Washington and Lee University Library
    • Login
    View Item 
    •   Digital Archive Home
    • W&L University Student Scholarship
    • W&L Dept. of Mathematics
    • View Item
    •   Digital Archive Home
    • W&L University Student Scholarship
    • W&L Dept. of Mathematics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Periods of Linearly Recurring Sequences (thesis)

    Thumbnail
    View/Open
    Honors thesis (406.7Kb)
    Author
    Quijada, Danjoseph Keeny B. (DJ)
    Subject
    Washington and Lee University -- Honors in Mathematics
    Sequences (Mathematics)
    Finite fields (Algebra)
    Metadata
    Show full item record
    Description
    Thesis; [FULL-TEXT FREELY AVAILABLE ONLINE]
     
    Danjoseph Keeny B. (DJ) Quijada is a member of the Class of 2015 of Washington and Lee University.
     
    In this thesis, we investigate sequences defined by linear recurrence relations. These are sequences whose subsequent terms are generated using some linear combination of the previous terms. We call the equation that determines the next terms of the sequence the "linear recurrence relation" satisfied by the sequence. As it turns out, if the ring over which the sequence is defined is finite, then the sequence is guaranteed to eventually repeat. It is then natural to consider the following questions: (1) What factors determine the periods of these sequences once they begin to repeat? And (2) which periods arise from sequences that satisfy a particular linear recurrence relation, or from linear recurrences over a particular ring? Here we address these kinds of questions. Predicting the periodic behavior of any particular linearly recurring sequence, however, is actually exceedingly difficult, and so we instead attempt to determine the sets of periods that will arise from sequences defined by linear recurrences of a fixed degree and over some well-behaved ring. In Chapter 2, we discuss various properties of sequences defined over a finite (commutative) ring with unity. In particular, we generalize a result of Ward to show that the set of sequences has a natural ring structure and decomposes into a direct sum of periodic and null sequences (see Proposition 2.30). In Chapter 3, we give an exposition of the theory of sequences defined over finite fields. In particular, we show that the (least) period of a sequence is the order of a certain polynomial (see Theorem 3.17). We use this to describe the sets of possible periods of all linear recurrences of given degree k for small k. Finally, in Chapter 4, we apply some of the earlier theory to understand the periods of sequences defined over finite quotients of principal ideal domains.
     
    Danjoseph Quijada
     
    URI
    http://hdl.handle.net/11021/32172
    Collections
    • W&L Dept. of Mathematics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of the Digital ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV