant and dip of axial trace 

[synant, asDipDir] = dsbAxialSurface(FOSlope) takes input slopes of the 
segments of a polyline and describes each hinge as synclinal/anticlinal 
and the dip of the axial trace at that hinge 

FOSlope 

synant 

asDipDir 

-- a column vector of the slope values for the segments of 
FORud, a polyline of a simplified fold shape 

-- a boolean vector indicating for each point in the 
polyline whether the bend is synclinal (1) or 
anticlinal (0) 

-- a boolean vector indicating whether the axial trace at a 
bend is positive sloping (1) or negative sloping (0) 

see also dsbSegSlope, dsbDipDomains 

dsbDipDomains 
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DSBDIPDOMAINS describes dip domains of input fold in different ways 

function 
[segsSynAnt,segsAntSyn,segsSameDipPos,segsSameDipNeg,segsAII] ... 
= dsbDipDomains(FOrud) describes dip domains as a series of structures 
of polylines based on different categorizations of dip domains 

FOrud -- an n x 3 X-Y-Z point description of the simplified fold 

outputs four logicals that are indices to the points in FOrud to use to 
consider each of the following as dip domains: 

segsAII 
segsSameDip 

segsSynAnt 

segsAntSyn 

-- consider each segment its own dip domain 
-- ( same dip) consider all segments that have axial traces 

with the same dip direction as dip domains (separated 
into segs with negative slopes (segsSameDipNeg) and 
positive slopes, segsSameDipPos) 

-- (syncline/anticline bounded) coinsider multiple segments 
with the same axial trace dip direction that are bounded 
by a syncline/anticline hinge pair 

-- same as above, but for anticline/syncline-bounded 
segments 

for how these logicals are generated, see mergeSegsSameDip, 
mergeSegsSynAnt, mergeSegsAntSyn, seperateSegsSameDip, and 
combineSegsFromBool 

dsblayer 

DSBLAYER--takes logical and reduced line, creates cell array of segments 

segsarray = dsblayer(FOrud, segslog) 
from the segments specified in the segslog, dsblayer returns the x,y,z 
coordinates of segments in a cell array 

FOrud 

segslog 
segsarray 

-- an n x 3 matrix of X-Y-Z locations of the points in the 
reduced fold polyline 

-- boolean column vector of which segments to use 
-- contains n 2 x 3 vectors that specify the xyz 

coordinates of the beginning and end points of each 
segment 

see also dsbDipDomains 
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dsbSegSlope 

DSBSEGSLOPE determines whether segs are pos/neg dip and dipping or not 

[FODipOrNot, FOSegSlopeSign] = dsbSegSlope(FOslope) creates boolean 
vectors that indicate whether each segment of the reduced fault is 
dipping or not and has positive or negative slope 

FOslope 

FODipOrNot 
FOSegSlopeSign 

-- an nx1 matrix of the slopes of the segments that connect 
the points that define the reduced objective layer. 

-- a logical where 1 is dipping, 0 is flat(+/- 2 degrees) 
-- is a logical where 1 is positive slope, 0 is flat 

or negative slope 

see also dsbAxialSurface, dsbDipDomains 

dscFaultBendsAII 

DSCFAUL TBENDSALL fault bends chosen by all points within fold dip domains 

[cvexBends, ccaveBends] = dscFaultBendsAll(segs1 ,segs2); 
finds the number of convex and concave bends in the fault by 
creating a fault bend that correlates to every bend within a fold's dip 
domains 

segs1 

segs2 

string 
cvexBends 

ccaveBends 

-- cell arrays of matrices of X-Y-Z coordinates of backlimb 
dip domains (best bet: segsSameDipPos) 

-- cell arrays of matrices of X-Y-Z coordinates of frontlimb 
dip domains (best bet: segsSameDipNeg) 

-- a string, specify 'synAnt' or 'sameDip' (default sameDip) 
-- column vector that stores the estimated X coordinate of 

convex fau It bends 
-- same, but for concave fault bends 

see also dscFaultBendsSimple, dsbDipDomains, dscFRW, estGRFPms 

note: code has not been written to meaningfully accomodate the use of 
'synAnt' ( segsSynAnt/segsAntSyn )--'string' is not used 
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dscFaultBendsSimple 

DSCFAUL TBENDSSIMPLE fault bends chosen by first points of fold dip domains 

[cvexBends, ccaveBends] = dscFaultBendsSimple(segs1 ,segs2,string); 
finds the number of convex and concave bends by creating a fault bend that 
correlates with every leading point of a fold's dip domains 

segs1 

segs2 

string 
cvexBends 

ccaveBends 

-- cell arrays of matrices of X-Y-Z coordinates of backlimb 
dip domains (best bet: segsSameDipPos) 

-- cell arrays of matrices of X-Y-Z coordinates of frontlimb 
dip domains (best bet: segsSameDipNeg) 

-- a string, specify 'synAnt' or 'sameDip' (default sameDip) 
-- column vector that stores the estimated X coordinate of 

convex fault bends 
-- same, but for concave fault bends 

see also dscFaultBendsAII, dsbDipDomains, dscFRW, estGRFPms 

note: code has not been written to meaningfully accomodate the use of 
'synAnt' ( segsSynAnt/segsAntSyn )--
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dscFaultSlopes 

DSCFAUL TSLOPES predicts slopes for each fault segment 

[faultSlopes ]=dscFaultSlopes( concavebends,convexbends, ... 
segsPos,segsNeg,FOrud,simpleorall) 

concavebends 
convexbends 
segsPos 

segsNeg 

FOrud 

simpleorall 

faultSlopes 

-- an n x 1 vector of X coordinates of concave bends 
-- an n x 1 vector of X coordinates of convex bends 
-- cell arrays of matrices of X-Y-Z coordinates of backlimb 

dip domains (best bet: segsSameDipPos) 
-- cell arrays of matrices of X-Y-Z coordinates of 

frontlimb dip domains (best bet: segsSameDipNeg) 
-- an n x 3 matrix of X-Y-Z locations of the points in the 

reduced fold polyline 
-- a string, 'simple' if you want to only use leading 

bends to determine fault segments, or 'all' if you 
want to use intermediate bends in the fold to 
determine fault segments. default 'all' 

-- a column vector of estimated fault slopes 

note: the minimum allowed fault slope is O; the max is the largest slope 
of any positively dipping segment--while this is not geometrically true, 
it provides good predictions 

see also estGRFPms 

dscFRW 

DSCFRW takes fault bend locations and returns fault relative widths 

FRW=dscFRW( convexBends, concaveBends, FOVal,X,estSlip) determines 
fault 

relative width of each fault segment by looking at fault bend locations 
relative to the total fault length 

convexBends 

concaveBends 
FOVal 

-- column vector that stores the estimated X coordinate of 
convex fault bends 

-- same, but for concave fault bends 
-- structure of polyline properties generated by 

getFitObjVal 
X -- the X value for the first point of the fault 
estSlip -- scalar of the maximum estimated slip from estGRSlipPms 
FRW -- a column vector of relative widths of each segment 
see also dscFaultBendsAII, dscFaultBendsSimple, estGRSlipPms, estGRFPms 
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estGRFPms 

ESTGRFPMS estimate parameters GRFPms to use in findFbf 

[GRFPms, GRSlipPms] = estGRFPms(fitnessObjectives,SDorSA, ... 
simpleorall,simpCutofNal,GRFPmsWind) reads the fitness objectives 
and determines the GRFPms parameters that will more likely generate 
a reasonable initial population of faults for findFbf 

fitnessObjectives 

SDorSA 

simpleorall 

simpCutofNal 
GRFPmsWind 

GRFPms 

GRSlipPms 

-- a structure that can contain fields layers (a cell array of 
layers, each of which is an n X 3 cell array of x y z points 
that describe the fold layer OR can be just an n X 3 
matrix of x y z points) and fault (matrix of x y z points of 
known fault segments) 

-- a string, 'sameDip' if you want to describe dip domains by 
the "same dip" method, 'synAnt' if you want to describe 
dip domains by the "syn/ant-bounded method". see 
dsbDipDomains for more details. default: 'sameDip' 

-- a string, 'simple' if you want to only use leading bends to 
determine fault segments, or 'all' if you want to use 
intermediate bends in the fold to determine fault 
segments. see dscFaultBendsSimple and 
dscFaultBendsAII for more details. default: 'all' 

-- a scalar for the cutoff value for simplifyline default: 0.1 
-- a scalar for the range for genGRFPms to generate 

GRFPms. default: 0.1 
-- a structure containing fields x, z, layerlength, faultSlope, 

and faultRelWidth. x is the X coordinate of the initial est 
fault point, layerlength is the length of the fault. z is a 1 
x 2 vector of the minimum and maximum z values for the 
initial fault point. faultSlope is an n X 2 matrix with each 
row giving the minimum and maximum slope for that fault 
segment, and faultRelWidth is the same size matrix 
giving the min and max fault relative width for each fault 
segment. 

-- a minimum and maximum estimate for the input slip 

see also testEstGRFPms, testEstGRFPms2, calls estGRSlipPms 
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estGRSlipPms 

ESTGRSLIPPMS estimates slip based on fold shape 

GRSlipPms = estGRSlipPms(segs,FOVal,simpleorall) generates minimum and 
maximum slip estimates based on fold shape. minimum slip is 0, maximum 
slip is the max of the two estimations of maximum slip calculated: 

method 1: maxSlip is the maximum length of any of the dip domains 

method 2: maxSlip is the hypotenuse length of the triangle formed by the 
range in Z of the fold and the maximum slope of any fold segment 

segs 

FOVal 

simpleorall 

GRSlipPms 

-- cell array of backlimb dip domains (segsSameDipPos 
or segsSynAnt) a matrix of points will also work 

-- structure of polyline properties generated by 
getFitObjVal 

-- a string, 'simple' if you want to only use leading 
bends to determine fault segments, or 'all' if you 
want to use intermediate bends in the fold to 
determine fault segments. see dscFaultBendsSimple 
and dscFaultBendsAII for more details. 

-- a 1 x 2 of the min and max slip estimates; min slope 
is 0, max is determined by the length of dip domains 

see also estGRFPms 
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mergeSegsAntSyn 

MERGESEGSANTSYN makes bools to make polylines of ant/syn-bounded dip 
dams 

[use, append] = mergeSegsAntSyn(synAnt, FODipOrNot) creates 
booleans for use in generating dip domains that include all bends within 
an anticline/syncline pair of bends 

the following are boolean column vectors that indicate: 
synAnt -- whether each bend in the fold is a synclinal (1) or 

anticlinal (0) hinge 
FODipOrNot -- whether a segment is dipping (1) or "flat" (0) 

(flat +/- 2 degrees). 
use -- whether to use (1) a segment in generating a dip domain 

or not (0) 
append -- whether it should be appended to a previous segment as 

part of apolyline (1) or not (0) 

see also mergeSegsSynAnt, dsbDipDomains 

mergeSegsSameDip 

MERGESEGSSAMEDIP creates bools to create polylines of SameDip dip 
domains 

function [use, append] = mergeSegsSameDip(asDipDir, FODipOrNot) creates 
booleans for use in generating dip domains that include all bends that 
have axial traces that are dipping in the same direction 

the following are boolean column vectors that indicate: 
asDipDir -- a boolean vector indicating whether the axial trace at a 

point is positive sloping (1) or negative sloping (0) 
FODipOrNot -- whether a segment is dipping (1) or "flat" (0) 

(flat +/- 2 degrees). 
use -- whether to use (1) a segment in generating a dip domain 

or not (0) 
append -- whether it should be appended to a previous segment as 

part of apolyline (1) or not (0) 

see also combineSegsFromBool, separateSegsSameDip, dsbDipDomains 

62 



mergeSegsSynAnt 

MERGESEGSSYNANT makes bools to make polylines of syn/ant-bounded dip 
doms 

[use, append]= mergeSegsSynAnt(synAnt, FODipOrNot) creates 
booleans for use in generating dip domains that include all bends within 
an synclinal/anticlinal pair of bends 

the following are boolean column vectors that indicate: 
synAnt -- whether each bend in the fold is a synclinal ( 1) or 

anticlinal (0) hinge 
FODipOrNot -- whether a segment is dipping (1) or "flat" (0) 

(flat +/- 2 degrees). 
use -- whether to use ( 1) a segment in generating a dip domain 

or not (0) 
append -- whether it should be appended to a previous segment as 

part of apolyline (1) or not (0) 

see also mergeSegsAntSyn, dsbDipDomains 

separateSegsSameDip 

SEPARATESEGSSAMEDIP divides segsSame dip into+ and - dipping dip 
domains 

[segsSameDipPos, segsSameDipNeg] = separateSegsSameDip(segsSameDip) 
separates SegsSameDip into segsSameDipPos, positively sloping segments 
include all segments with the same axial surface dip direction, and 
segsSamdDipNeg, negatively sloping segments of the same. 

see also mergeSegsSameDip, combineSegsFromBool, dsbDipDomains 
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testEstGRFPms 

TESTESTGRFPMS wrapper to test estGRFPms, display fault pops for GRFPms 

testEstGRFPms(fbfParams,n,simpCutofNal,GRFPmsVal,simpOrAll,SDorSA) 
reads the fbfParams for a fold and specified parameters and runs 
estGRFPms to create and plot a population of estimated faults 
-- this plots the random variations for one set of GRFPms 

fbfParams 

n 
simpCutofNal 
GRFPmsVal 

simpleorall 

SDorSA 

-- a structured array of the observed fold, generated from 
either fbfFor or buildFbfParams 

-- the number of faults to be generated 
-- a scalar for the cutoff value for simplifyline 
-- a scalar for the range for genGRFPms to generate 

GRFPms 
-- a string, 'simple' if you want to only use leading bends to 

determine fault segments, or 'all' if you want to use 
intermediate bends in the fold to determine fault segments. 
see dscFaultBendsSimple and dscFaultBendsAII for more 
details. 

-- a string, 'sameDip' if you want to describe dip domains by 
the "same dip" method, 'synAnt' if you want to describe dip 
domains by the "syn/ant-bounded method". see 
dsbDipDomains for more details. 

can output (but currently does not) 
faultsArray -- an array containing the matricies of the X-Y-Z points of 

each fault shape generated 

see also testEstGRFPms2, estGRFPms 
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testEstGRFPms2 

TESTESTGRFPMS2 wrapper, generates a pop of faults for many GRFPms 
values based on the input specifications 

testEstGRFPms2(fbfParams,num,simpCutoff,GRFPmsWind,simpAIIAmt) 
reads the fbfParams for a fold and specified parameters and runs estGRFPms 
to create and plot a population of estimated faults -- this plots the random 
variations for many sets of GRFPms--within the ranges of values specified, a 
GRFPms window, linesimplification cutoff, and 'simple' or 'all' are used, to 
create a GRFPms structure, then a fault is randomly generated within those 
parameters. 

fbfParams 

num 
simpCutoff 

GRFPmsWind 

simpleAIIAmt 

-- a structured array of the observed fold generated from 
either fbfFor or buildFbfParams 

-- the number of faults generated in the pop. default 1. 
-- a 1 x 2 giving the min and max values to use for fold 

simplification in simplifyline. default (.01 0.4]. 
-- a 1 x 2 giving the min and max values to use for the 

ranges in the GRFPms. default (0 0.3] 
-- a 1 x 2 giving the min and max amount of the time that 'all' 

is used relative to 'simple'. 0 is all 'simple', 1 is all 'all' 
default (0.5 1] 

can output (but currently does not) 
faultsArray -- an array containing the matricies of the X-Y-Z points of 

each fault shape generated 

see also testEstGRFPms, estGRFPms 
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APPENDIX II: USE OF OTHER NON-BUILT-IN FUNCTIONS 

Below are listed the functions, with their occurrence, that are non-built-in but are 
implemented within the codes listed above: 

getFitObjVal (in estGRFPms and estGRSlipPms) 

simplifyline (in estGRFPms and testEstGRFPms) 

getFaultSlope (in dsbDipDomains, seperateSegsSameDip, dscFaultSlopes) 

getlineSegmentlength (in estGRSlipPms) 

getFFAngFromFault (in dscFRW) 

genGRFPms (in estGRFPms) 

genRandFaultFromAngle (in testEstGRFPms) 
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